CUDA implementation
This commit is contained in:
parent
8dec38c35c
commit
6aeb46b343
3 changed files with 115 additions and 42 deletions
84
ggml-cuda.cu
84
ggml-cuda.cu
|
@ -3558,9 +3558,49 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static __device__ float rope_ntkv2_ramp(const float low, const float high, const int i0) {
|
||||||
|
const float y = (i0 / 2 - low) / min(0.001f, high - low);
|
||||||
|
return 1.0f - min(1.0f, max(0.0f, y));
|
||||||
|
}
|
||||||
|
|
||||||
|
struct rope_corr_factors {
|
||||||
|
float v[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
// NTKv2 algorithm based on LlamaPartNTKScaledRotaryEmbedding.py from https://github.com/jquesnelle/scaled-rope
|
||||||
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||||
|
static __device__ float rope_ntkv2(
|
||||||
|
const float theta_base,
|
||||||
|
const float theta_linear,
|
||||||
|
const float theta_ntk,
|
||||||
|
const rope_corr_factors corr_factors,
|
||||||
|
const int64_t i0,
|
||||||
|
const float ntk_factor,
|
||||||
|
const float ext_factor) {
|
||||||
|
float ramp_mix;
|
||||||
|
float theta;
|
||||||
|
|
||||||
|
ramp_mix = rope_ntkv2_ramp(corr_factors.v[0], corr_factors.v[1], i0) * ntk_factor;
|
||||||
|
theta = theta_linear * (1 - ramp_mix) + theta_ntk * ramp_mix;
|
||||||
|
|
||||||
|
ramp_mix = rope_ntkv2_ramp(corr_factors.v[2], corr_factors.v[3], i0) * ext_factor;
|
||||||
|
theta = theta * (1 - ramp_mix) + theta_base * ramp_mix;
|
||||||
|
return theta;
|
||||||
|
}
|
||||||
|
|
||||||
// rope == RoPE == rotary positional embedding
|
// rope == RoPE == rotary positional embedding
|
||||||
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
|
static __global__ void rope_f32(
|
||||||
const float p_delta, const int p_delta_rows, const float theta_scale) {
|
const float * x,
|
||||||
|
float * dst,
|
||||||
|
const int ncols,
|
||||||
|
const float freq_scale,
|
||||||
|
const float ntk_factor,
|
||||||
|
const float ext_factor,
|
||||||
|
const float theta_scale,
|
||||||
|
const float theta_ntk_scale,
|
||||||
|
const float p0,
|
||||||
|
const int p_delta_rows,
|
||||||
|
const rope_corr_factors corr_factors) {
|
||||||
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||||
|
|
||||||
if (col >= ncols) {
|
if (col >= ncols) {
|
||||||
|
@ -3570,7 +3610,11 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
|
||||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
const int i = row*ncols + col;
|
const int i = row*ncols + col;
|
||||||
|
|
||||||
const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
|
const float p = p0 + row / p_delta_rows;
|
||||||
|
const float theta_base = p*powf(theta_scale, col/2);
|
||||||
|
const float theta_linear = freq_scale * theta_base;
|
||||||
|
const float theta_ntk = p*powf(theta_ntk_scale, col/2);
|
||||||
|
const float theta = rope_ntkv2(theta_base, theta_linear, theta_ntk, corr_factors, col, ntk_factor, ext_factor);
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
|
|
||||||
|
@ -4234,13 +4278,26 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
|
||||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
|
static void rope_f32_cuda(
|
||||||
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
const float * x,
|
||||||
|
float * dst,
|
||||||
|
const int ncols,
|
||||||
|
const int nrows,
|
||||||
|
const float freq_scale,
|
||||||
|
const float ntk_factor,
|
||||||
|
const float ext_factor,
|
||||||
|
const float theta_scale,
|
||||||
|
const float theta_ntk_scale,
|
||||||
|
const float p0,
|
||||||
|
const int p_delta_rows,
|
||||||
|
const rope_corr_factors corr_factors,
|
||||||
|
cudaStream_t stream) {
|
||||||
GGML_ASSERT(nrows % 2 == 0);
|
GGML_ASSERT(nrows % 2 == 0);
|
||||||
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
||||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
const dim3 block_nums(num_blocks_x, nrows, 1);
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
|
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, freq_scale, ntk_factor, ext_factor, theta_scale,
|
||||||
|
theta_ntk_scale, p0, p_delta_rows, corr_factors);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
|
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
|
||||||
|
@ -4941,11 +4998,13 @@ inline void ggml_cuda_op_rope(
|
||||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
const int mode = ((int32_t *) dst->op_params)[2];
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||||
// RoPE alteration for extended context
|
|
||||||
|
|
||||||
float freq_base, freq_scale;
|
// RoPE alteration for extended context
|
||||||
|
float freq_base, freq_scale, ntk_factor, ext_factor;
|
||||||
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
memcpy(&ntk_factor, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||||
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
|
||||||
|
@ -4958,8 +5017,13 @@ inline void ggml_cuda_op_rope(
|
||||||
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
||||||
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
||||||
} else {
|
} else {
|
||||||
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
const float p0 = (mode & 1) == 0 ? n_past : 0;
|
||||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
const float theta_ntk_scale = powf(freq_base * powf(freq_scale, (n_dims / (n_dims - 2.0f))), -2.0f/n_dims);
|
||||||
|
rope_corr_factors corr_factors;
|
||||||
|
ggml_rope_ntkv2_corr_factors(n_dims, freq_base, corr_factors.v);
|
||||||
|
|
||||||
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, freq_scale, ntk_factor, ext_factor, theta_scale,
|
||||||
|
theta_ntk_scale, p0, ne01, corr_factors, cudaStream_main);
|
||||||
}
|
}
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
|
|
70
ggml.c
70
ggml.c
|
@ -12012,11 +12012,6 @@ static void ggml_compute_forward_clamp(
|
||||||
|
|
||||||
// ggml_compute_forward_rope
|
// ggml_compute_forward_rope
|
||||||
|
|
||||||
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
|
||||||
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
|
||||||
#define NTKV2_MAX_POS_EMB 2048
|
|
||||||
#define NTKV2_CORRECTION_FACTOR(n_rot) (__builtin_logf(NTKV2_MAX_POS_EMB / ((n_rot) * 2 * (float)M_PI)) / 2)
|
|
||||||
|
|
||||||
static inline float rope_ntkv2_ramp(const float low, const float high, const int i0) {
|
static inline float rope_ntkv2_ramp(const float low, const float high, const int i0) {
|
||||||
const float y = (i0 / 2 - low) / MIN(0.001f, high - low);
|
const float y = (i0 / 2 - low) / MIN(0.001f, high - low);
|
||||||
return 1 - MIN(1, MAX(0, y));
|
return 1 - MIN(1, MAX(0, y));
|
||||||
|
@ -12026,36 +12021,43 @@ static inline float rope_ntkv2_ramp(const float low, const float high, const int
|
||||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||||
static float rope_ntkv2(
|
static float rope_ntkv2(
|
||||||
const float theta_base,
|
const float theta_base,
|
||||||
|
const float theta_linear,
|
||||||
const float theta_ntk,
|
const float theta_ntk,
|
||||||
const float dims_over_base,
|
const float corr_factors[4],
|
||||||
const float freq_scale,
|
|
||||||
const int64_t i0,
|
const int64_t i0,
|
||||||
const float ntk_factor,
|
const float ntk_factor,
|
||||||
const float ext_factor,
|
const float ext_factor) {
|
||||||
const int n_dims) {
|
float ramp_mix;
|
||||||
|
float theta;
|
||||||
|
|
||||||
|
ramp_mix = rope_ntkv2_ramp(corr_factors[0], corr_factors[1], i0) * ntk_factor;
|
||||||
|
theta = theta_linear * (1 - ramp_mix) + theta_ntk * ramp_mix;
|
||||||
|
|
||||||
|
ramp_mix = rope_ntkv2_ramp(corr_factors[2], corr_factors[3], i0) * ext_factor;
|
||||||
|
theta = theta * (1 - ramp_mix) + theta_base * ramp_mix;
|
||||||
|
return theta;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||||||
|
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||||||
|
static float ggml_rope_ntkv2_corr_factor(const int n_dims, const float n_rot, const float base) {
|
||||||
|
static const float max_pos_emb = 2048;
|
||||||
|
return n_dims * logf(max_pos_emb / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_rope_ntkv2_corr_factors(int n_dims, const float freq_base, float factors[4]) {
|
||||||
// Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
|
// Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
|
||||||
// Do not change unless there is a good reason for doing so!
|
// Do not change unless there is a good reason for doing so!
|
||||||
static const float BETA_0 = 1.75f;
|
static const float BETA_0 = 1.75f;
|
||||||
static const float BETA_1 = 1.25f;
|
static const float BETA_1 = 1.25f;
|
||||||
static const float GAMMA_0 = 16.0f;
|
static const float GAMMA_0 = 16.0f;
|
||||||
static const float GAMMA_1 = 2.0f;
|
static const float GAMMA_1 = 2.0f;
|
||||||
|
|
||||||
static const float low_1p = NTKV2_CORRECTION_FACTOR(BETA_0);
|
|
||||||
static const float high_1p = NTKV2_CORRECTION_FACTOR(BETA_1);
|
|
||||||
static const float low_2p = NTKV2_CORRECTION_FACTOR(GAMMA_0);
|
|
||||||
static const float high_2p = NTKV2_CORRECTION_FACTOR(GAMMA_1);
|
|
||||||
|
|
||||||
// start and end correction factors
|
// start and end correction factors
|
||||||
const float low_1 = MAX(0, floorf(low_1p * dims_over_base));
|
factors[0] = MAX(0, floorf(ggml_rope_ntkv2_corr_factor(n_dims, BETA_0, freq_base)));
|
||||||
const float high_1 = MIN(n_dims - 1, ceilf(high_1p * dims_over_base));
|
factors[1] = MIN(n_dims - 1, ceilf(ggml_rope_ntkv2_corr_factor(n_dims, BETA_1, freq_base)));
|
||||||
const float low_2 = MAX(0, floorf(low_2p * dims_over_base));
|
factors[2] = MAX(0, floorf(ggml_rope_ntkv2_corr_factor(n_dims, GAMMA_0, freq_base)));
|
||||||
const float high_2 = MIN(n_dims - 1, ceilf(high_2p * dims_over_base));
|
factors[3] = MIN(n_dims - 1, ceilf(ggml_rope_ntkv2_corr_factor(n_dims, GAMMA_1, freq_base)));
|
||||||
|
|
||||||
const float theta_linear = freq_scale * theta_base;
|
|
||||||
const float ramp_mix = rope_ntkv2_ramp(low_1, high_1, i0) * ntk_factor;
|
|
||||||
const float theta_mix = theta_linear * (1 - ramp_mix) + theta_ntk * ramp_mix;
|
|
||||||
const float ramp_final = rope_ntkv2_ramp(low_2, high_2, i0) * ext_factor;
|
|
||||||
return theta_mix * (1 - ramp_final) + theta_base * ramp_final;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_compute_forward_rope_f32(
|
static void ggml_compute_forward_rope_f32(
|
||||||
|
@ -12110,7 +12112,8 @@ static void ggml_compute_forward_rope_f32(
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
const float theta_ntk_scale = powf(freq_base * powf(freq_scale, (n_dims / (n_dims - 2.0f))), -2.0f/n_dims);
|
const float theta_ntk_scale = powf(freq_base * powf(freq_scale, (n_dims / (n_dims - 2.0f))), -2.0f/n_dims);
|
||||||
const float dims_over_base = n_dims / logf(freq_base);
|
float corr_factors[4];
|
||||||
|
ggml_rope_ntkv2_corr_factors(n_dims, freq_base, corr_factors);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
|
@ -12152,8 +12155,9 @@ static void ggml_compute_forward_rope_f32(
|
||||||
}
|
}
|
||||||
} else if (!is_neox) {
|
} else if (!is_neox) {
|
||||||
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||||||
const float theta = rope_ntkv2(theta_base, theta_ntk, dims_over_base,
|
const float theta_linear = freq_scale * theta_base;
|
||||||
freq_scale, i0, ntk_factor, ext_factor, n_dims);
|
const float theta = rope_ntkv2(theta_base, theta_linear, theta_ntk, corr_factors,
|
||||||
|
i0, ntk_factor, ext_factor);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
|
|
||||||
|
@ -12250,7 +12254,8 @@ static void ggml_compute_forward_rope_f16(
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
const float theta_ntk_scale = powf(freq_base * powf(freq_scale, (n_dims / (n_dims - 2.0f))), -2.0f/n_dims);
|
const float theta_ntk_scale = powf(freq_base * powf(freq_scale, (n_dims / (n_dims - 2.0f))), -2.0f/n_dims);
|
||||||
const float dims_over_base = n_dims / logf(freq_base);
|
float corr_factors[4];
|
||||||
|
ggml_rope_ntkv2_corr_factors(n_dims, freq_base, corr_factors);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
|
@ -12292,8 +12297,9 @@ static void ggml_compute_forward_rope_f16(
|
||||||
}
|
}
|
||||||
} if (!is_neox) {
|
} if (!is_neox) {
|
||||||
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||||||
const float theta = rope_ntkv2(theta_base, theta_ntk, dims_over_base,
|
const float theta_linear = freq_scale * theta_base;
|
||||||
freq_scale, i0, ntk_factor, ext_factor, n_dims);
|
const float theta = rope_ntkv2(theta_base, theta_linear, theta_ntk, corr_factors,
|
||||||
|
i0, ntk_factor, ext_factor);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
|
|
||||||
|
|
3
ggml.h
3
ggml.h
|
@ -1211,6 +1211,9 @@ extern "C" {
|
||||||
float ntk_factor,
|
float ntk_factor,
|
||||||
float ext_factor);
|
float ext_factor);
|
||||||
|
|
||||||
|
// compute correction factors for NTKv2 RoPE scaling
|
||||||
|
void ggml_rope_ntkv2_corr_factors(int n_dims, const float freq_base, float factors[4]);
|
||||||
|
|
||||||
// rotary position embedding backward, i.e compute dx from dy
|
// rotary position embedding backward, i.e compute dx from dy
|
||||||
// a - dy
|
// a - dy
|
||||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue