Merge 413a19e25c
into 0fff7fd798
This commit is contained in:
commit
6b27075768
2 changed files with 306 additions and 72 deletions
190
.gitignore
vendored
190
.gitignore
vendored
|
@ -134,3 +134,193 @@ poetry.toml
|
|||
|
||||
# Test models for lora adapters
|
||||
/lora-tests
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
||||
.pdm.toml
|
||||
.pdm-python
|
||||
.pdm-build/
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
# General
|
||||
.DS_Store
|
||||
.AppleDouble
|
||||
.LSOverride
|
||||
|
||||
# Icon must end with two \r
|
||||
Icon
|
||||
|
||||
# Thumbnails
|
||||
._*
|
||||
|
||||
# Files that might appear in the root of a volume
|
||||
.DocumentRevisions-V100
|
||||
.fseventsd
|
||||
.Spotlight-V100
|
||||
.TemporaryItems
|
||||
.Trashes
|
||||
.VolumeIcon.icns
|
||||
.com.apple.timemachine.donotpresent
|
||||
|
||||
# Directories potentially created on remote AFP share
|
||||
.AppleDB
|
||||
.AppleDesktop
|
||||
Network Trash Folder
|
||||
Temporary Items
|
||||
.apdisk
|
||||
|
|
|
@ -744,8 +744,8 @@ class Model:
|
|||
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_sentencepiece(self, add_to_gguf=True):
|
||||
tokens, scores, toktypes = self._create_vocab_sentencepiece()
|
||||
def _set_vocab_sentencepiece(self, add_to_gguf=True, use_tokenizer_json=False):
|
||||
tokens, scores, toktypes = self._create_vocab_sentencepiece(use_tokenizer_json)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
|
@ -756,7 +756,7 @@ class Model:
|
|||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _create_vocab_sentencepiece(self):
|
||||
def _create_vocab_sentencepiece(self, use_tokenizer_json=False):
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
@ -764,77 +764,114 @@ class Model:
|
|||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
try:
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [gguf.TokenType.UNUSED] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if token_id >= vocab_size:
|
||||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
# Handle added tokens from added_tokens.json
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if token_id >= vocab_size:
|
||||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = gguf.TokenType.USER_DEFINED
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||||
for token_id, token_data in added_tokens_decoder.items():
|
||||
token_id = int(token_id)
|
||||
token: str = token_data["content"]
|
||||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||
if tokens[token_id] != token.encode("utf-8"):
|
||||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
|
||||
if token_data.get("special") or self.does_token_look_special(token):
|
||||
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||||
else:
|
||||
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
# Handle added tokens from tokenizer.json (Salamandra models)
|
||||
if use_tokenizer_json:
|
||||
tokenizer_json_file = self.dir_model / 'tokenizer.json'
|
||||
if tokenizer_json_file.is_file():
|
||||
with open(tokenizer_json_file, 'r', encoding='utf-8') as f:
|
||||
tokenizer_json = json.load(f)
|
||||
added_tokens = tokenizer_json.get('added_tokens', [])
|
||||
for token_data in added_tokens:
|
||||
token = token_data.get('content')
|
||||
token_id = token_data.get('id')
|
||||
if token is None or token_id is None:
|
||||
logger.warning(f'Missing token content or id in tokenizer.json: {token_data}')
|
||||
continue
|
||||
if token_id >= vocab_size:
|
||||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
scores[token_id] = -1000.0
|
||||
tokens[token_id] = token.encode("utf-8")
|
||||
tokens[token_id] = token.encode("utf-8")
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = gguf.TokenType.USER_DEFINED
|
||||
else:
|
||||
logger.warning(f"tokenizer.json file not found at {tokenizer_json_file}")
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||||
for token_id_str, token_data in added_tokens_decoder.items():
|
||||
token_id = int(token_id_str)
|
||||
token: str = token_data.get("content")
|
||||
if token is None:
|
||||
logger.warning(f'Missing token content in tokenizer_config.json for token_id {token_id}')
|
||||
continue
|
||||
if token_id >= vocab_size:
|
||||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
if toktypes[token_id] != gguf.TokenType.UNUSED:
|
||||
if tokens[token_id] != token.encode("utf-8"):
|
||||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
|
||||
if token_data.get("special") or self.does_token_look_special(token):
|
||||
toktypes[token_id] = gguf.TokenType.CONTROL
|
||||
else:
|
||||
token = token.replace("\u2581", " ") # pre-normalize user-defined spaces
|
||||
toktypes[token_id] = gguf.TokenType.USER_DEFINED
|
||||
|
||||
return tokens, scores, toktypes
|
||||
scores[token_id] = -1000.0
|
||||
tokens[token_id] = token.encode("utf-8")
|
||||
else:
|
||||
logger.debug(f"tokenizer_config.json file not found at {tokenizer_config_file}")
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(f"[PAD{i}]".encode("utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
|
||||
return tokens, scores, toktypes
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Exception occurred in _create_vocab_sentencepiece: {e}")
|
||||
raise # Re-raise the exception to handle it appropriately
|
||||
|
||||
def _set_vocab_llama_hf(self):
|
||||
vocab = gguf.LlamaHfVocab(self.dir_model)
|
||||
|
@ -1516,25 +1553,32 @@ class StableLMModel(Model):
|
|||
raise ValueError(f"Unprocessed norms: {norms}")
|
||||
|
||||
|
||||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM", "SalamandraForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
tokenizer_model_file = self.dir_model / 'tokenizer.model'
|
||||
tokenizer_json_file = self.dir_model / 'tokenizer.json'
|
||||
|
||||
if tokenizer_model_file.is_file() and tokenizer_json_file.is_file():
|
||||
# Handle Salamandra models with both tokenizer.model and tokenizer.json
|
||||
self._set_vocab_sentencepiece(use_tokenizer_json=True)
|
||||
else:
|
||||
try:
|
||||
self._set_vocab_llama_hf()
|
||||
except (FileNotFoundError, TypeError):
|
||||
# Llama 3
|
||||
self._set_vocab_gpt2()
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
try:
|
||||
self._set_vocab_llama_hf()
|
||||
except (FileNotFoundError, TypeError):
|
||||
# Llama 3
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
|
||||
if self.hparams.get("vocab_size", 32000) == 32016:
|
||||
special_vocab = gguf.SpecialVocab(
|
||||
self.dir_model, load_merges=False,
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
|
||||
special_token_types=['prefix', 'suffix', 'middle', 'eot']
|
||||
)
|
||||
special_vocab._set_special_token("prefix", 32007)
|
||||
special_vocab._set_special_token("suffix", 32008)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue