ggml_cuda_scale

This commit is contained in:
JohannesGaessler 2023-06-10 20:56:40 +02:00
parent b87178b558
commit 6b46870fea
2 changed files with 74 additions and 9 deletions

View file

@ -152,6 +152,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_MUL_BLOCK_SIZE 256
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
@ -826,6 +827,16 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
dst[i + 1] = x0*sin_theta + x1*cos_theta;
}
static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = scale * x[i];
}
static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
@ -1025,6 +1036,11 @@ static void ggml_cpy_f32_f16_cuda(const float * x, void * vdst, const int ne0, c
cpy_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, vdst, ne0, ne1, stride_1, stride_2);
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(nrows % 2 == 0);
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
@ -1463,6 +1479,31 @@ inline void ggml_cuda_op_rope(
(void) i1;
}
inline void ggml_cuda_op_scale(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
cudaStream_t & cudaStream_main){
GGML_ASSERT(src0_ddf_i != nullptr);
GGML_ASSERT(dst_ddf_i != nullptr);
const float scale = ((float *) src1->data)[0];
const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low;
// compute
scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
CUDA_CHECK(cudaGetLastError());
(void) src1;
(void) dst;
(void) src0_ddq_i;
(void) src1_ddf_i;
(void) i02;
(void) i1;
}
static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
ggml_cuda_op_t op, bool src0_needs_f32) {
const int64_t ne00 = src0->ne[0];
@ -1829,7 +1870,12 @@ void ggml_cuda_mul_mat_p021_f16_f32(const ggml_tensor * src0, const ggml_tensor
src1_ddf = (float *) src1_extra->data_device[g_main_device];
// CUDA_CHECK(cudaMemset(src1_ddf, 0, ggml_nbytes(src1)));
}
CUDA_CHECK(cudaMalloc(&dst_ddf, dst_size));
if (dst->backend == GGML_BACKEND_CPU) {
CUDA_CHECK(cudaMalloc(&dst_ddf, dst_size));
} else {
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
dst_ddf = (float *) dst_extra->data_device[g_main_device];
}
for (int64_t i11 = 0; i11 < ne11; ++i11) {
float * src1_ddf_i = src1_ddf + i11 * ne10*ne12;
@ -1840,16 +1886,19 @@ void ggml_cuda_mul_mat_p021_f16_f32(const ggml_tensor * src0, const ggml_tensor
CUDA_CHECK(cudaDeviceSynchronize());
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i = i3*ne2*ne1 + i2*ne1 + i1;
float * dst_ddf_i = dst_ddf + i*ne0;
float * dhf_dst_i = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, ne0*sizeof(float), cudaMemcpyDeviceToHost, cudaStream_main));
if (dst->backend == GGML_BACKEND_CPU) {
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i = i3*ne2*ne1 + i2*ne1 + i1;
float * dst_ddf_i = dst_ddf + i*ne0;
float * dhf_dst_i = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, ne0*sizeof(float), cudaMemcpyDeviceToHost, cudaStream_main));
}
}
}
}
CUDA_CHECK(cudaDeviceSynchronize());
if (src0->backend == GGML_BACKEND_CPU) {
CUDA_CHECK(cudaFree(src0_ddq));
@ -1857,7 +1906,9 @@ void ggml_cuda_mul_mat_p021_f16_f32(const ggml_tensor * src0, const ggml_tensor
if (src1->backend == GGML_BACKEND_CPU) {
CUDA_CHECK(cudaFree(src1_ddf));
}
CUDA_CHECK(cudaFree(dst_ddf));
if (src1->backend == GGML_BACKEND_CPU) {
CUDA_CHECK(cudaFree(dst_ddf));
}
}
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -1877,6 +1928,11 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_
}
}
void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true);
}
void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(ggml_nelements(src0) == ggml_nelements(src1));
GGML_ASSERT(ggml_is_contiguous(src0));
@ -2108,6 +2164,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
}
func = ggml_cuda_mul_mat;
break;
case GGML_OP_SCALE:
if (!any_on_device) {
return false;
}
func = ggml_cuda_scale;
break;
case GGML_OP_CPY:
if (!any_on_device) {
return false;

View file

@ -1424,6 +1424,7 @@ static bool llama_eval_internal(
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func(KQ);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head)
@ -1432,6 +1433,8 @@ static bool llama_eval_internal(
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
offload_func(KQ_scaled);
KQ_scaled->backend = GGML_BACKEND_CPU;
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)