server.py: hacky code

This commit is contained in:
ochafik 2024-03-25 23:57:25 +00:00
parent 0d1d46ef1d
commit 63d13245e1
9 changed files with 502 additions and 0 deletions

53
examples/openai/README.md Normal file
View file

@ -0,0 +1,53 @@
# examples.openai: OpenAI API-compatible server
A simple Python server that sits above the C++ [../server](examples/server) and offers improved OAI compatibility.
## Usage
```bash
python -m examples.openai -m some-model.gguf
```
## Features
The new examples/openai/server.py:
- Uses llama.cpp C++ server as a backend (spawns it or connects to existing)
- Uses actual jinja2 chat templates read from the models
- Supports grammar-constrained output for both JSON response format and tool calls
- Tool calling “works” w/ all models (even non-specialized ones like Mixtral 7x8B)
- Optimised support for Functionary & Nous Hermes, easy to extend to other tool-calling fine-tunes
## TODO
- Embedding endpoint w/ distinct server subprocess
- Automatic/manual session caching
- Spawns the main C++ CLI under the hood
- Support precaching long prompts from CLI
- Instant incremental inference in long threads
- Improve examples/agent:
- Interactive agent CLI that auto-discovers tools from OpenAPI endpoints
- Script that wraps any Python source as a container-sandboxed OpenAPI endpoint (allowing running ~unsafe code w/ tools)
- Basic memory / RAG / python interpreter tools
- Follow-ups
- Remove OAI support from server
- Remove non-Python json schema to grammar converters
- Reach out to frameworks to advertise new option.

View file

@ -0,0 +1,8 @@
from jsonargparse import CLI
from examples.openai.server import main
if __name__ == "__main__":
CLI(main)

27
examples/openai/api.py Normal file
View file

@ -0,0 +1,27 @@
from typing import Any, Optional
from pydantic import BaseModel, Json
class Message(BaseModel):
role: str
content: str
class ToolFunction(BaseModel):
name: str
description: str
parameters: Any
class Tool(BaseModel):
type: str
function: ToolFunction
class ResponseFormat(BaseModel):
type: str
json_schema: Optional[Any] = None
class ChatCompletionRequest(BaseModel):
model: str
tools: Optional[list[Tool]] = None
messages: list[Message]
response_format: Optional[ResponseFormat] = None
temperature: float = 1.0
stream: bool = False

View file

@ -0,0 +1,59 @@
from enum import StrEnum
import jinja2
from examples.openai.gguf_kvs import GGUFKeyValues, Keys
def raise_exception(msg: str):
raise Exception(msg)
class ToolStyle(StrEnum):
# https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
DEFAULT="Default",
# https://github.com/MeetKai/functionary
# TODO: look at https://github.com/ggerganov/llama.cpp/pull/5695
# https://github.com/MeetKai/functionary/blob/main/functionary/prompt_template/prompt_template_v2.py
FUNCTIONARY_V2="Functionary V2",
# https://github.com/NousResearch/Hermes-Function-Calling
NOUS_RESEARCH_HERMES="Nous-Research-Hermes-Function-Calling",
class ChatFormat: #(BaseModel):
def __init__(self, template: str, eos_token: str, bos_token: str):
env = jinja2.Environment(loader=jinja2.BaseLoader(), trim_blocks=True, lstrip_blocks=True)
self.template = env.from_string(template)
self.eos_token = eos_token
self.bos_token = bos_token
self.strict_user_assistant_alternation = "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception" in template
if "<|recipient|>' + tool_call['function']['name']" in template:
self.tool_style = ToolStyle.FUNCTIONARY_V2
else:
self.tool_style = ToolStyle.DEFAULT
def __str__(self):
return f"ChatFormat(template={self.template}, eos_token={self.eos_token}, bos_token={self.bos_token})"
@staticmethod
def from_gguf(metadata: GGUFKeyValues):
return ChatFormat(
template = metadata[Keys.Tokenizer.CHAT_TEMPLATE],
bos_token = metadata[Keys.Tokenizer.BOS_ID],
eos_token = metadata[Keys.Tokenizer.EOS_ID])
# @staticmethod
# def from_gguf(model: Path):
# reader = GGUFReader(model.as_posix())
# return ChatFormat(
# template = reader.fields[Keys.Tokenizer.CHAT_TEMPLATE].read(),
# bos_token = reader.fields[Keys.Tokenizer.BOS_ID].read(),
# eos_token = reader.fields[Keys.Tokenizer.EOS_ID].read())
def render(self, messages: list[dict], add_generation_prompt: bool, omit_bos: bool = False):
return self.template.render(
messages=messages,
eos_token=self.eos_token,
bos_token='' if omit_bos else self.bos_token,
raise_exception=raise_exception,
add_generation_prompt=add_generation_prompt,
)

View file

@ -0,0 +1,20 @@
from pathlib import Path
import sys
sys.path.insert(0, str(Path(__file__).parent.parent.parent / "gguf-py"))
from gguf.gguf_reader import GGUFReader
from gguf.constants import Keys
class GGUFKeyValues:
def __init__(self, model: Path):
reader = GGUFReader(model.as_posix())
self.fields = reader.fields
def __getitem__(self, key: str):
if '{arch}' in key:
key = key.replace('{arch}', self[Keys.General.ARCHITECTURE])
return self.fields[key].read()
def __contains__(self, key: str):
return key in self.fields
def keys(self):
return self.fields.keys()

View file

@ -0,0 +1,28 @@
from typing import Optional
from pydantic import BaseModel, Json
class LlamaCppServerCompletionRequest(BaseModel):
prompt: str
stream: Optional[bool] = None
cache_prompt: Optional[bool] = None
n_predict: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
min_p: Optional[float] = None
tfs_z: Optional[float] = None
typical_p: Optional[float] = None
temperature: Optional[float] = None
dynatemp_range: Optional[float] = None
dynatemp_exponent: Optional[float] = None
repeat_last_n: Optional[int] = None
repeat_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
mirostat: Optional[bool] = None
mirostat_tau: Optional[float] = None
mirostat_eta: Optional[float] = None
penalize_nl: Optional[bool] = None
n_keep: Optional[int] = None
seed: Optional[int] = None
grammar: Optional[str] = None
json_schema: Optional[Json] = None

View file

@ -0,0 +1,7 @@
fastapi[all]
gguf
jinja2
jsonargparse
pydantic
sse-starlette
uvicorn[all]

215
examples/openai/server.py Normal file
View file

@ -0,0 +1,215 @@
import json, sys, subprocess, atexit
from pathlib import Path
# sys.path.insert(0, str(Path(__file__).parent.parent))
from examples.openai.llama_cpp_server_api import LlamaCppServerCompletionRequest
from examples.json_schema_to_grammar import SchemaConverter
from typing import Optional
import httpx
from fastapi import Depends, FastAPI, Request, Response
from starlette.responses import StreamingResponse
from fastapi.responses import JSONResponse
from jsonargparse import CLI
from examples.openai.ts_converter import SchemaToTypeScriptConverter
from examples.openai.gguf_kvs import GGUFKeyValues, Keys
from examples.openai.api import Message, Tool, ToolFunction, ResponseFormat, ChatCompletionRequest
from examples.openai.chat_format import ChatFormat, ToolStyle
def _add_system_prompt(messages: list['Message'], system_prompt: str):
# TODO: add to last system message, or create a new one just before the last user message
system_message = next(((i, m) for i, m in enumerate(messages) if m.role == "system"), None)
if system_message is not None:
(i, m) = system_message
messages[i].content = m.content + '\n' + system_prompt
else:
messages.insert(0, Message(role="system", content=system_prompt))
return messages
def main(
model: Path = Path("/Users/ochafik/AI/Models/Hermes-2-Pro-Mistral-7B.Q8_0.gguf"),
host: str = "localhost",
port: int = 8080,
main_server_endpoint: Optional[str] = None,
main_server_host: str = "localhost",
main_server_port: Optional[int] = 8081,
):
import uvicorn
metadata = GGUFKeyValues(model)
context_length = metadata[Keys.LLM.CONTEXT_LENGTH]
chat_format = ChatFormat.from_gguf(metadata)
print(chat_format)
if not main_server_endpoint:
server_process = subprocess.Popen([
"./server", "-m", model,
"--host", main_server_host, "--port", f'{main_server_port}',
'-ctk', 'q4_0', '-ctv', 'f16',
"-c", f"8192",
# "-c", f"{context_length}",
])
atexit.register(server_process.kill)
main_server_endpoint = f"http://{main_server_host}:{main_server_port}"
app = FastAPI()
@app.post("/v1/chat/completions")
async def chat_completions(request: Request, chat_request: ChatCompletionRequest):
headers = {
"Content-Type": "application/json",
"Authorization": request.headers.get("Authorization"),
}
if chat_request.response_format is not None:
assert chat_request.response_format.type == "json_object", f"Unsupported response format: {chat_request.response_format.type}"
response_schema = chat_request.response_format.json_schema or {}
else:
response_schema = None
messages = chat_request.messages
parser=None
grammar=None
converter = SchemaConverter(prop_order={}, allow_fetch=False, dotall=False, raw_pattern=False)
response_rule = converter.visit(response_schema, "response") if response_schema else None
delimiter = '<%$[SAMPLE]$%>'
empty_prompt = chat_format.render([], add_generation_prompt=True)
planted_prompt = chat_format.render([{"role": "assistant", "content": delimiter}], add_generation_prompt=False)
assert planted_prompt.startswith(empty_prompt), f"Planted prompt does not start with empty prompt: {planted_prompt} vs {empty_prompt}"
[prefix, suffix] = planted_prompt[len(empty_prompt):].split(delimiter)
if chat_request.tools:
if chat_format.tool_style in (ToolStyle.DEFAULT, ToolStyle.NOUS_RESEARCH_HERMES):
messages = _add_system_prompt(messages, '\n'.join([
'Here are the tools available:',
'<tools>',
*(tool.model_dump_json() for tool in chat_request.tools),
'</tools>',
]))
tool_rules = [
converter.visit(
dict(
type="object",
properties=dict(
name=dict(const=tool.function.name),
arguments=tool.function.parameters,
),
required=['name', 'arguments']
),
f'{tool.function.name}-tool-call'
)
for tool in chat_request.tools
]
# Constrain the output to be a non-tool-call message (constrained to a JSON schema or not)
# OR a tool-call message respecting the schema of any of the tools
converter._add_rule(
"root",
converter._format_literal(prefix) + " (" +
(response_rule or converter.not_literal("<tool_call>")) + " | " +
converter._format_literal("<tool_call>") + " (" +
' | '.join(tool_rules) +
") " + converter._format_literal("</tool_call>") +
") " + converter._format_literal(suffix))
grammar = converter.format_grammar()
def parse(s: str):
if '<tool_call>'.startswith(s):
if s.startswith('<tool_call>') and s.endswith('</tool_call>' + suffix):
s = s[len('<tool_call>'):-len('</tool_call>' + suffix)]
return {"role": "assistant", "tool_calls": [json.loads(s)]}
return None
else:
return {"role": "assistant", "content": s}
parser = parse
elif chat_format.tool_style == ToolStyle.FUNCTIONARY_V2:
ts_converter = SchemaToTypeScriptConverter()
messages = _add_system_prompt(messages, '\n'.join([
'// Supported function definitions that should be called when necessary.'
'namespace functions {',
*[
'// ' + tool.function.description.replace('\n', '\n// ') + '\n' + ''
'type ' + tool.function.name + ' = (_: ' + ts_converter.visit(tool.function.parameters) + ") => any;\n"
for tool in chat_request.tools
],
'} // namespace functions',
]))
# Only allowing a single tool call at a time for now.
# Note that if there were more, they'd be separated by a '<|from|>assistant' literal
converter._add_rule(
"root",
converter._format_literal(prefix) + " (" +
(response_rule or converter.not_literal("<|recipient|>")) + " | " +
(' | '.join(
converter._format_literal(f"<|recipient|>{tool.function.name}\n<|content|>") + " " +
converter.visit(tool.function.parameters, tool.function.name + '-args')
for tool in chat_request.tools
)) +
") " +
") " + converter._format_literal(suffix))
grammar = converter.format_grammar()
else:
raise NotImplementedError(f'Unsupported tool_style: {chat_format.tool_style}')
elif response_schema:
converter._add_rule('root', response_rule)
grammar = converter.format_grammar()
def parse(s):
if s.endswith(suffix):
s = s[:-len(suffix)]
return {"role": "assistant", "content": s}
return None
parser = parse
if chat_format.strict_user_assistant_alternation:
print("TODO: merge system messages into user messages")
# new_messages = []
# TODO: Test whether the template supports formatting tool_calls
prompt = chat_format.render(messages, add_generation_prompt=True)
# print(prompt)
# print(grammar)
print(json.dumps(dict(
prompt=prompt,
stream=chat_request.stream,
grammar=grammar,
), indent=2))
async with httpx.AsyncClient() as client:
response = await client.post(
f"{main_server_endpoint}/completions",
json=LlamaCppServerCompletionRequest(
prompt=prompt,
stream=chat_request.stream,
n_predict=100,
grammar=grammar,
).model_dump(),
headers=headers,
timeout=None)
return StreamingResponse(generate_chunks(response), media_type="text/event-stream") if chat_request.stream \
else JSONResponse(response.json())
async def generate_chunks(response):
async for chunk in response.aiter_bytes():
yield chunk
uvicorn.run(app, host=host, port=port)
if __name__ == "__main__":
CLI(main)

View file

@ -0,0 +1,85 @@
from typing import Any, List, Set, Tuple, Union
from jsonargparse import CLI
class SchemaToTypeScriptConverter:
# TODO: comments for arguments!
# // Get the price of a particular car model
# type get_car_price = (_: {
# // The name of the car model.
# car_name: string,
# }) => any;
# // get the weather of a location
# type get_weather = (_: {
# // where to get weather.
# location: string,
# }) => any;
def _build_object_rule(self, properties: List[Tuple[str, Any]], required: Set[str], name: str, additional_properties: Union[bool, Any]):
return "{" + ', '.join(
f'{prop_name}{"" if prop_name in required else "?"}: {self.visit(prop_schema)}'
for prop_name, prop_schema in properties
) + "}"
def visit(self, schema: dict):
def print_constant(v):
return json.dumps(v)
schema_type = schema.get('type')
schema_format = schema.get('format')
if 'oneOf' in schema or 'anyOf' in schema:
return '|'.join(self.visit(s) for s in schema.get('oneOf') or schema.get('anyOf'))
elif isinstance(schema_type, list):
return '|'.join(self.visit({'type': t}) for t in schema_type)
elif 'const' in schema:
return print_constant(schema['const'])
elif 'enum' in schema:
return '|'.join((print_constant(v) for v in schema['enum']))
elif schema_type in (None, 'object') and \
('properties' in schema or \
('additionalProperties' in schema and schema['additionalProperties'] is not True)):
required = set(schema.get('required', []))
properties = list(schema.get('properties', {}).items())
return self._build_object_rule(properties, required, schema.get('additionalProperties'))
elif schema_type in (None, 'object') and 'allOf' in schema:
required = set()
properties = []
def add_component(comp_schema, is_required):
if (ref := comp_schema.get('$ref')) is not None:
comp_schema = self._refs[ref]
if 'properties' in comp_schema:
for prop_name, prop_schema in comp_schema['properties'].items():
properties.append((prop_name, prop_schema))
if is_required:
required.add(prop_name)
for t in schema['allOf']:
if 'anyOf' in t:
for tt in t['anyOf']:
add_component(tt, is_required=False)
else:
add_component(t, is_required=True)
return self._build_object_rule(properties, required, additional_properties=[])
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):
items = schema.get('items') or schema['prefixItems']
if isinstance(items, list):
return '[' + ', '.join(self.visit(item) for item in items) + '][]'
else:
return self.visit(items) + '[]'
elif schema_type in (None, 'string') and schema_format == 'date-time':
return 'Date'
elif (schema_type == 'object') or (len(schema) == 0):
return 'any'
else:
return 'number' if schema_type == 'integer' else schema_type