Move cuda specific definitions to ggml-cuda.h/cu

This commit is contained in:
Slaren 2023-04-21 00:58:26 +02:00
parent e8797a9aed
commit 641e9a0c52
3 changed files with 127 additions and 118 deletions

View file

@ -1,5 +1,7 @@
#include <stdint.h>
#include <stdio.h>
#include <cuda_fp16.h>
#include <atomic>
#include "ggml-cuda.h"
typedef uint16_t ggml_fp16_t;
@ -35,8 +37,6 @@ typedef struct {
} block_q4_3;
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
const block_q4_0 * x = (const block_q4_0 *) vx;
@ -131,24 +131,83 @@ static __global__ void dequantize_block_q4_3(const void * vx, float * y) {
}
}
extern "C" {
__host__ void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_0;
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_0;
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
}
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_1;
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
}
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_2;
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
}
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_3;
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
}
// lock-free, thread safe buffer pool for cuda
#define MAX_CUDA_BUFFERS 16
struct cuda_buffer {
std::atomic_uintptr_t ptr;
size_t size;
};
static struct cuda_buffer cuda_buffer_pool[MAX_CUDA_BUFFERS] = {0};
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
struct cuda_buffer * b = &cuda_buffer_pool[i];
if (b->size >= size) {
uintptr_t ptr = atomic_load(&b->ptr);
if (ptr) {
if (std::atomic_compare_exchange_strong(&b->ptr, &ptr, 0)) {
*actual_size = b->size;
return (void *) ptr;
}
}
}
}
__host__ void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_1;
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
}
void * ptr;
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
*actual_size = size;
return ptr;
}
__host__ void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_2;
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
void ggml_cuda_pool_free(void * ptr, size_t size) {
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
struct cuda_buffer * b = &cuda_buffer_pool[i];
uintptr_t p = std::atomic_load(&b->ptr);
if (p == 0) {
if (std::atomic_compare_exchange_strong(&b->ptr, &p, (uintptr_t) ptr)) {
b->size = size;
return;
}
}
}
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
CUDA_CHECK(cudaFree(ptr));
}
__host__ void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_3;
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
cublasHandle_t cublasH = NULL;
cudaStream_t cudaStream = NULL;
void ggml_init_cublas(void) {
if (cublasH == NULL) {
// create cublas handle, bind a stream
CUBLAS_CHECK(cublasCreate(&cublasH));
CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
}
}

View file

@ -1,7 +1,38 @@
#include <cublas_v2.h>
#include <cuda_runtime.h>
#ifdef __cplusplus
extern "C" {
#endif
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
extern cublasHandle_t cublasH;
extern cudaStream_t cudaStream;
void ggml_init_cublas(void);
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size);
void ggml_cuda_pool_free(void * ptr, size_t size);
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);

123
ggml.c
View file

@ -148,88 +148,7 @@ inline static void* ggml_aligned_malloc(size_t size) {
#elif defined(GGML_USE_OPENBLAS)
#include <cblas.h>
#elif defined(GGML_USE_CUBLAS)
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include "ggml-cuda.h"
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
// lock-free, thread safe buffer pool for cuda
#define MAX_CUDA_BUFFERS 16
struct cuda_buffer {
atomic_uintptr_t ptr;
size_t size;
};
static struct cuda_buffer cuda_buffer_pool[MAX_CUDA_BUFFERS] = {0};
static void * cuda_pool_malloc(size_t size, size_t * actual_size) {
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
struct cuda_buffer * b = &cuda_buffer_pool[i];
if (b->size >= size) {
uintptr_t ptr = atomic_load(&b->ptr);
if (ptr) {
if (atomic_compare_exchange_strong(&b->ptr, &ptr, 0)) {
*actual_size = b->size;
return (void *) ptr;
}
}
}
}
void * ptr;
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
*actual_size = size;
return ptr;
}
static void cuda_pool_free(void * ptr, size_t size) {
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
struct cuda_buffer * b = &cuda_buffer_pool[i];
uintptr_t p = atomic_load(&b->ptr);
if (p == 0) {
if (atomic_compare_exchange_strong(&b->ptr, &p, (uintptr_t) ptr)) {
b->size = size;
return;
}
}
}
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
CUDA_CHECK(cudaFree(ptr));
}
static cublasHandle_t cublasH = NULL;
static cudaStream_t cudaStream = NULL;
static void init_cublas(void) {
if (cublasH == NULL) {
// create cublas handle, bind a stream
CUBLAS_CHECK(cublasCreate(&cublasH));
CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
}
}
#endif
#undef MIN
@ -3764,7 +3683,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
// initialize cuBLAS
#if defined(GGML_USE_CUBLAS)
init_cublas();
ggml_init_cublas();
#endif
is_first_call = false;
@ -7617,9 +7536,9 @@ static void ggml_compute_forward_mul_mat_f32(
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
float *d_X = cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
@ -7656,9 +7575,9 @@ static void ggml_compute_forward_mul_mat_f32(
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
cuda_pool_free(d_X, x_size);
cuda_pool_free(d_Y, y_size);
cuda_pool_free(d_D, d_size);
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
#endif
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
@ -7815,9 +7734,9 @@ static void ggml_compute_forward_mul_mat_f16_f32(
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
float *d_X = cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#else
float * const wdata = params->wdata;
#endif
@ -7884,9 +7803,9 @@ static void ggml_compute_forward_mul_mat_f16_f32(
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
cuda_pool_free(d_X, x_size);
cuda_pool_free(d_Y, y_size);
cuda_pool_free(d_D, d_size);
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
#endif
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
@ -8061,10 +7980,10 @@ static void ggml_compute_forward_mul_mat_q_f32(
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size, q_size;
float *d_X = cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
float *d_Q = cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
if (type == GGML_TYPE_Q4_0) {
@ -8137,10 +8056,10 @@ static void ggml_compute_forward_mul_mat_q_f32(
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
cuda_pool_free(d_X, x_size);
cuda_pool_free(d_Y, y_size);
cuda_pool_free(d_D, d_size);
cuda_pool_free(d_Q, q_size);
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
ggml_cuda_pool_free(d_Q, q_size);
#endif
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);