Merge 'origin/master' into hipblas

This commit is contained in:
Henri Vasserman 2023-08-16 18:25:14 +03:00
commit 68e79cc134
No known key found for this signature in database
GPG key ID: 2995FC0F58B1A986
9 changed files with 1018 additions and 954 deletions

View file

@ -16,6 +16,7 @@ Command line options:
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended. - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped. - `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. - `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
- `--numa`: Attempt optimizations that help on some NUMA systems.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`. - `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.

File diff suppressed because it is too large Load diff

View file

@ -167,7 +167,7 @@
mirostat: 0, // 0/1/2 mirostat: 0, // 0/1/2
mirostat_tau: 5, // target entropy mirostat_tau: 5, // target entropy
mirostat_eta: 0.1, // learning rate mirostat_eta: 0.1, // learning rate
grammar: null, grammar: '',
}) })
const llamaStats = signal(null) const llamaStats = signal(null)

View file

@ -15,6 +15,7 @@
#include "index.html.hpp" #include "index.html.hpp"
#include "index.js.hpp" #include "index.js.hpp"
#include "completion.js.hpp" #include "completion.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#ifndef SERVER_VERBOSE #ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1 #define SERVER_VERBOSE 1
@ -666,6 +667,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
{ {
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
} }
fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stdout, " -ngl N, --n-gpu-layers N\n"); fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
fprintf(stdout, " number of layers to store in VRAM\n"); fprintf(stdout, " number of layers to store in VRAM\n");
@ -940,6 +942,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
{ {
params.use_mmap = false; params.use_mmap = false;
} }
else if (arg == "--numa")
{
params.numa = true;
}
else if (arg == "--embedding") else if (arg == "--embedding")
{ {
params.embedding = true; params.embedding = true;
@ -1213,6 +1219,12 @@ int main(int argc, char **argv)
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript"); res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
return false; }); return false; });
// this is only called if no index.html is found in the public --path
svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
{
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
return false; });
svr.Post("/completion", [&llama](const Request &req, Response &res) svr.Post("/completion", [&llama](const Request &req, Response &res)
{ {
auto lock = llama.lock(); auto lock = llama.lock();

View file

@ -1854,7 +1854,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
} }
// contiguous u/y values // contiguous u/y values
// also used for q5_K
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
@ -1864,19 +1863,18 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
float sumf_m = 0.0f; float sumf_m = 0.0f;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < VDR_Q4_K_Q8_1_MMQ; i0 += (QI8_1/QR4_K)) { for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0; int sumi_d = 0;
#pragma unroll #pragma unroll
for (int i = i0; i < i0 + (QI8_1/QR4_K); ++i) { for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a(v[2*i+0], u[2*i+0], sumi_d); // SIMD dot product sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
sumi_d = __dp4a(v[2*i+1], u[2*i+1], sumi_d); // SIMD dot product
} }
const float2 ds8f = __half22float2(ds8[i0 / 4]); const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i0/4] * sumi_d); sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i0/4]; // sum of q8_1 block * q4_K min val sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
} }
const float2 dm4f = __half22float2(dm4); const float2 dm4f = __half22float2(dm4);
@ -1893,7 +1891,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
#define VDR_Q5_K_Q8_1_MMQ 8 #define VDR_Q5_K_Q8_1_MMQ 8
// contiguous v/x values // contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl( static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
@ -1930,6 +1928,40 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
} }
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
#define VDR_Q6_K_Q8_1_MMVQ 1 #define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ 8 #define VDR_Q6_K_Q8_1_MMQ 8
@ -2925,18 +2957,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
int v[QR4_K*VDR_Q4_K_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_K_Q8_1_MMQ; ++l) {
v[l + 0] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 0) & 0x0F0F0F0F;
v[l + (QI4_K/4)] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 4) & 0x0F0F0F0F;
}
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8); const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE; const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(v, &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]); return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
} }
static __device__ __forceinline__ float vec_dot_q5_K_q8_1( static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
@ -2983,7 +3008,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
u[2*i+1] = q8[4]; u[2*i+1] = q8[4];
} }
return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, bq5_K->dm, d8); return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
#else #else
@ -3126,7 +3151,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k; const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE; const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]); return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
} }
static __device__ __forceinline__ float vec_dot_q6_K_q8_1( static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
@ -3402,7 +3428,11 @@ template <bool need_check> static __global__ void mul_mat_q4_0(
#define MMQ_Y_Q4_1_PASCAL 64 #define MMQ_Y_Q4_1_PASCAL 64
#define NWARPS_Q4_1_PASCAL 8 #define NWARPS_Q4_1_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q4_1( template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q4_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3572,7 +3602,11 @@ template <bool need_check> static __global__ void mul_mat_q2_K(
#define MMQ_Y_Q3_K_PASCAL 64 #define MMQ_Y_Q3_K_PASCAL 64
#define NWARPS_Q3_K_PASCAL 8 #define NWARPS_Q3_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q3_K( template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q3_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3602,11 +3636,15 @@ template <bool need_check> static __global__ void mul_mat_q3_K(
#define MMQ_X_Q4_K_AMPERE 64 #define MMQ_X_Q4_K_AMPERE 64
#define MMQ_Y_Q4_K_AMPERE 128 #define MMQ_Y_Q4_K_AMPERE 128
#define NWARPS_Q4_K_AMPERE 4 #define NWARPS_Q4_K_AMPERE 4
#define MMQ_X_Q4_K_PASCAL 32 #define MMQ_X_Q4_K_PASCAL 64
#define MMQ_Y_Q4_K_PASCAL 64 #define MMQ_Y_Q4_K_PASCAL 64
#define NWARPS_Q4_K_PASCAL 8 #define NWARPS_Q4_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q4_K( template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q4_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3670,11 +3708,15 @@ template <bool need_check> static __global__ void mul_mat_q5_K(
#define MMQ_X_Q6_K_AMPERE 64 #define MMQ_X_Q6_K_AMPERE 64
#define MMQ_Y_Q6_K_AMPERE 64 #define MMQ_Y_Q6_K_AMPERE 64
#define NWARPS_Q6_K_AMPERE 4 #define NWARPS_Q6_K_AMPERE 4
#define MMQ_X_Q6_K_PASCAL 32 #define MMQ_X_Q6_K_PASCAL 64
#define MMQ_Y_Q6_K_PASCAL 64 #define MMQ_Y_Q6_K_PASCAL 64
#define NWARPS_Q6_K_PASCAL 8 #define NWARPS_Q6_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q6_K( template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q6_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

View file

@ -126,7 +126,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
if (error) { if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1); return NULL;
} }
} }
#else #else
@ -144,7 +144,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
if (error) { if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1); return NULL;
} }
#ifdef GGML_QKK_64 #ifdef GGML_QKK_64
@ -156,7 +156,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#endif #endif
if (error) { if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1); return NULL;
} }
} }
#endif #endif

View file

@ -3337,6 +3337,12 @@ struct llama_context * llama_new_context_with_model(
// this allocates all Metal resources and memory buffers // this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init(1); ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
void * data_ptr = NULL; void * data_ptr = NULL;
size_t data_size = 0; size_t data_size = 0;

View file

@ -97,7 +97,7 @@ extern "C" {
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
// if it exists. // if it exists.
// It might not exist for progress report where '.' is output repeatedly. // It might not exist for progress report where '.' is output repeatedly.
typedef void (*llama_log_callback)(llama_log_level level, const char * text, void * user_data); typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
struct llama_context_params { struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random uint32_t seed; // RNG seed, -1 for random

View file

@ -0,0 +1,3 @@
#!/bin/bash
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip