convert-hf : remove unused n_dims in extra_*_tensors
This commit is contained in:
parent
c33775bcc7
commit
698f0b3479
2 changed files with 10 additions and 12 deletions
|
@ -165,10 +165,10 @@ class Model(Protocol):
|
|||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def extra_f32_tensors(self, n_dims: int, name: str, new_name: str, bid: int | None) -> bool:
|
||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool:
|
||||
return False
|
||||
|
||||
def extra_f16_tensors(self, n_dims: int, name: str, new_name: str, bid: int | None) -> bool:
|
||||
def extra_f16_tensors(self, name: str, new_name: str, bid: int | None) -> bool:
|
||||
return False
|
||||
|
||||
def write_tensors(self):
|
||||
|
@ -199,8 +199,8 @@ class Model(Protocol):
|
|||
data = data.astype(np.float32)
|
||||
|
||||
# when both are true, the tensor keeps its original type
|
||||
extra_f32 = self.extra_f32_tensors(n_dims, name, new_name, bid)
|
||||
extra_f16 = self.extra_f16_tensors(n_dims, name, new_name, bid)
|
||||
extra_f32 = self.extra_f32_tensors(name, new_name, bid)
|
||||
extra_f16 = self.extra_f16_tensors(name, new_name, bid)
|
||||
|
||||
# 1d tensors need to be converted to float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or extra_f32) and not extra_f16:
|
||||
|
@ -1038,8 +1038,8 @@ class PersimmonModel(Model):
|
|||
# self.gguf_writer.add_bos_token_id(71013)
|
||||
# self.gguf_writer.add_eos_token_id(71013)
|
||||
|
||||
def extra_f32_tensors(self, n_dims: int, name: str, new_name: str) -> bool:
|
||||
del n_dims, name, new_name # unused
|
||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool:
|
||||
del name, new_name, bid # unused
|
||||
|
||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||
return True
|
||||
|
@ -2152,8 +2152,8 @@ class BertModel(Model):
|
|||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def extra_f32_tensors(self, n_dims: int, name: str, new_name: str, bid: int | None) -> bool:
|
||||
del n_dims, new_name, bid # unused
|
||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool:
|
||||
del new_name, bid # unused
|
||||
|
||||
# not used with get_rows, must be F32
|
||||
return name == "embeddings.token_type_embeddings.weight"
|
||||
|
@ -2345,9 +2345,7 @@ class MambaModel(Model):
|
|||
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
def extra_f32_tensors(self, n_dims: int, name: str, new_name: str, bid: int | None) -> bool:
|
||||
del n_dims # unused
|
||||
|
||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool:
|
||||
return new_name in (self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
gguf.MODEL_TENSOR.SSM_X,
|
||||
|
|
|
@ -7,7 +7,7 @@ import json
|
|||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from typing import Any, Mapping, Sequence
|
||||
from typing import Any, Sequence
|
||||
|
||||
# Necessary to load the local gguf package
|
||||
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue