server: tests:
* start the server at each scenario * split the features as each requires different server config
This commit is contained in:
parent
68b8d4eb55
commit
6406208174
6 changed files with 197 additions and 173 deletions
|
@ -7,10 +7,13 @@ Server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_
|
||||||
|
|
||||||
### Run tests
|
### Run tests
|
||||||
1. Build the server
|
1. Build the server
|
||||||
2. download a GGUF model: `./scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
|
2. download required models:
|
||||||
3. Start the test: `./tests.sh stories260K.gguf -ngl 23`
|
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
|
||||||
|
3. Start the test: `./tests.sh`
|
||||||
|
|
||||||
|
To change the server path, use `LLAMA_SERVER_BIN_PATH` environment variable.
|
||||||
|
|
||||||
### Skipped scenario
|
### Skipped scenario
|
||||||
|
|
||||||
Scenario must be annotated with `@llama.cpp` to be included in the scope.
|
Feature or Scenario must be annotated with `@llama.cpp` to be included in the scope.
|
||||||
`@bug` annotation aims to link a scenario with a GitHub issue.
|
`@bug` annotation aims to link a scenario with a GitHub issue.
|
||||||
|
|
4
examples/server/tests/features/environment.py
Normal file
4
examples/server/tests/features/environment.py
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
|
||||||
|
def after_scenario(context, scenario):
|
||||||
|
print("stopping server...")
|
||||||
|
context.server_process.kill()
|
49
examples/server/tests/features/security.feature
Normal file
49
examples/server/tests/features/security.feature
Normal file
|
@ -0,0 +1,49 @@
|
||||||
|
@llama.cpp
|
||||||
|
Feature: Security
|
||||||
|
|
||||||
|
Background: Server startup with an api key defined
|
||||||
|
Given a server listening on localhost:8080
|
||||||
|
And a model file stories260K.gguf
|
||||||
|
And a server api key llama.cpp
|
||||||
|
Then the server is starting
|
||||||
|
|
||||||
|
Scenario Outline: Completion with some user api key
|
||||||
|
Given a prompt test
|
||||||
|
And a user api key <api_key>
|
||||||
|
And 4 max tokens to predict
|
||||||
|
And a completion request with <api_error> api error
|
||||||
|
|
||||||
|
Examples: Prompts
|
||||||
|
| api_key | api_error |
|
||||||
|
| llama.cpp | no |
|
||||||
|
| llama.cpp | no |
|
||||||
|
| hackeme | raised |
|
||||||
|
| | raised |
|
||||||
|
|
||||||
|
Scenario Outline: OAI Compatibility
|
||||||
|
Given a system prompt test
|
||||||
|
And a user prompt test
|
||||||
|
And a model test
|
||||||
|
And 2 max tokens to predict
|
||||||
|
And streaming is disabled
|
||||||
|
And a user api key <api_key>
|
||||||
|
Given an OAI compatible chat completions request with <api_error> api error
|
||||||
|
|
||||||
|
Examples: Prompts
|
||||||
|
| api_key | api_error |
|
||||||
|
| llama.cpp | no |
|
||||||
|
| llama.cpp | no |
|
||||||
|
| hackme | raised |
|
||||||
|
|
||||||
|
|
||||||
|
Scenario Outline: CORS Options
|
||||||
|
When an OPTIONS request is sent from <origin>
|
||||||
|
Then CORS header <cors_header> is set to <cors_header_value>
|
||||||
|
|
||||||
|
Examples: Headers
|
||||||
|
| origin | cors_header | cors_header_value |
|
||||||
|
| localhost | Access-Control-Allow-Origin | localhost |
|
||||||
|
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
|
||||||
|
| origin | Access-Control-Allow-Credentials | true |
|
||||||
|
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
|
||||||
|
| web.mydomain.fr | Access-Control-Allow-Headers | * |
|
|
@ -1,118 +1,46 @@
|
||||||
|
@llama.cpp
|
||||||
Feature: llama.cpp server
|
Feature: llama.cpp server
|
||||||
|
|
||||||
Background: Server startup
|
Background: Server startup
|
||||||
Given a server listening on localhost:8080 with 2 slots, 42 as seed and llama.cpp as api key
|
Given a server listening on localhost:8080
|
||||||
|
And a model file stories260K.gguf
|
||||||
|
And a model alias tinyllama-2
|
||||||
|
And 42 as server seed
|
||||||
|
And 32 KV cache size
|
||||||
|
And 1 slots
|
||||||
|
And 32 server max tokens to predict
|
||||||
Then the server is starting
|
Then the server is starting
|
||||||
Then the server is healthy
|
Then the server is healthy
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: Health
|
Scenario: Health
|
||||||
When the server is healthy
|
|
||||||
Then the server is ready
|
Then the server is ready
|
||||||
And all slots are idle
|
And all slots are idle
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario Outline: Completion
|
Scenario Outline: Completion
|
||||||
Given a prompt <prompt>
|
Given a prompt <prompt>
|
||||||
And a user api key <api_key>
|
|
||||||
And <n_predict> max tokens to predict
|
And <n_predict> max tokens to predict
|
||||||
And a completion request
|
And a completion request with no api error
|
||||||
Then <n_predict> tokens are predicted
|
Then <n_predicted> tokens are predicted with content: <content>
|
||||||
|
|
||||||
Examples: Prompts
|
Examples: Prompts
|
||||||
| prompt | n_predict | api_key |
|
| prompt | n_predict | content | n_predicted |
|
||||||
| I believe the meaning of life is | 128 | llama.cpp |
|
| I believe the meaning of life is | 8 | <space>going to read. | 8 |
|
||||||
| Write a joke about AI | 512 | llama.cpp |
|
| Write a joke about AI | 64 | tion came to the park. And all his friends were very scared and did not | 32 |
|
||||||
| say goodbye | 0 | |
|
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario Outline: OAI Compatibility
|
Scenario Outline: OAI Compatibility
|
||||||
Given a system prompt <system_prompt>
|
Given a model <model>
|
||||||
|
And a system prompt <system_prompt>
|
||||||
And a user prompt <user_prompt>
|
And a user prompt <user_prompt>
|
||||||
And a model <model>
|
|
||||||
And <max_tokens> max tokens to predict
|
And <max_tokens> max tokens to predict
|
||||||
And streaming is <enable_streaming>
|
And streaming is <enable_streaming>
|
||||||
And a user api key <api_key>
|
Given an OAI compatible chat completions request with no api error
|
||||||
Given an OAI compatible chat completions request with an api error <api_error>
|
Then <n_predicted> tokens are predicted with content: <content>
|
||||||
Then <max_tokens> tokens are predicted
|
|
||||||
|
|
||||||
Examples: Prompts
|
Examples: Prompts
|
||||||
| model | system_prompt | user_prompt | max_tokens | enable_streaming | api_key | api_error |
|
| model | system_prompt | user_prompt | max_tokens | content | n_predicted | enable_streaming |
|
||||||
| llama-2 | You are ChatGPT. | Say hello. | 64 | false | llama.cpp | none |
|
| llama-2 | Book | What is the best book | 8 | "Mom, what' | 8 | disabled |
|
||||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 512 | true | llama.cpp | none |
|
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | "Hey," said the bird.<LF>The bird was very happy and thanked the bird for hel | 32 | enabled |
|
||||||
| John-Doe | You are an hacker. | Write segfault code in rust. | 0 | true | hackme | raised |
|
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: Multi users
|
|
||||||
Given a prompt:
|
|
||||||
"""
|
|
||||||
Write a very long story about AI.
|
|
||||||
"""
|
|
||||||
And a prompt:
|
|
||||||
"""
|
|
||||||
Write another very long music lyrics.
|
|
||||||
"""
|
|
||||||
And 32 max tokens to predict
|
|
||||||
And a user api key llama.cpp
|
|
||||||
Given concurrent completion requests
|
|
||||||
Then the server is busy
|
|
||||||
And all slots are busy
|
|
||||||
Then the server is idle
|
|
||||||
And all slots are idle
|
|
||||||
Then all prompts are predicted
|
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: Multi users OAI Compatibility
|
|
||||||
Given a system prompt "You are an AI assistant."
|
|
||||||
And a model tinyllama-2
|
|
||||||
Given a prompt:
|
|
||||||
"""
|
|
||||||
Write a very long story about AI.
|
|
||||||
"""
|
|
||||||
And a prompt:
|
|
||||||
"""
|
|
||||||
Write another very long music lyrics.
|
|
||||||
"""
|
|
||||||
And 32 max tokens to predict
|
|
||||||
And streaming is enabled
|
|
||||||
And a user api key llama.cpp
|
|
||||||
Given concurrent OAI completions requests
|
|
||||||
Then the server is busy
|
|
||||||
And all slots are busy
|
|
||||||
Then the server is idle
|
|
||||||
And all slots are idle
|
|
||||||
Then all prompts are predicted
|
|
||||||
|
|
||||||
# FIXME: #3969 infinite loop on the CI, not locally, if n_prompt * n_predict > kv_size
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size
|
|
||||||
Given a prompt:
|
|
||||||
"""
|
|
||||||
Write a very long story about AI.
|
|
||||||
"""
|
|
||||||
And a prompt:
|
|
||||||
"""
|
|
||||||
Write another very long music lyrics.
|
|
||||||
"""
|
|
||||||
And a prompt:
|
|
||||||
"""
|
|
||||||
Write a very long poem.
|
|
||||||
"""
|
|
||||||
And a prompt:
|
|
||||||
"""
|
|
||||||
Write a very long joke.
|
|
||||||
"""
|
|
||||||
And 512 max tokens to predict
|
|
||||||
And a user api key llama.cpp
|
|
||||||
Given concurrent completion requests
|
|
||||||
Then the server is busy
|
|
||||||
And all slots are busy
|
|
||||||
Then the server is idle
|
|
||||||
And all slots are idle
|
|
||||||
Then all prompts are predicted
|
|
||||||
|
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: Embedding
|
Scenario: Embedding
|
||||||
When embeddings are computed for:
|
When embeddings are computed for:
|
||||||
"""
|
"""
|
||||||
|
@ -120,8 +48,6 @@ Feature: llama.cpp server
|
||||||
"""
|
"""
|
||||||
Then embeddings are generated
|
Then embeddings are generated
|
||||||
|
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: OAI Embeddings compatibility
|
Scenario: OAI Embeddings compatibility
|
||||||
Given a model tinyllama-2
|
Given a model tinyllama-2
|
||||||
When an OAI compatible embeddings computation request for:
|
When an OAI compatible embeddings computation request for:
|
||||||
|
@ -131,23 +57,9 @@ Feature: llama.cpp server
|
||||||
Then embeddings are generated
|
Then embeddings are generated
|
||||||
|
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario: Tokenize / Detokenize
|
Scenario: Tokenize / Detokenize
|
||||||
When tokenizing:
|
When tokenizing:
|
||||||
"""
|
"""
|
||||||
What is the capital of France ?
|
What is the capital of France ?
|
||||||
"""
|
"""
|
||||||
Then tokens can be detokenize
|
Then tokens can be detokenize
|
||||||
|
|
||||||
@llama.cpp
|
|
||||||
Scenario Outline: CORS Options
|
|
||||||
When an OPTIONS request is sent from <origin>
|
|
||||||
Then CORS header <cors_header> is set to <cors_header_value>
|
|
||||||
|
|
||||||
Examples: Headers
|
|
||||||
| origin | cors_header | cors_header_value |
|
|
||||||
| localhost | Access-Control-Allow-Origin | localhost |
|
|
||||||
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
|
|
||||||
| origin | Access-Control-Allow-Credentials | true |
|
|
||||||
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
|
|
||||||
| web.mydomain.fr | Access-Control-Allow-Headers | * |
|
|
||||||
|
|
|
@ -1,4 +1,6 @@
|
||||||
|
import os
|
||||||
import socket
|
import socket
|
||||||
|
import subprocess
|
||||||
import threading
|
import threading
|
||||||
from contextlib import closing
|
from contextlib import closing
|
||||||
|
|
||||||
|
@ -8,26 +10,62 @@ from behave import step
|
||||||
|
|
||||||
|
|
||||||
@step(
|
@step(
|
||||||
u"a server listening on {server_fqdn}:{server_port} with {n_slots} slots, {seed} as seed and {api_key} as api key")
|
u"a server listening on {server_fqdn}:{server_port}")
|
||||||
def step_server_config(context, server_fqdn, server_port, n_slots, seed, api_key):
|
def step_server_config(context, server_fqdn, server_port):
|
||||||
context.server_fqdn = server_fqdn
|
context.server_fqdn = server_fqdn
|
||||||
context.server_port = int(server_port)
|
context.server_port = int(server_port)
|
||||||
context.n_slots = int(n_slots)
|
|
||||||
context.seed = int(seed)
|
|
||||||
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
||||||
|
|
||||||
|
context.model_alias = None
|
||||||
|
context.n_ctx = None
|
||||||
|
context.n_predict = None
|
||||||
|
context.n_server_predict = None
|
||||||
|
context.n_slots = None
|
||||||
|
context.server_api_key = None
|
||||||
|
context.server_seed = None
|
||||||
|
context.user_api_key = None
|
||||||
|
|
||||||
context.completions = []
|
context.completions = []
|
||||||
context.completion_threads = []
|
context.completion_threads = []
|
||||||
context.prompts = []
|
context.prompts = []
|
||||||
|
|
||||||
context.api_key = api_key
|
|
||||||
openai.api_key = context.api_key
|
@step(u'a model file {model_file}')
|
||||||
|
def step_model_file(context, model_file):
|
||||||
|
context.model_file = model_file
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'a model alias {model_alias}')
|
||||||
|
def step_model_alias(context, model_alias):
|
||||||
|
context.model_alias = model_alias
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'{seed} as server seed')
|
||||||
|
def step_seed(context, seed):
|
||||||
|
context.server_seed = int(seed)
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'{n_ctx} KV cache size')
|
||||||
|
def step_n_ctx(context, n_ctx):
|
||||||
|
context.n_ctx = int(n_ctx)
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'{n_slots} slots')
|
||||||
|
def step_n_slots(context, n_slots):
|
||||||
|
context.n_slots = int(n_slots)
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'{n_predict} server max tokens to predict')
|
||||||
|
def step_server_n_predict(context, n_predict):
|
||||||
|
context.n_server_predict = int(n_predict)
|
||||||
|
|
||||||
|
|
||||||
@step(u"the server is {expecting_status}")
|
@step(u"the server is {expecting_status}")
|
||||||
def step_wait_for_the_server_to_be_started(context, expecting_status):
|
def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||||
match expecting_status:
|
match expecting_status:
|
||||||
case 'starting':
|
case 'starting':
|
||||||
|
start_server_background(context)
|
||||||
server_started = False
|
server_started = False
|
||||||
while not server_started:
|
while not server_started:
|
||||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||||
|
@ -43,19 +81,13 @@ def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||||
params={'fail_on_no_slot': True},
|
params={'fail_on_no_slot': True},
|
||||||
slots_idle=context.n_slots,
|
slots_idle=context.n_slots,
|
||||||
slots_processing=0)
|
slots_processing=0)
|
||||||
request_slots_status(context, [
|
request_slots_status(context, [{'id': slot_id, 'state': 0} for slot_id in range(context.n_slots)])
|
||||||
{'id': 0, 'state': 0},
|
|
||||||
{'id': 1, 'state': 0}
|
|
||||||
])
|
|
||||||
case 'busy':
|
case 'busy':
|
||||||
wait_for_health_status(context, 503, 'no slot available',
|
wait_for_health_status(context, 503, 'no slot available',
|
||||||
params={'fail_on_no_slot': True},
|
params={'fail_on_no_slot': True},
|
||||||
slots_idle=0,
|
slots_idle=0,
|
||||||
slots_processing=context.n_slots)
|
slots_processing=context.n_slots)
|
||||||
request_slots_status(context, [
|
request_slots_status(context, [{'id': slot_id, 'state': 1} for slot_id in range(context.n_slots)])
|
||||||
{'id': 0, 'state': 1},
|
|
||||||
{'id': 1, 'state': 1}
|
|
||||||
])
|
|
||||||
case _:
|
case _:
|
||||||
assert False, "unknown status"
|
assert False, "unknown status"
|
||||||
|
|
||||||
|
@ -79,10 +111,16 @@ def step_all_slots_status(context, expected_slot_status_string):
|
||||||
request_slots_status(context, expected_slots)
|
request_slots_status(context, expected_slots)
|
||||||
|
|
||||||
|
|
||||||
@step(u'a completion request')
|
@step(u'a completion request with {api_error} api error')
|
||||||
def step_request_completion(context):
|
def step_request_completion(context, api_error):
|
||||||
request_completion(context, context.prompts.pop(), context.n_predict, context.user_api_key)
|
request_completion(context, context.prompts.pop(),
|
||||||
context.user_api_key = None
|
n_predict=context.n_predict,
|
||||||
|
expect_api_error=api_error == 'raised')
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'{predicted_n} tokens are predicted with content: {content}')
|
||||||
|
def step_n_tokens_predicted_with_content(context, predicted_n, content):
|
||||||
|
assert_n_tokens_predicted(context.completions[0], int(predicted_n), content)
|
||||||
|
|
||||||
|
|
||||||
@step(u'{predicted_n} tokens are predicted')
|
@step(u'{predicted_n} tokens are predicted')
|
||||||
|
@ -122,14 +160,23 @@ def step_user_api_key(context, user_api_key):
|
||||||
|
|
||||||
|
|
||||||
@step(u'a user api key ')
|
@step(u'a user api key ')
|
||||||
def step_user_api_key(context):
|
def step_no_user_api_key(context):
|
||||||
context.user_api_key = None
|
context.user_api_key = None
|
||||||
|
|
||||||
|
|
||||||
@step(u'an OAI compatible chat completions request with an api error {api_error}')
|
@step(u'no user api key')
|
||||||
|
def step_no_user_api_key(context):
|
||||||
|
context.user_api_key = None
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'a server api key {server_api_key}')
|
||||||
|
def step_server_api_key(context, server_api_key):
|
||||||
|
context.server_api_key = server_api_key
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'an OAI compatible chat completions request with {api_error} api error')
|
||||||
def step_oai_chat_completions(context, api_error):
|
def step_oai_chat_completions(context, api_error):
|
||||||
oai_chat_completions(context, context.user_prompt, api_error=api_error == 'raised')
|
oai_chat_completions(context, context.user_prompt, api_error=api_error == 'raised')
|
||||||
context.user_api_key = None
|
|
||||||
|
|
||||||
|
|
||||||
@step(u'a prompt')
|
@step(u'a prompt')
|
||||||
|
@ -144,12 +191,12 @@ def step_a_prompt_prompt(context, prompt):
|
||||||
|
|
||||||
@step(u'concurrent completion requests')
|
@step(u'concurrent completion requests')
|
||||||
def step_concurrent_completion_requests(context):
|
def step_concurrent_completion_requests(context):
|
||||||
concurrent_requests(context, request_completion, context.n_predict, context.user_api_key)
|
concurrent_requests(context, request_completion)
|
||||||
|
|
||||||
|
|
||||||
@step(u'concurrent OAI completions requests')
|
@step(u'concurrent OAI completions requests')
|
||||||
def step_oai_chat_completions(context):
|
def step_oai_chat_completions(context):
|
||||||
concurrent_requests(context, oai_chat_completions, context.user_api_key)
|
concurrent_requests(context, oai_chat_completions)
|
||||||
|
|
||||||
|
|
||||||
@step(u'all prompts are predicted')
|
@step(u'all prompts are predicted')
|
||||||
|
@ -177,6 +224,9 @@ def step_compute_embeddings(context):
|
||||||
|
|
||||||
@step(u'an OAI compatible embeddings computation request for')
|
@step(u'an OAI compatible embeddings computation request for')
|
||||||
def step_oai_compute_embedding(context):
|
def step_oai_compute_embedding(context):
|
||||||
|
openai.api_key = 'nope' # openai client always expects an api_keu
|
||||||
|
if context.user_api_key is not None:
|
||||||
|
openai.api_key = context.user_api_key
|
||||||
openai.api_base = f'{context.base_url}/v1'
|
openai.api_base = f'{context.base_url}/v1'
|
||||||
embeddings = openai.Embedding.create(
|
embeddings = openai.Embedding.create(
|
||||||
model=context.model,
|
model=context.model,
|
||||||
|
@ -202,7 +252,7 @@ def step_detokenize(context):
|
||||||
"tokens": context.tokens,
|
"tokens": context.tokens,
|
||||||
})
|
})
|
||||||
assert response.status_code == 200
|
assert response.status_code == 200
|
||||||
# FIXME the detokenize answer contains a space prefix ? see #3287
|
# SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
|
||||||
assert context.tokenized_text == response.json()['content'].strip()
|
assert context.tokenized_text == response.json()['content'].strip()
|
||||||
|
|
||||||
|
|
||||||
|
@ -229,22 +279,23 @@ def concurrent_requests(context, f_completion, *argv):
|
||||||
context.prompts.clear()
|
context.prompts.clear()
|
||||||
|
|
||||||
|
|
||||||
def request_completion(context, prompt, n_predict=None, user_api_key=None):
|
def request_completion(context, prompt, n_predict=None, expect_api_error=None):
|
||||||
origin = "my.super.domain"
|
origin = "my.super.domain"
|
||||||
headers = {
|
headers = {
|
||||||
'Origin': origin
|
'Origin': origin
|
||||||
}
|
}
|
||||||
if 'user_api_key' in context:
|
if context.user_api_key is not None:
|
||||||
headers['Authorization'] = f'Bearer {user_api_key}'
|
print(f"Set user_api_key: {context.user_api_key}")
|
||||||
|
headers['Authorization'] = f'Bearer {context.user_api_key}'
|
||||||
|
|
||||||
response = requests.post(f'{context.base_url}/completion',
|
response = requests.post(f'{context.base_url}/completion',
|
||||||
json={
|
json={
|
||||||
"prompt": prompt,
|
"prompt": prompt,
|
||||||
"n_predict": int(n_predict) if n_predict is not None else context.n_predict,
|
"n_predict": int(n_predict) if n_predict is not None else context.n_predict,
|
||||||
"seed": context.seed
|
"seed": context.server_seed if context.server_seed is not None else 42
|
||||||
},
|
},
|
||||||
headers=headers)
|
headers=headers)
|
||||||
if n_predict is not None and n_predict > 0:
|
if expect_api_error is not None and not expect_api_error:
|
||||||
assert response.status_code == 200
|
assert response.status_code == 200
|
||||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||||
context.completions.append(response.json())
|
context.completions.append(response.json())
|
||||||
|
@ -253,7 +304,9 @@ def request_completion(context, prompt, n_predict=None, user_api_key=None):
|
||||||
|
|
||||||
|
|
||||||
def oai_chat_completions(context, user_prompt, api_error=None):
|
def oai_chat_completions(context, user_prompt, api_error=None):
|
||||||
openai.api_key = context.user_api_key
|
openai.api_key = 'nope' # openai client always expects an api_keu
|
||||||
|
if context.user_api_key is not None:
|
||||||
|
openai.api_key = context.user_api_key
|
||||||
openai.api_base = f'{context.base_url}/v1/chat'
|
openai.api_base = f'{context.base_url}/v1/chat'
|
||||||
try:
|
try:
|
||||||
chat_completion = openai.Completion.create(
|
chat_completion = openai.Completion.create(
|
||||||
|
@ -270,13 +323,11 @@ def oai_chat_completions(context, user_prompt, api_error=None):
|
||||||
model=context.model,
|
model=context.model,
|
||||||
max_tokens=context.n_predict,
|
max_tokens=context.n_predict,
|
||||||
stream=context.enable_streaming,
|
stream=context.enable_streaming,
|
||||||
seed=context.seed
|
seed=context.server_seed if context.server_seed is not None else 42
|
||||||
)
|
)
|
||||||
except openai.error.APIError:
|
except openai.error.APIError:
|
||||||
if api_error:
|
if api_error is not None and api_error:
|
||||||
openai.api_key = context.api_key
|
|
||||||
return
|
return
|
||||||
openai.api_key = context.api_key
|
|
||||||
if context.enable_streaming:
|
if context.enable_streaming:
|
||||||
completion_response = {
|
completion_response = {
|
||||||
'content': '',
|
'content': '',
|
||||||
|
@ -301,13 +352,17 @@ def oai_chat_completions(context, user_prompt, api_error=None):
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
||||||
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None):
|
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, expected_content=None):
|
||||||
content = completion_response['content']
|
content = completion_response['content']
|
||||||
n_predicted = completion_response['timings']['predicted_n']
|
n_predicted = completion_response['timings']['predicted_n']
|
||||||
assert len(content) > 0, "no token predicted"
|
assert len(content) > 0, "no token predicted"
|
||||||
if expected_predicted_n is not None:
|
if expected_predicted_n is not None:
|
||||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||||
f' "{n_predicted}" <> "{expected_predicted_n}"')
|
f' {n_predicted} <> {expected_predicted_n}')
|
||||||
|
if expected_content is not None:
|
||||||
|
expected_content = expected_content.replace('<space>', ' ').replace('<LF>', '\n')
|
||||||
|
assert content == expected_content, (f'invalid tokens predicted:'
|
||||||
|
f' ```\n{content}\n``` <> ```\n{expected_content}\n```')
|
||||||
|
|
||||||
|
|
||||||
def wait_for_health_status(context, expected_http_status_code,
|
def wait_for_health_status(context, expected_http_status_code,
|
||||||
|
@ -334,3 +389,28 @@ def request_slots_status(context, expected_slots):
|
||||||
for expected, slot in zip(expected_slots, slots):
|
for expected, slot in zip(expected_slots, slots):
|
||||||
for key in expected:
|
for key in expected:
|
||||||
assert expected[key] == slot[key], f"expected[{key}] != slot[{key}]"
|
assert expected[key] == slot[key], f"expected[{key}] != slot[{key}]"
|
||||||
|
|
||||||
|
|
||||||
|
def start_server_background(context):
|
||||||
|
context.server_path = '../../../build/bin/server'
|
||||||
|
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||||
|
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||||
|
server_args = [
|
||||||
|
'--model', context.model_file
|
||||||
|
]
|
||||||
|
if context.model_alias is not None:
|
||||||
|
server_args.extend(['--alias', context.model_alias])
|
||||||
|
if context.server_seed is not None:
|
||||||
|
server_args.extend(['--alias', context.model_alias])
|
||||||
|
if context.n_ctx is not None:
|
||||||
|
server_args.extend(['--ctx-size', context.n_ctx])
|
||||||
|
if context.n_slots is not None:
|
||||||
|
server_args.extend(['--parallel', context.n_slots])
|
||||||
|
if context.n_server_predict is not None:
|
||||||
|
server_args.extend(['--n-predict', context.n_server_predict])
|
||||||
|
if context.server_api_key is not None:
|
||||||
|
server_args.extend(['--api-key', context.server_api_key])
|
||||||
|
print(f"starting server with: {context.server_path}", *server_args)
|
||||||
|
context.server_process = subprocess.Popen(
|
||||||
|
[str(arg) for arg in [context.server_path, *server_args]],
|
||||||
|
close_fds=True)
|
||||||
|
|
|
@ -1,36 +1,12 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
if [ $# -lt 1 ]
|
# kill any dandling server at the end
|
||||||
then
|
|
||||||
>&2 echo "Usage: $0 model_path [server_args...]"
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
# kill the server at the end
|
|
||||||
cleanup() {
|
cleanup() {
|
||||||
pkill -P $$
|
pkill -P $$
|
||||||
}
|
}
|
||||||
trap cleanup EXIT
|
trap cleanup EXIT
|
||||||
|
|
||||||
model_path="$1"
|
|
||||||
shift 1
|
|
||||||
|
|
||||||
set -eu
|
set -eu
|
||||||
|
|
||||||
# Start the server in background
|
# Start @llama.cpp scenario
|
||||||
../../../build/bin/server \
|
|
||||||
--model "$model_path" \
|
|
||||||
--alias tinyllama-2 \
|
|
||||||
--ctx-size 1024 \
|
|
||||||
--parallel 2 \
|
|
||||||
--n-predict 1024 \
|
|
||||||
--batch-size 32 \
|
|
||||||
--threads 4 \
|
|
||||||
--threads-batch 4 \
|
|
||||||
--embedding \
|
|
||||||
--cont-batching \
|
|
||||||
--api-key llama.cpp \
|
|
||||||
"$@" &
|
|
||||||
|
|
||||||
# Start tests
|
|
||||||
behave --summary --stop --tags llama.cpp
|
behave --summary --stop --tags llama.cpp
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue