llama : add function for model-based max number of graph nodes (#8622)
* llama : model-based max number of graph nodes ggml-ci * llama : disable 405B max_nodes path due to lack of complaints ggml-ci
This commit is contained in:
parent
1c3e99a199
commit
67501cf059
1 changed files with 53 additions and 43 deletions
|
@ -101,7 +101,6 @@
|
|||
#endif
|
||||
|
||||
// bump if necessary
|
||||
#define LLAMA_MAX_NODES 8192
|
||||
#define LLAMA_MAX_LAYERS 512
|
||||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
||||
|
||||
|
@ -3568,6 +3567,15 @@ namespace GGUFMeta {
|
|||
|
||||
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
|
||||
|
||||
// TODO: update when needed or think of some clever automatic way to do this
|
||||
static size_t llama_model_max_nodes(const llama_model & /*model*/) {
|
||||
//if (model.arch == LLM_ARCH_LLAMA && model.hparams.n_layer > ??) { // llama-3 405B
|
||||
// return 32768;
|
||||
//}
|
||||
|
||||
return 8192;
|
||||
}
|
||||
|
||||
struct llama_model_loader {
|
||||
int n_kv = 0;
|
||||
int n_tensors = 0;
|
||||
|
@ -8397,7 +8405,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_k_shift() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
GGML_ASSERT(kv_self.size == n_ctx);
|
||||
|
||||
|
@ -8428,7 +8436,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_s_copy() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
GGML_ASSERT(kv_self.recurrent);
|
||||
|
||||
|
@ -8451,7 +8459,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
@ -8692,7 +8700,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_llama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -8835,7 +8843,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_baichuan() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -8950,7 +8958,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_xverse() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -9053,7 +9061,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_falcon() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -9173,7 +9181,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_grok() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -9330,7 +9338,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_dbrx() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -9456,7 +9464,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_starcoder() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -9560,7 +9568,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_refact() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -9654,7 +9662,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_bert() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -9848,7 +9856,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_bloom() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -9949,7 +9957,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_mpt() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -10239,7 +10247,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_qwen() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -10351,7 +10359,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_qwen2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -10463,7 +10471,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_qwen2moe() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -10609,7 +10617,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_phi2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -10730,7 +10738,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_phi3() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -10962,7 +10970,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_gpt2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -11067,7 +11075,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_codeshell() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -11178,7 +11186,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_orion() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -11296,7 +11304,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_internlm2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -11417,7 +11425,7 @@ struct llm_build_context {
|
|||
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
|
||||
// based on the original build_llama() function
|
||||
struct ggml_cgraph * build_minicpm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -11561,7 +11569,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_gemma() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
|
||||
|
@ -11669,7 +11677,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_gemma2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
|
||||
|
@ -11804,7 +11812,7 @@ struct llm_build_context {
|
|||
|
||||
|
||||
struct ggml_cgraph * build_starcoder2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -11923,7 +11931,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_mamba() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t d_model = n_embd;
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
|
@ -12072,7 +12080,7 @@ struct llm_build_context {
|
|||
|
||||
struct ggml_cgraph * build_command_r() {
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -12226,7 +12234,7 @@ struct llm_build_context {
|
|||
// * removed bias
|
||||
// * removed MoE
|
||||
struct ggml_cgraph * build_olmo() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -12350,7 +12358,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_openelm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -12475,7 +12483,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_gptneox() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -12617,7 +12625,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_arctic() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -12749,7 +12757,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_deepseek2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -12977,7 +12985,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_bitnet() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -13117,7 +13125,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_t5() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
@ -13434,7 +13442,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_jais() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -13526,7 +13534,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
struct ggml_cgraph * build_chatglm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
@ -14871,9 +14879,9 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|||
// each move requires 6*n_layer tensors (see build_defrag)
|
||||
// - source view, destination view, copy operation
|
||||
// - x2 for keys and values
|
||||
//const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
|
||||
//const uint32_t max_moves = llama_model_max_nodes(model)/(6*n_layer);
|
||||
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
||||
const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
|
||||
const uint32_t max_moves = (llama_model_max_nodes(lctx.model) - 2*n_layer)/(6*n_layer);
|
||||
|
||||
// determine which KV cells to move where
|
||||
//
|
||||
|
@ -16764,8 +16772,10 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
}
|
||||
|
||||
const size_t max_nodes = llama_model_max_nodes(*model);
|
||||
|
||||
// buffer used to store the computation graph and the tensor meta data
|
||||
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
|
||||
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
|
||||
|
||||
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
|
||||
bool pipeline_parallel =
|
||||
|
@ -16778,7 +16788,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
// currently this is only implemented in the CUDA backend
|
||||
pipeline_parallel = false;
|
||||
#endif
|
||||
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
|
||||
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
|
||||
|
||||
if (pipeline_parallel) {
|
||||
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue