server: tests:
* start the server at each scenario * split the features as each requires different server config
This commit is contained in:
parent
68b8d4eb55
commit
6406208174
6 changed files with 197 additions and 173 deletions
|
@ -7,10 +7,13 @@ Server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_
|
|||
|
||||
### Run tests
|
||||
1. Build the server
|
||||
2. download a GGUF model: `./scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
|
||||
3. Start the test: `./tests.sh stories260K.gguf -ngl 23`
|
||||
2. download required models:
|
||||
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
|
||||
3. Start the test: `./tests.sh`
|
||||
|
||||
To change the server path, use `LLAMA_SERVER_BIN_PATH` environment variable.
|
||||
|
||||
### Skipped scenario
|
||||
|
||||
Scenario must be annotated with `@llama.cpp` to be included in the scope.
|
||||
Feature or Scenario must be annotated with `@llama.cpp` to be included in the scope.
|
||||
`@bug` annotation aims to link a scenario with a GitHub issue.
|
||||
|
|
4
examples/server/tests/features/environment.py
Normal file
4
examples/server/tests/features/environment.py
Normal file
|
@ -0,0 +1,4 @@
|
|||
|
||||
def after_scenario(context, scenario):
|
||||
print("stopping server...")
|
||||
context.server_process.kill()
|
49
examples/server/tests/features/security.feature
Normal file
49
examples/server/tests/features/security.feature
Normal file
|
@ -0,0 +1,49 @@
|
|||
@llama.cpp
|
||||
Feature: Security
|
||||
|
||||
Background: Server startup with an api key defined
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a server api key llama.cpp
|
||||
Then the server is starting
|
||||
|
||||
Scenario Outline: Completion with some user api key
|
||||
Given a prompt test
|
||||
And a user api key <api_key>
|
||||
And 4 max tokens to predict
|
||||
And a completion request with <api_error> api error
|
||||
|
||||
Examples: Prompts
|
||||
| api_key | api_error |
|
||||
| llama.cpp | no |
|
||||
| llama.cpp | no |
|
||||
| hackeme | raised |
|
||||
| | raised |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a system prompt test
|
||||
And a user prompt test
|
||||
And a model test
|
||||
And 2 max tokens to predict
|
||||
And streaming is disabled
|
||||
And a user api key <api_key>
|
||||
Given an OAI compatible chat completions request with <api_error> api error
|
||||
|
||||
Examples: Prompts
|
||||
| api_key | api_error |
|
||||
| llama.cpp | no |
|
||||
| llama.cpp | no |
|
||||
| hackme | raised |
|
||||
|
||||
|
||||
Scenario Outline: CORS Options
|
||||
When an OPTIONS request is sent from <origin>
|
||||
Then CORS header <cors_header> is set to <cors_header_value>
|
||||
|
||||
Examples: Headers
|
||||
| origin | cors_header | cors_header_value |
|
||||
| localhost | Access-Control-Allow-Origin | localhost |
|
||||
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
|
||||
| origin | Access-Control-Allow-Credentials | true |
|
||||
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
|
||||
| web.mydomain.fr | Access-Control-Allow-Headers | * |
|
|
@ -1,118 +1,46 @@
|
|||
@llama.cpp
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080 with 2 slots, 42 as seed and llama.cpp as api key
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a model alias tinyllama-2
|
||||
And 42 as server seed
|
||||
And 32 KV cache size
|
||||
And 1 slots
|
||||
And 32 server max tokens to predict
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
@llama.cpp
|
||||
Scenario: Health
|
||||
When the server is healthy
|
||||
Then the server is ready
|
||||
And all slots are idle
|
||||
|
||||
@llama.cpp
|
||||
Scenario Outline: Completion
|
||||
Given a prompt <prompt>
|
||||
And a user api key <api_key>
|
||||
And <n_predict> max tokens to predict
|
||||
And a completion request
|
||||
Then <n_predict> tokens are predicted
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted with content: <content>
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | api_key |
|
||||
| I believe the meaning of life is | 128 | llama.cpp |
|
||||
| Write a joke about AI | 512 | llama.cpp |
|
||||
| say goodbye | 0 | |
|
||||
| prompt | n_predict | content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | <space>going to read. | 8 |
|
||||
| Write a joke about AI | 64 | tion came to the park. And all his friends were very scared and did not | 32 |
|
||||
|
||||
@llama.cpp
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a system prompt <system_prompt>
|
||||
Given a model <model>
|
||||
And a system prompt <system_prompt>
|
||||
And a user prompt <user_prompt>
|
||||
And a model <model>
|
||||
And <max_tokens> max tokens to predict
|
||||
And streaming is <enable_streaming>
|
||||
And a user api key <api_key>
|
||||
Given an OAI compatible chat completions request with an api error <api_error>
|
||||
Then <max_tokens> tokens are predicted
|
||||
Given an OAI compatible chat completions request with no api error
|
||||
Then <n_predicted> tokens are predicted with content: <content>
|
||||
|
||||
Examples: Prompts
|
||||
| model | system_prompt | user_prompt | max_tokens | enable_streaming | api_key | api_error |
|
||||
| llama-2 | You are ChatGPT. | Say hello. | 64 | false | llama.cpp | none |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 512 | true | llama.cpp | none |
|
||||
| John-Doe | You are an hacker. | Write segfault code in rust. | 0 | true | hackme | raised |
|
||||
| model | system_prompt | user_prompt | max_tokens | content | n_predicted | enable_streaming |
|
||||
| llama-2 | Book | What is the best book | 8 | "Mom, what' | 8 | disabled |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | "Hey," said the bird.<LF>The bird was very happy and thanked the bird for hel | 32 | enabled |
|
||||
|
||||
@llama.cpp
|
||||
Scenario: Multi users
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And 32 max tokens to predict
|
||||
And a user api key llama.cpp
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
And all slots are busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all prompts are predicted
|
||||
|
||||
@llama.cpp
|
||||
Scenario: Multi users OAI Compatibility
|
||||
Given a system prompt "You are an AI assistant."
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And 32 max tokens to predict
|
||||
And streaming is enabled
|
||||
And a user api key llama.cpp
|
||||
Given concurrent OAI completions requests
|
||||
Then the server is busy
|
||||
And all slots are busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all prompts are predicted
|
||||
|
||||
# FIXME: #3969 infinite loop on the CI, not locally, if n_prompt * n_predict > kv_size
|
||||
@llama.cpp
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
And 512 max tokens to predict
|
||||
And a user api key llama.cpp
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
And all slots are busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all prompts are predicted
|
||||
|
||||
|
||||
@llama.cpp
|
||||
Scenario: Embedding
|
||||
When embeddings are computed for:
|
||||
"""
|
||||
|
@ -120,8 +48,6 @@ Feature: llama.cpp server
|
|||
"""
|
||||
Then embeddings are generated
|
||||
|
||||
|
||||
@llama.cpp
|
||||
Scenario: OAI Embeddings compatibility
|
||||
Given a model tinyllama-2
|
||||
When an OAI compatible embeddings computation request for:
|
||||
|
@ -131,23 +57,9 @@ Feature: llama.cpp server
|
|||
Then embeddings are generated
|
||||
|
||||
|
||||
@llama.cpp
|
||||
Scenario: Tokenize / Detokenize
|
||||
When tokenizing:
|
||||
"""
|
||||
What is the capital of France ?
|
||||
"""
|
||||
Then tokens can be detokenize
|
||||
|
||||
@llama.cpp
|
||||
Scenario Outline: CORS Options
|
||||
When an OPTIONS request is sent from <origin>
|
||||
Then CORS header <cors_header> is set to <cors_header_value>
|
||||
|
||||
Examples: Headers
|
||||
| origin | cors_header | cors_header_value |
|
||||
| localhost | Access-Control-Allow-Origin | localhost |
|
||||
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
|
||||
| origin | Access-Control-Allow-Credentials | true |
|
||||
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
|
||||
| web.mydomain.fr | Access-Control-Allow-Headers | * |
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import os
|
||||
import socket
|
||||
import subprocess
|
||||
import threading
|
||||
from contextlib import closing
|
||||
|
||||
|
@ -8,26 +10,62 @@ from behave import step
|
|||
|
||||
|
||||
@step(
|
||||
u"a server listening on {server_fqdn}:{server_port} with {n_slots} slots, {seed} as seed and {api_key} as api key")
|
||||
def step_server_config(context, server_fqdn, server_port, n_slots, seed, api_key):
|
||||
u"a server listening on {server_fqdn}:{server_port}")
|
||||
def step_server_config(context, server_fqdn, server_port):
|
||||
context.server_fqdn = server_fqdn
|
||||
context.server_port = int(server_port)
|
||||
context.n_slots = int(n_slots)
|
||||
context.seed = int(seed)
|
||||
|
||||
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
||||
|
||||
context.model_alias = None
|
||||
context.n_ctx = None
|
||||
context.n_predict = None
|
||||
context.n_server_predict = None
|
||||
context.n_slots = None
|
||||
context.server_api_key = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
|
||||
context.completions = []
|
||||
context.completion_threads = []
|
||||
context.prompts = []
|
||||
|
||||
context.api_key = api_key
|
||||
openai.api_key = context.api_key
|
||||
|
||||
@step(u'a model file {model_file}')
|
||||
def step_model_file(context, model_file):
|
||||
context.model_file = model_file
|
||||
|
||||
|
||||
@step(u'a model alias {model_alias}')
|
||||
def step_model_alias(context, model_alias):
|
||||
context.model_alias = model_alias
|
||||
|
||||
|
||||
@step(u'{seed} as server seed')
|
||||
def step_seed(context, seed):
|
||||
context.server_seed = int(seed)
|
||||
|
||||
|
||||
@step(u'{n_ctx} KV cache size')
|
||||
def step_n_ctx(context, n_ctx):
|
||||
context.n_ctx = int(n_ctx)
|
||||
|
||||
|
||||
@step(u'{n_slots} slots')
|
||||
def step_n_slots(context, n_slots):
|
||||
context.n_slots = int(n_slots)
|
||||
|
||||
|
||||
@step(u'{n_predict} server max tokens to predict')
|
||||
def step_server_n_predict(context, n_predict):
|
||||
context.n_server_predict = int(n_predict)
|
||||
|
||||
|
||||
@step(u"the server is {expecting_status}")
|
||||
def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
match expecting_status:
|
||||
case 'starting':
|
||||
start_server_background(context)
|
||||
server_started = False
|
||||
while not server_started:
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
|
@ -43,19 +81,13 @@ def step_wait_for_the_server_to_be_started(context, expecting_status):
|
|||
params={'fail_on_no_slot': True},
|
||||
slots_idle=context.n_slots,
|
||||
slots_processing=0)
|
||||
request_slots_status(context, [
|
||||
{'id': 0, 'state': 0},
|
||||
{'id': 1, 'state': 0}
|
||||
])
|
||||
request_slots_status(context, [{'id': slot_id, 'state': 0} for slot_id in range(context.n_slots)])
|
||||
case 'busy':
|
||||
wait_for_health_status(context, 503, 'no slot available',
|
||||
params={'fail_on_no_slot': True},
|
||||
slots_idle=0,
|
||||
slots_processing=context.n_slots)
|
||||
request_slots_status(context, [
|
||||
{'id': 0, 'state': 1},
|
||||
{'id': 1, 'state': 1}
|
||||
])
|
||||
request_slots_status(context, [{'id': slot_id, 'state': 1} for slot_id in range(context.n_slots)])
|
||||
case _:
|
||||
assert False, "unknown status"
|
||||
|
||||
|
@ -79,10 +111,16 @@ def step_all_slots_status(context, expected_slot_status_string):
|
|||
request_slots_status(context, expected_slots)
|
||||
|
||||
|
||||
@step(u'a completion request')
|
||||
def step_request_completion(context):
|
||||
request_completion(context, context.prompts.pop(), context.n_predict, context.user_api_key)
|
||||
context.user_api_key = None
|
||||
@step(u'a completion request with {api_error} api error')
|
||||
def step_request_completion(context, api_error):
|
||||
request_completion(context, context.prompts.pop(),
|
||||
n_predict=context.n_predict,
|
||||
expect_api_error=api_error == 'raised')
|
||||
|
||||
|
||||
@step(u'{predicted_n} tokens are predicted with content: {content}')
|
||||
def step_n_tokens_predicted_with_content(context, predicted_n, content):
|
||||
assert_n_tokens_predicted(context.completions[0], int(predicted_n), content)
|
||||
|
||||
|
||||
@step(u'{predicted_n} tokens are predicted')
|
||||
|
@ -122,14 +160,23 @@ def step_user_api_key(context, user_api_key):
|
|||
|
||||
|
||||
@step(u'a user api key ')
|
||||
def step_user_api_key(context):
|
||||
def step_no_user_api_key(context):
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'an OAI compatible chat completions request with an api error {api_error}')
|
||||
@step(u'no user api key')
|
||||
def step_no_user_api_key(context):
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'a server api key {server_api_key}')
|
||||
def step_server_api_key(context, server_api_key):
|
||||
context.server_api_key = server_api_key
|
||||
|
||||
|
||||
@step(u'an OAI compatible chat completions request with {api_error} api error')
|
||||
def step_oai_chat_completions(context, api_error):
|
||||
oai_chat_completions(context, context.user_prompt, api_error=api_error == 'raised')
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'a prompt')
|
||||
|
@ -144,12 +191,12 @@ def step_a_prompt_prompt(context, prompt):
|
|||
|
||||
@step(u'concurrent completion requests')
|
||||
def step_concurrent_completion_requests(context):
|
||||
concurrent_requests(context, request_completion, context.n_predict, context.user_api_key)
|
||||
concurrent_requests(context, request_completion)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests')
|
||||
def step_oai_chat_completions(context):
|
||||
concurrent_requests(context, oai_chat_completions, context.user_api_key)
|
||||
concurrent_requests(context, oai_chat_completions)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted')
|
||||
|
@ -177,6 +224,9 @@ def step_compute_embeddings(context):
|
|||
|
||||
@step(u'an OAI compatible embeddings computation request for')
|
||||
def step_oai_compute_embedding(context):
|
||||
openai.api_key = 'nope' # openai client always expects an api_keu
|
||||
if context.user_api_key is not None:
|
||||
openai.api_key = context.user_api_key
|
||||
openai.api_base = f'{context.base_url}/v1'
|
||||
embeddings = openai.Embedding.create(
|
||||
model=context.model,
|
||||
|
@ -202,7 +252,7 @@ def step_detokenize(context):
|
|||
"tokens": context.tokens,
|
||||
})
|
||||
assert response.status_code == 200
|
||||
# FIXME the detokenize answer contains a space prefix ? see #3287
|
||||
# SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
|
||||
assert context.tokenized_text == response.json()['content'].strip()
|
||||
|
||||
|
||||
|
@ -229,22 +279,23 @@ def concurrent_requests(context, f_completion, *argv):
|
|||
context.prompts.clear()
|
||||
|
||||
|
||||
def request_completion(context, prompt, n_predict=None, user_api_key=None):
|
||||
def request_completion(context, prompt, n_predict=None, expect_api_error=None):
|
||||
origin = "my.super.domain"
|
||||
headers = {
|
||||
'Origin': origin
|
||||
}
|
||||
if 'user_api_key' in context:
|
||||
headers['Authorization'] = f'Bearer {user_api_key}'
|
||||
if context.user_api_key is not None:
|
||||
print(f"Set user_api_key: {context.user_api_key}")
|
||||
headers['Authorization'] = f'Bearer {context.user_api_key}'
|
||||
|
||||
response = requests.post(f'{context.base_url}/completion',
|
||||
json={
|
||||
"prompt": prompt,
|
||||
"n_predict": int(n_predict) if n_predict is not None else context.n_predict,
|
||||
"seed": context.seed
|
||||
"seed": context.server_seed if context.server_seed is not None else 42
|
||||
},
|
||||
headers=headers)
|
||||
if n_predict is not None and n_predict > 0:
|
||||
if expect_api_error is not None and not expect_api_error:
|
||||
assert response.status_code == 200
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
context.completions.append(response.json())
|
||||
|
@ -253,7 +304,9 @@ def request_completion(context, prompt, n_predict=None, user_api_key=None):
|
|||
|
||||
|
||||
def oai_chat_completions(context, user_prompt, api_error=None):
|
||||
openai.api_key = context.user_api_key
|
||||
openai.api_key = 'nope' # openai client always expects an api_keu
|
||||
if context.user_api_key is not None:
|
||||
openai.api_key = context.user_api_key
|
||||
openai.api_base = f'{context.base_url}/v1/chat'
|
||||
try:
|
||||
chat_completion = openai.Completion.create(
|
||||
|
@ -270,13 +323,11 @@ def oai_chat_completions(context, user_prompt, api_error=None):
|
|||
model=context.model,
|
||||
max_tokens=context.n_predict,
|
||||
stream=context.enable_streaming,
|
||||
seed=context.seed
|
||||
seed=context.server_seed if context.server_seed is not None else 42
|
||||
)
|
||||
except openai.error.APIError:
|
||||
if api_error:
|
||||
openai.api_key = context.api_key
|
||||
if api_error is not None and api_error:
|
||||
return
|
||||
openai.api_key = context.api_key
|
||||
if context.enable_streaming:
|
||||
completion_response = {
|
||||
'content': '',
|
||||
|
@ -301,13 +352,17 @@ def oai_chat_completions(context, user_prompt, api_error=None):
|
|||
})
|
||||
|
||||
|
||||
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None):
|
||||
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, expected_content=None):
|
||||
content = completion_response['content']
|
||||
n_predicted = completion_response['timings']['predicted_n']
|
||||
assert len(content) > 0, "no token predicted"
|
||||
if expected_predicted_n is not None:
|
||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||
f' "{n_predicted}" <> "{expected_predicted_n}"')
|
||||
f' {n_predicted} <> {expected_predicted_n}')
|
||||
if expected_content is not None:
|
||||
expected_content = expected_content.replace('<space>', ' ').replace('<LF>', '\n')
|
||||
assert content == expected_content, (f'invalid tokens predicted:'
|
||||
f' ```\n{content}\n``` <> ```\n{expected_content}\n```')
|
||||
|
||||
|
||||
def wait_for_health_status(context, expected_http_status_code,
|
||||
|
@ -334,3 +389,28 @@ def request_slots_status(context, expected_slots):
|
|||
for expected, slot in zip(expected_slots, slots):
|
||||
for key in expected:
|
||||
assert expected[key] == slot[key], f"expected[{key}] != slot[{key}]"
|
||||
|
||||
|
||||
def start_server_background(context):
|
||||
context.server_path = '../../../build/bin/server'
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||
server_args = [
|
||||
'--model', context.model_file
|
||||
]
|
||||
if context.model_alias is not None:
|
||||
server_args.extend(['--alias', context.model_alias])
|
||||
if context.server_seed is not None:
|
||||
server_args.extend(['--alias', context.model_alias])
|
||||
if context.n_ctx is not None:
|
||||
server_args.extend(['--ctx-size', context.n_ctx])
|
||||
if context.n_slots is not None:
|
||||
server_args.extend(['--parallel', context.n_slots])
|
||||
if context.n_server_predict is not None:
|
||||
server_args.extend(['--n-predict', context.n_server_predict])
|
||||
if context.server_api_key is not None:
|
||||
server_args.extend(['--api-key', context.server_api_key])
|
||||
print(f"starting server with: {context.server_path}", *server_args)
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
close_fds=True)
|
||||
|
|
|
@ -1,36 +1,12 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
>&2 echo "Usage: $0 model_path [server_args...]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# kill the server at the end
|
||||
# kill any dandling server at the end
|
||||
cleanup() {
|
||||
pkill -P $$
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
model_path="$1"
|
||||
shift 1
|
||||
|
||||
set -eu
|
||||
|
||||
# Start the server in background
|
||||
../../../build/bin/server \
|
||||
--model "$model_path" \
|
||||
--alias tinyllama-2 \
|
||||
--ctx-size 1024 \
|
||||
--parallel 2 \
|
||||
--n-predict 1024 \
|
||||
--batch-size 32 \
|
||||
--threads 4 \
|
||||
--threads-batch 4 \
|
||||
--embedding \
|
||||
--cont-batching \
|
||||
--api-key llama.cpp \
|
||||
"$@" &
|
||||
|
||||
# Start tests
|
||||
# Start @llama.cpp scenario
|
||||
behave --summary --stop --tags llama.cpp
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue