Merge branch 'master' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	Makefile
This commit is contained in:
Concedo 2023-06-13 20:26:51 +08:00
commit 67559a15f3
5 changed files with 613 additions and 180 deletions

View file

@ -2,43 +2,135 @@
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <string>
static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
{"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
{"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
{"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K},
{"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M},
{"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S},
{"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M},
{"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L},
{"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M},
{"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S},
{"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M},
{"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M},
{"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S},
{"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M},
{"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K},
struct quant_option {
std::string name;
llama_ftype ftype;
std::string desc;
};
bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
auto it = LLAMA_FTYPE_MAP.find(ftype_str);
if (it != LLAMA_FTYPE_MAP.end()) {
ftype = it->second;
ftype_str_out = it->first;
return true;
static const std::vector<struct quant_option> QUANT_OPTIONS = {
{
"Q4_0",
LLAMA_FTYPE_MOSTLY_Q4_0,
" 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
},
{
"Q4_1",
LLAMA_FTYPE_MOSTLY_Q4_1,
" 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
},
{
"Q5_0",
LLAMA_FTYPE_MOSTLY_Q5_0,
" 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
},
{
"Q5_1",
LLAMA_FTYPE_MOSTLY_Q5_1,
" 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
},
#ifdef GGML_USE_K_QUANTS
{
"Q2_K",
LLAMA_FTYPE_MOSTLY_Q2_K,
" 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
},
{
"Q3_K",
LLAMA_FTYPE_MOSTLY_Q3_K_M,
"alias for Q3_K_M"
},
{
"Q3_K_S",
LLAMA_FTYPE_MOSTLY_Q3_K_S,
" 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
},
{
"Q3_K_M",
LLAMA_FTYPE_MOSTLY_Q3_K_M,
" 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
},
{
"Q3_K_L",
LLAMA_FTYPE_MOSTLY_Q3_K_L,
" 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
},
{
"Q4_K",
LLAMA_FTYPE_MOSTLY_Q4_K_M,
"alias for Q4_K_M",
},
{
"Q4_K_S",
LLAMA_FTYPE_MOSTLY_Q4_K_S,
" 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
},
{
"Q4_K_M",
LLAMA_FTYPE_MOSTLY_Q4_K_M,
" 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
},
{
"Q5_K",
LLAMA_FTYPE_MOSTLY_Q5_K_M,
"alias for Q5_K_M",
},
{
"Q5_K_S",
LLAMA_FTYPE_MOSTLY_Q5_K_S,
" 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
},
{
"Q5_K_M",
LLAMA_FTYPE_MOSTLY_Q5_K_M,
" 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
},
{
"Q6_K",
LLAMA_FTYPE_MOSTLY_Q6_K,
" 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
},
#endif
{
"Q8_0",
LLAMA_FTYPE_MOSTLY_Q8_0,
" 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
},
{
"F16",
LLAMA_FTYPE_MOSTLY_F16,
"13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
},
{
"F32",
LLAMA_FTYPE_ALL_F32,
"26.00G @ 7B - absolutely huge, lossless - not recommended",
},
};
bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str;
for (auto ch : ftype_str_in) {
ftype_str.push_back(std::toupper(ch));
}
for (auto & it : QUANT_OPTIONS) {
if (it.name == ftype_str) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
// try to parse as an integer
try {
int ftype_int = std::stoi(ftype_str);
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
if (it->second == ftype_int) {
ftype = it->second;
ftype_str_out = it->first;
for (auto & it : QUANT_OPTIONS) {
if (it.ftype == ftype_int) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
@ -50,15 +142,15 @@ bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::st
}
// usage:
// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
//
void usage(const char * executable) {
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n", executable);
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
fprintf(stderr, "Allowed quantization types:\n");
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
fprintf(stderr, "\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
}
exit(1);
}

View file

@ -52,14 +52,18 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
GGML_METAL_DECL_KERNEL(get_rows_q2_k);
GGML_METAL_DECL_KERNEL(get_rows_q3_k);
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
GGML_METAL_DECL_KERNEL(get_rows_q5_k);
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_DECL_KERNEL(rope);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
@ -153,14 +157,18 @@ struct ggml_metal_context * ggml_metal_init(void) {
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
GGML_METAL_ADD_KERNEL(get_rows_q2_k);
GGML_METAL_ADD_KERNEL(get_rows_q3_k);
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
GGML_METAL_ADD_KERNEL(get_rows_q5_k);
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_ADD_KERNEL(rope);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
@ -575,6 +583,15 @@ void ggml_metal_graph_compute(
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
} break;
case GGML_TYPE_Q3_K:
{
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 4;
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32];
} break;
case GGML_TYPE_Q4_K:
{
GGML_ASSERT(ne02 == 1);
@ -584,6 +601,15 @@ void ggml_metal_graph_compute(
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
} break;
case GGML_TYPE_Q5_K:
{
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 4;
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32];
} break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(ne02 == 1);
@ -620,15 +646,14 @@ void ggml_metal_graph_compute(
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else if (src0t == GGML_TYPE_Q2_K) {
}
else if (src0t == GGML_TYPE_Q2_K ||
src0t == GGML_TYPE_Q3_K ||
src0t == GGML_TYPE_Q4_K ||
src0t == GGML_TYPE_Q5_K ||
src0t == GGML_TYPE_Q6_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else if (src0t == GGML_TYPE_Q4_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else if (src0t == GGML_TYPE_Q6_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -646,7 +671,9 @@ void ggml_metal_graph_compute(
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
default: GGML_ASSERT(false && "not implemented");
}

View file

@ -304,34 +304,22 @@ kernel void kernel_mul_mat_q4_0_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpig[[thread_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK4_0;
const int8_t m8 = 8;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
device const float * y = (device const float *) src1 + r1*ne10;
const uint nth = tptg.x*tptg.y;
const uint ith = tptg.y*tpitg.x + tpitg.y;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int ix = tpitg.y/4; // 0 or 1
const int iy = tpitg.y - 4*ix; // 0...3
@ -351,47 +339,32 @@ kernel void kernel_mul_mat_q4_0_f32(
for (int j = 0; j < 4; ++j) {
acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8);
acc[1] += yl[j+16] * ((int8_t)(xl[j] >> 4) - m8);
acc[0] += yl[j] * (xl[j] & 0xF) + yl[j+16] * (xl[j] >> 4);
acc[1] += yl[j] + yl[j+16];
}
sumf += d * (acc[0] + acc[1]);
sumf += d * (acc[0] - 8.f*acc[1]);
}
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
// This version is slightly faster than the commented out one below,
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
for (uint i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
//// accumulate the sum from all threads in the threadgroup
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (uint i = nth/2; i > 0; i /= 2) {
// if (ith < i) {
// sum[ith] += sum[ith + i];
// }
// threadgroup_barrier(mem_flags::mem_threadgroup);
//}
//if (ith == 0) {
// dst[r1*ne0 + r0] = sum[0];
//}
}
kernel void kernel_mul_mat_q4_1_f32(
@ -399,20 +372,10 @@ kernel void kernel_mul_mat_q4_1_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpig[[thread_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK4_1;
@ -460,11 +423,11 @@ kernel void kernel_mul_mat_q4_1_f32(
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
@ -671,6 +634,15 @@ typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
} block_q2_k;
// 84 bytes / block
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
half d; // super-block scale
} block_q3_k;
// 110 bytes / block
typedef struct {
half d; // super-block scale for quantized scales
@ -678,6 +650,16 @@ typedef struct {
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_k;
// 144 bytes / block
typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_k;
// 176 bytes / block
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
@ -685,16 +667,19 @@ typedef struct {
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
half d; // super-block scale
} block_q6_k;
// 210 bytes / block
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
uchar4 r;
if (j < 4) {
r[0] = q[j+0] & 63; r[1] = q[j+4] & 63;
r[2] = q[j+1] & 63; r[3] = q[j+5] & 63;
r[0] = q[j+0] & 63;
r[2] = q[j+1] & 63;
r[1] = q[j+4] & 63;
r[3] = q[j+5] & 63;
} else {
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
}
return r;
@ -735,10 +720,65 @@ static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, i
}
}
static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
uint16_t aux[8];
thread const int8_t * scales = (thread const int8_t*)aux;
for (int i = 0; i < nb; i++) {
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs;
device const uint8_t * h = x[i].hmask;
uint8_t m = 1;
device const uint16_t * a = (device const uint16_t *)x[i].scales;
aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
}
static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = x[i].d;
@ -760,6 +800,33 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i
}
}
static void dequantize_row_q5_k(device const block_q5_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = (float)(x[i].d);
const float min = (float)(x[i].dmin);
device const uint8_t * ql = x[i].qs;
device const uint8_t * qh = x[i].qh;
int is = 0;
uint8_t u1 = 1, u2 = 2;
for (int j = 0; j < QK_K; j += 64) {
const uchar4 sc = get_scale_min_k4(is, x[i].scales);
const float d1 = d * sc[0]; const float m1 = min * sc[1];
const float d2 = d * sc[2]; const float m2 = min * sc[3];
for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
ql += 32; is += 2;
u1 <<= 2; u2 <<= 2;
}
}
}
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
@ -808,6 +875,22 @@ kernel void kernel_get_rows_q2_k(
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q3_k(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q3_k(
(device const block_q3_k *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q4_k(
device const void * src0,
device const int * src1,
@ -824,6 +907,22 @@ kernel void kernel_get_rows_q4_k(
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q5_k(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q5_k(
(device const block_q5_k *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q6_k(
device const void * src0,
device const int * src1,
@ -847,20 +946,10 @@ kernel void kernel_mul_mat_q2_k_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
@ -875,7 +964,6 @@ kernel void kernel_mul_mat_q2_k_f32(
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
const int ir = tid%4; // 0...3
@ -885,35 +973,54 @@ kernel void kernel_mul_mat_q2_k_f32(
const int n = 8;
const int is = 4*il + (n*ir)/16;
const int y_offset = 64*il + n*ir;
const int q_offset = 32*ip + n*ir;
sum[ith] = 0.0f;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * q = x[i].qs + 32*ip + n*ir;
device const uint8_t * q = x[i].qs + q_offset;
device const uint8_t * scales = x[i].scales + is;
uint8_t d1 = scales[0] & 0xF;
uint8_t m1 = scales[0] >> 4;
uint8_t d2 = scales[2] & 0xF;
uint8_t m1 = scales[0] >> 4;
uint8_t m2 = scales[2] >> 4;
device const float * y = yy + i*QK_K + 64*il + n*ir;
device const float * y = yy + i*QK_K + y_offset;
//float4 s = {0.f, 0.f, 0.f, 0.f};
float2 s = {0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
s[1] += y[l+32] * ((q[l] >> shift2) & 3);
smin += y[l+ 0] * m1 + y[l+32] * m2;
}
const float dall = (float)x[i].d;
const float dmin = (float)x[i].dmin;
float4 s = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) {
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0];
s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32];
}
sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2);
sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin;
}
sum[ith] = sumf;
//int mask1 = (ith%4 == 0);
//int mask2 = (ith%16 == 0);
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (int i = 1; i < 4; ++i) sum[ith] += mask1 * sum[ith + i];
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (int i = 4; i < 16; i += 4) sum[ith] += mask2 * sum[ith + i];
//threadgroup_barrier(mem_flags::mem_threadgroup);
//if (ith == 0) {
// for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
// dst[r1*ne0 + r0] = sum[0];
//}
//
// Accumulate the sum from all threads in the threadgroup
// This version is slightly faster than the commented out one below,
@ -932,19 +1039,109 @@ kernel void kernel_mul_mat_q2_k_f32(
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}
//// accumulate the sum from all threads in the threadgroup
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (uint i = nth/2; i > 0; i /= 2) {
// if (ith < i) {
// sum[ith] += sum[ith + i];
// }
// threadgroup_barrier(mem_flags::mem_threadgroup);
//}
kernel void kernel_mul_mat_q3_k_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const uint8_t m3 = 3;
const int8_t m4 = 4;
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q3_k * x = (device const block_q3_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int tid = tpitg.y; // expecting 16
const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3
const int ir = tid%2;
const int n = 8;
const int l0 = n*ir;
const uint8_t m = 1 << (4*ip + il);
const int shift = 2*il;
const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
const int ik = 4 + (il%2);
const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0;
//float sumf = 0;
float sumf1 = 0, sumf2 = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs + q_offset;
device const uint8_t * h = x[i].hmask + l0;
device const float * y = yy + i * QK_K + y_offset;
device const uint16_t * a = (device const uint16_t *)x[i].scales;
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
float s = 0;
for (int l = 0; l < n; ++l) {
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
}
float d = d_all * s;
sumf1 += d * scales[0];
sumf2 += d;
//sumf += d_all * s * (scales[0] - 32);
s = 0;
for (int l = 0; l < n; ++l) {
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
}
d = d_all * s;
sumf1 += d * scales[1];
sumf2 += d;
//sumf += d_all * s * (scales[1] - 32);
}
//sum[ith] = sumf;
sum[ith] = sumf1 - 32.f*sumf2;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
//if (ith == 0) {
// dst[r1*ne0 + r0] = sum[0];
//}
}
kernel void kernel_mul_mat_q4_k_f32(
@ -952,23 +1149,17 @@ kernel void kernel_mul_mat_q4_k_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
@ -977,37 +1168,55 @@ kernel void kernel_mul_mat_q4_k_f32(
device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const uint nth = tptg.x*tptg.y;
const uint ith = tptg.y*tpitg.x + tpitg.y;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
const int ir = tid%4; // 0...3
const int n = 8;
const int is = 2*il;
const int ir = tid - 4*il;// 0...3
const int n = 4;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
sum[ith] = 0.0f;
uchar2 sc1, sc2, sc3, sc4;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * q = (x + i)->qs + 32*il + n*ir;
device const float * y = yy + i*QK_K + 64*il + n*ir;
device const uint8_t * scales = (x + i)->scales;
device const uint8_t * q1 = (x + i)->qs + q_offset;
device const uint8_t * q2 = q1 + 64;
device const float * y1 = yy + i*QK_K + y_offset;
device const float * y2 = y1 + 128;
const float dall = (float)((x + i)->d);
const float dmin = (float)((x + i)->dmin);
const uchar4 sc = get_scale_min_k4(is, scales);
device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0];
s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32];
s[0] += y1[l] * (q1[l] & 0xF); s[1] += y1[l+32] * (q1[l] >> 4);
s[2] += y2[l] * (q2[l] & 0xF); s[3] += y2[l+32] * (q2[l] >> 4);
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
}
sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]);
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
}
sum[ith] = sumf;
//
@ -1043,25 +1252,114 @@ kernel void kernel_mul_mat_q4_k_f32(
//}
}
kernel void kernel_mul_mat_q5_k_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q5_k * x = (device const block_q5_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 4;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
const uint8_t hm1 = 1u << (2*im);
const uint8_t hm2 = hm1 << 1;
const uint8_t hm3 = hm1 << 4;
const uint8_t hm4 = hm2 << 4;
uchar2 sc1, sc2, sc3, sc4;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * q1 = (x + i)->qs + q_offset;
device const uint8_t * q2 = q1 + 64;
device const uint8_t * qh = (x + i)->qh + l0;
device const float * y1 = yy + i*QK_K + y_offset;
device const float * y2 = y1 + 128;
const float dall = (float)((x + i)->d);
const float dmin = (float)((x + i)->dmin);
device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0));
s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0));
s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0));
s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0));
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
}
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
}
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}
kernel void kernel_mul_mat_q6_k_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
@ -1078,24 +1376,29 @@ kernel void kernel_mul_mat_q6_k_f32(
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const uint nth = tptg.x*tptg.y;
const uint ith = tptg.y*tpitg.x + tpitg.y;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
const int step = QK_K / tptg.y; // we expect this to be 16
const int iqs = step * tpitg.y; // 0...240 in steps of 16
// Note: we absolutely assume that tptg.y = 16 and QK_K = 256!
const int iqs = 16 * tpitg.y;
const int ip = iqs / 128; // 0 or 1
const int il = (iqs - 128*ip)/16; // 0...7
const int n = 4;
const int is = 8*ip + (n*il)/16;
const int l0 = n*il;
const int is = 8*ip + l0/16;
const int y_offset = 128*ip + l0;
const int q_offset_l = 64*ip + l0;
const int q_offset_h = 32*ip + l0;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * ql = x[i].ql + 64*ip + n*il;
device const uint8_t * qh = x[i].qh + 32*ip + n*il;
device const uint8_t * ql = x[i].ql + q_offset_l;
device const uint8_t * qh = x[i].qh + q_offset_h;
device const int8_t * sc = x[i].scales + is;
device const float * y = yy + i * QK_K + 128*ip + n*il;
device const float * y = yy + i * QK_K + y_offset;
const float dall = x[i].d;

12
ggml.c
View file

@ -16301,6 +16301,18 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
result = ggml_quantize_q6_K(src + start, block, n, n, hist);
} break;
#endif
case GGML_TYPE_F16:
{
int elemsize = sizeof(ggml_fp16_t);
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
result = n * elemsize;
} break;
case GGML_TYPE_F32:
{
int elemsize = sizeof(float);
result = n * elemsize;
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
} break;
default:
assert(false);
}

View file

@ -2298,7 +2298,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
@ -2309,6 +2312,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
#endif
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
@ -2320,6 +2324,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
/*vocab_only*/ false));
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (auto& tensor : model_loader->tensors_map.tensors) {
@ -2333,6 +2338,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
@ -2358,12 +2364,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// quantize only 2D tensors
quantize &= (tensor.ne.size() == 2);
// uncomment this to keep the output layer in FP16
if (!params->quantize_output_tensor && tensor.name == "output.weight") {
quantize = false;
}
quantize = quantize && quantized_type != tensor.type;
quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
quantize &= quantized_type != tensor.type;
enum ggml_type new_type;
void * new_data;
@ -2377,31 +2379,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
} else {
new_type = quantized_type;
// TODO: temporary disabled until Metal / OpenCL support is available
// ref: https://github.com/ggerganov/llama.cpp/issues/1711
//if (tensor.name == "output.weight") {
// new_type = GGML_TYPE_Q6_K;
//}
if (tensor.name.find("attention.wv.weight") != std::string::npos) {
#ifdef GGML_USE_K_QUANTS
if (tensor.name == "output.weight") {
new_type = GGML_TYPE_Q6_K;
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
(i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
++i_attention_wv;
}
if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
} else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
(i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
(i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
++i_feed_forward_w2;
}
if (tensor.name.find("attention.wo.weight") != std::string::npos) {
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
}
#endif
float * f32_data;
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);