Merge branch 'master' into interactive-eos-fix
This commit is contained in:
commit
6bcbe50792
20 changed files with 1262 additions and 365 deletions
198
.github/ISSUE_TEMPLATE/custom.md
vendored
Normal file
198
.github/ISSUE_TEMPLATE/custom.md
vendored
Normal file
|
@ -0,0 +1,198 @@
|
||||||
|
---
|
||||||
|
name: Custom issue template
|
||||||
|
about: Used to report user-related issues with the software
|
||||||
|
title: "[User] I encountered a problem .."
|
||||||
|
labels: ''
|
||||||
|
assignees: ''
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# Prerequisites
|
||||||
|
|
||||||
|
Please answer the following questions for yourself before submitting an issue.
|
||||||
|
|
||||||
|
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
|
||||||
|
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||||
|
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
|
||||||
|
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
|
||||||
|
|
||||||
|
# Expected Behavior
|
||||||
|
|
||||||
|
Please provide a detailed written description of what you were trying to do, and what you expected `lamma.cpp` to do.
|
||||||
|
|
||||||
|
# Current Behavior
|
||||||
|
|
||||||
|
Please provide a detailed written description of what `lamma.cpp` did, instead.
|
||||||
|
|
||||||
|
# Environment and Context
|
||||||
|
|
||||||
|
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
|
||||||
|
|
||||||
|
* Physical (or virtual) hardware you are using, e.g. for Linux:
|
||||||
|
|
||||||
|
`$ lscpu`
|
||||||
|
|
||||||
|
* Operating System, e.g. for Linux:
|
||||||
|
|
||||||
|
`$ uname -a`
|
||||||
|
|
||||||
|
* SDK version, e.g. for Linux:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ python3 --version
|
||||||
|
$ make --version
|
||||||
|
$ g++ --version
|
||||||
|
```
|
||||||
|
|
||||||
|
# Models
|
||||||
|
|
||||||
|
* The LLaMA models are officially distributed by Facebook and will never be provided through this repository. See this [pull request in Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to obtain access to the model data.
|
||||||
|
* If your issue is with model conversion please verify the `sha256sum` of each of your `consolidated*.pth` and `ggml-model-XXX.bin` files to confirm that you have the correct model data files before logging an issue. [Latest sha256 sums for your reference](https://github.com/ggerganov/llama.cpp/issues/238).
|
||||||
|
* If your issue is with model generation quality then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
|
||||||
|
* LLaMA:
|
||||||
|
* [Introducing LLaMA: A foundational, 65-billion-parameter large language model](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)
|
||||||
|
* [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
|
||||||
|
* GPT-3
|
||||||
|
* [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
|
||||||
|
* GPT-3.5 / InstructGPT / ChatGPT:
|
||||||
|
* [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||||
|
* [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||||
|
|
||||||
|
# Failure Information (for bugs)
|
||||||
|
|
||||||
|
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
|
||||||
|
|
||||||
|
# Steps to Reproduce
|
||||||
|
|
||||||
|
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
|
||||||
|
|
||||||
|
1. step 1
|
||||||
|
2. step 2
|
||||||
|
3. step 3
|
||||||
|
4. etc.
|
||||||
|
|
||||||
|
# Failure Logs
|
||||||
|
|
||||||
|
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
|
||||||
|
|
||||||
|
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability. e.g.
|
||||||
|
|
||||||
|
```
|
||||||
|
llama.cpp$ git log | head -1
|
||||||
|
commit 2af23d30434a677c6416812eea52ccc0af65119c
|
||||||
|
|
||||||
|
llama.cpp$ lscpu | egrep "AMD|Flags"
|
||||||
|
Vendor ID: AuthenticAMD
|
||||||
|
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
|
||||||
|
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
|
||||||
|
Virtualization: AMD-V
|
||||||
|
|
||||||
|
llama.cpp$ python3 --version
|
||||||
|
Python 3.10.9
|
||||||
|
|
||||||
|
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
|
||||||
|
numpy 1.24.2
|
||||||
|
numpydoc 1.5.0
|
||||||
|
sentencepiece 0.1.97
|
||||||
|
torch 1.13.1
|
||||||
|
torchvision 0.14.1
|
||||||
|
|
||||||
|
llama.cpp$ make --version | head -1
|
||||||
|
GNU Make 4.3
|
||||||
|
|
||||||
|
$ md5sum ./models/65B/ggml-model-q4_0.bin
|
||||||
|
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
|
||||||
|
```
|
||||||
|
Here's a run with the Linux command [perf](https://www.brendangregg.com/perf.html)
|
||||||
|
|
||||||
|
```
|
||||||
|
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
|
||||||
|
main: seed = 1679149377
|
||||||
|
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
|
||||||
|
llama_model_load: n_vocab = 32000
|
||||||
|
llama_model_load: n_ctx = 512
|
||||||
|
llama_model_load: n_embd = 8192
|
||||||
|
llama_model_load: n_mult = 256
|
||||||
|
llama_model_load: n_head = 64
|
||||||
|
llama_model_load: n_layer = 80
|
||||||
|
llama_model_load: n_rot = 128
|
||||||
|
llama_model_load: f16 = 2
|
||||||
|
llama_model_load: n_ff = 22016
|
||||||
|
llama_model_load: n_parts = 8
|
||||||
|
llama_model_load: ggml ctx size = 41477.73 MB
|
||||||
|
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
|
||||||
|
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
|
||||||
|
llama_model_load: .......................................................................................... done
|
||||||
|
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||||
|
|
||||||
|
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
|
||||||
|
|
||||||
|
main: prompt: 'Please close your issue when it has been answered.'
|
||||||
|
main: number of tokens in prompt = 11
|
||||||
|
1 -> ''
|
||||||
|
12148 -> 'Please'
|
||||||
|
3802 -> ' close'
|
||||||
|
596 -> ' your'
|
||||||
|
2228 -> ' issue'
|
||||||
|
746 -> ' when'
|
||||||
|
372 -> ' it'
|
||||||
|
756 -> ' has'
|
||||||
|
1063 -> ' been'
|
||||||
|
7699 -> ' answered'
|
||||||
|
29889 -> '.'
|
||||||
|
|
||||||
|
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
|
||||||
|
|
||||||
|
|
||||||
|
Please close your issue when it has been answered.
|
||||||
|
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
|
||||||
|
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
|
||||||
|
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
|
||||||
|
|
||||||
|
|
||||||
|
main: mem per token = 71159620 bytes
|
||||||
|
main: load time = 19309.95 ms
|
||||||
|
main: sample time = 168.62 ms
|
||||||
|
main: predict time = 223895.61 ms / 888.47 ms per token
|
||||||
|
main: total time = 246406.42 ms
|
||||||
|
|
||||||
|
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
|
||||||
|
|
||||||
|
3636882.89 msec task-clock # 14.677 CPUs utilized
|
||||||
|
13509 context-switches # 3.714 /sec
|
||||||
|
2436 cpu-migrations # 0.670 /sec
|
||||||
|
10476679 page-faults # 2.881 K/sec
|
||||||
|
13133115082869 cycles # 3.611 GHz (16.77%)
|
||||||
|
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
|
||||||
|
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
|
||||||
|
23479217109614 instructions # 1.79 insn per cycle
|
||||||
|
# 0.44 stalled cycles per insn (16.76%)
|
||||||
|
2353072268027 branches # 647.002 M/sec (16.77%)
|
||||||
|
1998682780 branch-misses # 0.08% of all branches (16.76%)
|
||||||
|
|
||||||
|
247.802177522 seconds time elapsed
|
||||||
|
|
||||||
|
3618.573072000 seconds user
|
||||||
|
18.491698000 seconds sys
|
||||||
|
```
|
3
.github/workflows/build.yml
vendored
3
.github/workflows/build.yml
vendored
|
@ -54,6 +54,7 @@ jobs:
|
||||||
cd build
|
cd build
|
||||||
cmake ..
|
cmake ..
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release
|
||||||
|
ctest --output-on-failure
|
||||||
|
|
||||||
macOS-latest-make:
|
macOS-latest-make:
|
||||||
runs-on: macos-latest
|
runs-on: macos-latest
|
||||||
|
@ -90,6 +91,7 @@ jobs:
|
||||||
cd build
|
cd build
|
||||||
cmake ..
|
cmake ..
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release
|
||||||
|
ctest --output-on-failure
|
||||||
|
|
||||||
windows-latest-cmake:
|
windows-latest-cmake:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
|
@ -106,6 +108,7 @@ jobs:
|
||||||
cd build
|
cd build
|
||||||
cmake ..
|
cmake ..
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release
|
||||||
|
ctest --output-on-failure
|
||||||
|
|
||||||
- name: Get commit hash
|
- name: Get commit hash
|
||||||
id: commit
|
id: commit
|
||||||
|
|
2
.github/workflows/docker.yml
vendored
2
.github/workflows/docker.yml
vendored
|
@ -40,7 +40,7 @@ jobs:
|
||||||
uses: docker/login-action@v2
|
uses: docker/login-action@v2
|
||||||
with:
|
with:
|
||||||
registry: ghcr.io
|
registry: ghcr.io
|
||||||
username: ${{ github.actor }}
|
username: ${{ github.repository_owner }}
|
||||||
password: ${{ secrets.GITHUB_TOKEN }}
|
password: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
- name: Build and push Docker image (versioned)
|
- name: Build and push Docker image (versioned)
|
||||||
|
|
287
CMakeLists.txt
287
CMakeLists.txt
|
@ -1,131 +1,252 @@
|
||||||
cmake_minimum_required(VERSION 3.8)
|
cmake_minimum_required(VERSION 3.12) # Don't bump this version for no reason
|
||||||
project("llama.cpp")
|
project("llama.cpp" C CXX)
|
||||||
|
|
||||||
set(CMAKE_CXX_STANDARD 20)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
set(CMAKE_CXX_STANDARD_REQUIRED true)
|
|
||||||
set(CMAKE_C_STANDARD 11)
|
|
||||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
|
||||||
find_package(Threads REQUIRED)
|
|
||||||
|
|
||||||
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
||||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
|
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||||
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
|
|
||||||
|
|
||||||
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
|
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||||
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
set(LLAMA_STANDALONE ON)
|
||||||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
|
||||||
|
|
||||||
if (APPLE)
|
# configure project version
|
||||||
option(LLAMA_NO_ACCELERATE "llama: disable Accelerate framework" OFF)
|
# TODO
|
||||||
option(LLAMA_NO_AVX "llama: disable AVX" OFF)
|
else()
|
||||||
option(LLAMA_NO_AVX2 "llama: disable AVX2" OFF)
|
set(LLAMA_STANDALONE OFF)
|
||||||
option(LLAMA_NO_FMA "llama: disable FMA" OFF)
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (EMSCRIPTEN)
|
||||||
|
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||||
|
|
||||||
|
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
|
||||||
|
else()
|
||||||
|
if (MINGW)
|
||||||
|
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||||
|
else()
|
||||||
|
set(BUILD_SHARED_LIBS_DEFAULT ON)
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
|
||||||
|
|
||||||
|
#
|
||||||
|
# Option list
|
||||||
|
#
|
||||||
|
|
||||||
|
# general
|
||||||
|
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||||
|
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
|
||||||
|
option(LLAMA_LTO "llama: enable link time optimization" OFF)
|
||||||
|
|
||||||
|
# debug
|
||||||
|
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
|
||||||
|
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
|
||||||
|
option(LLAMA_GPROF "llama: enable gprof" OFF)
|
||||||
|
|
||||||
|
# sanitizers
|
||||||
|
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
|
||||||
|
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
||||||
|
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||||
|
|
||||||
|
# instruction set specific
|
||||||
|
option(LLAMA_AVX "llama: enable AVX" ON)
|
||||||
|
option(LLAMA_AVX2 "llama: enable AVX2" ON)
|
||||||
|
option(LLAMA_FMA "llama: enable FMA" ON)
|
||||||
|
|
||||||
|
# 3rd party libs
|
||||||
|
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||||
|
option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF)
|
||||||
|
|
||||||
|
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||||
|
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||||
|
|
||||||
|
#
|
||||||
|
# Compile flags
|
||||||
|
#
|
||||||
|
|
||||||
|
set(CMAKE_CXX_STANDARD_REQUIRED true)
|
||||||
|
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||||
|
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||||
|
find_package(Threads REQUIRED)
|
||||||
|
|
||||||
if (NOT MSVC)
|
if (NOT MSVC)
|
||||||
if (LLAMA_SANITIZE_THREAD)
|
if (LLAMA_SANITIZE_THREAD)
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
|
add_compile_options(-fsanitize=thread)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_SANITIZE_ADDRESS)
|
if (LLAMA_SANITIZE_ADDRESS)
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_SANITIZE_UNDEFINED)
|
if (LLAMA_SANITIZE_UNDEFINED)
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
|
add_compile_options(-fsanitize=undefined)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
|
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (APPLE AND NOT LLAMA_NO_ACCELERATE)
|
if (APPLE AND LLAMA_ACCELERATE)
|
||||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||||
if (ACCELERATE_FRAMEWORK)
|
if (ACCELERATE_FRAMEWORK)
|
||||||
message(STATUS "Accelerate framework found")
|
message(STATUS "Accelerate framework found")
|
||||||
|
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
add_compile_definitions(GGML_USE_ACCELERATE)
|
||||||
set(LLAMA_EXTRA_FLAGS ${LLAMA_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||||
else()
|
else()
|
||||||
message(WARNING "Accelerate framework not found")
|
message(WARNING "Accelerate framework not found")
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
if (LLAMA_OPENBLAS)
|
||||||
|
if (LLAMA_STATIC)
|
||||||
|
set(BLA_STATIC ON)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(BLA_VENDOR OpenBLAS)
|
||||||
|
find_package(BLAS)
|
||||||
|
if (BLAS_FOUND)
|
||||||
|
message(STATUS "OpenBLAS found")
|
||||||
|
|
||||||
|
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||||
|
add_link_options(${BLAS_LIBRARIES})
|
||||||
|
else()
|
||||||
|
message(WARNING "OpenBLAS not found")
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
|
||||||
if (LLAMA_ALL_WARNINGS)
|
if (LLAMA_ALL_WARNINGS)
|
||||||
if (NOT MSVC)
|
if (NOT MSVC)
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
|
set(c_flags
|
||||||
-Wall \
|
-Wall
|
||||||
-Wextra \
|
-Wextra
|
||||||
-Wpedantic \
|
-Wpedantic
|
||||||
-Wshadow \
|
-Wshadow
|
||||||
-Wcast-qual \
|
-Wcast-qual
|
||||||
-Wstrict-prototypes \
|
-Wstrict-prototypes
|
||||||
-Wpointer-arith \
|
-Wpointer-arith
|
||||||
-Wno-unused-function \
|
-Wno-unused-function
|
||||||
")
|
)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} \
|
set(cxx_flags
|
||||||
-Wall \
|
-Wall
|
||||||
-Wextra \
|
-Wextra
|
||||||
-Wpedantic \
|
-Wpedantic
|
||||||
-Wcast-qual \
|
-Wcast-qual
|
||||||
")
|
)
|
||||||
else()
|
else()
|
||||||
# todo : msvc
|
# todo : msvc
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
add_compile_options(
|
||||||
|
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||||
|
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
||||||
|
)
|
||||||
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
if (LLAMA_LTO)
|
||||||
|
include(CheckIPOSupported)
|
||||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
check_ipo_supported(RESULT result OUTPUT output)
|
||||||
message(STATUS "ARM detected")
|
if (result)
|
||||||
else()
|
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE)
|
||||||
message(STATUS "x86 detected")
|
|
||||||
if (MSVC)
|
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
|
||||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
|
|
||||||
else()
|
else()
|
||||||
if(NOT LLAMA_NO_AVX)
|
message(WARNING "IPO is not supported: ${output}")
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
|
|
||||||
endif()
|
|
||||||
if(NOT LLAMA_NO_AVX2)
|
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
|
|
||||||
endif()
|
|
||||||
if(NOT LLAMA_NO_FMA)
|
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma")
|
|
||||||
endif()
|
|
||||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mf16c")
|
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
# if (LLAMA_PERF)
|
# Architecture specific
|
||||||
# set(LLAMA_EXTRA_FLAGS ${LLAMA_EXTRA_FLAGS} -DGGML_PERF)
|
# TODO: probably these flags need to be tweaked on some architectures
|
||||||
# endif()
|
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||||
|
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||||
|
if (NOT MSVC)
|
||||||
|
if (LLAMA_STATIC)
|
||||||
|
add_link_options(-static)
|
||||||
|
if (MINGW)
|
||||||
|
add_link_options(-static-libgcc -static-libstdc++)
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
if (LLAMA_GPROF)
|
||||||
|
add_compile_options(-pg)
|
||||||
|
endif()
|
||||||
|
if (LLAMA_NATIVE)
|
||||||
|
add_compile_options(-march=native)
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
|
||||||
add_executable(llama
|
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||||
main.cpp
|
message(STATUS "ARM detected")
|
||||||
utils.cpp
|
if (MSVC)
|
||||||
utils.h)
|
# TODO: arm msvc?
|
||||||
|
else()
|
||||||
|
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||||
|
add_compile_options(-mcpu=native)
|
||||||
|
endif()
|
||||||
|
# TODO: armv6,7,8 version specific flags
|
||||||
|
endif()
|
||||||
|
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||||
|
message(STATUS "x86 detected")
|
||||||
|
if (MSVC)
|
||||||
|
if (LLAMA_AVX2)
|
||||||
|
add_compile_options(/arch:AVX2)
|
||||||
|
elseif (LLAMA_AVX)
|
||||||
|
add_compile_options(/arch:AVX)
|
||||||
|
endif()
|
||||||
|
else()
|
||||||
|
add_compile_options(-mf16c)
|
||||||
|
if (LLAMA_FMA)
|
||||||
|
add_compile_options(-mfma)
|
||||||
|
endif()
|
||||||
|
if (LLAMA_AVX)
|
||||||
|
add_compile_options(-mavx)
|
||||||
|
endif()
|
||||||
|
if (LLAMA_AVX2)
|
||||||
|
add_compile_options(-mavx2)
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
else()
|
||||||
|
# TODO: support PowerPC
|
||||||
|
message(STATUS "Unknown architecture")
|
||||||
|
endif()
|
||||||
|
|
||||||
add_executable(quantize
|
|
||||||
quantize.cpp
|
|
||||||
utils.cpp
|
|
||||||
utils.h)
|
|
||||||
|
|
||||||
add_library(ggml
|
#
|
||||||
ggml.c
|
# Build library
|
||||||
ggml.h)
|
#
|
||||||
|
|
||||||
target_compile_definitions(ggml PUBLIC ${LLAMA_EXTRA_FLAGS})
|
add_executable(llama main.cpp)
|
||||||
target_compile_definitions(llama PUBLIC ${LLAMA_EXTRA_FLAGS})
|
|
||||||
target_compile_definitions(quantize PUBLIC ${LLAMA_EXTRA_FLAGS})
|
add_executable(quantize quantize.cpp)
|
||||||
|
|
||||||
|
add_library(utils OBJECT
|
||||||
|
utils.cpp
|
||||||
|
utils.h)
|
||||||
|
|
||||||
|
target_include_directories(utils PUBLIC .)
|
||||||
|
target_compile_features(utils PUBLIC cxx_std_11) # don't bump
|
||||||
|
|
||||||
|
add_library(ggml OBJECT
|
||||||
|
ggml.c
|
||||||
|
ggml.h)
|
||||||
|
|
||||||
target_link_libraries(ggml PRIVATE ${LLAMA_EXTRA_LIBS})
|
|
||||||
target_include_directories(ggml PUBLIC .)
|
target_include_directories(ggml PUBLIC .)
|
||||||
target_link_libraries(quantize PRIVATE ggml)
|
target_compile_features(ggml PUBLIC c_std_11) # don't bump
|
||||||
target_link_libraries(llama PRIVATE ggml)
|
|
||||||
target_link_libraries(ggml PRIVATE Threads::Threads)
|
#
|
||||||
|
# Linking
|
||||||
|
#
|
||||||
|
|
||||||
|
target_link_libraries(ggml PRIVATE Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||||
|
target_link_libraries(llama PRIVATE ggml utils)
|
||||||
|
target_link_libraries(quantize PRIVATE ggml utils)
|
||||||
|
|
||||||
|
#
|
||||||
|
# programs, examples and tests
|
||||||
|
#
|
||||||
|
|
||||||
|
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||||
|
enable_testing()
|
||||||
|
add_subdirectory(tests)
|
||||||
|
endif ()
|
||||||
|
|
||||||
|
#if (LLAMA_BUILD_EXAMPLES)
|
||||||
|
# add_subdirectory(examples)
|
||||||
|
#endif()
|
||||||
|
|
65
Makefile
65
Makefile
|
@ -17,7 +17,7 @@ CXXV := $(shell $(CXX) --version | head -n 1)
|
||||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||||
ifeq ($(UNAME_S),Darwin)
|
ifeq ($(UNAME_S),Darwin)
|
||||||
ifneq ($(UNAME_P),arm)
|
ifneq ($(UNAME_P),arm)
|
||||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
|
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
||||||
ifeq ($(SYSCTL_M),1)
|
ifeq ($(SYSCTL_M),1)
|
||||||
# UNAME_P := arm
|
# UNAME_P := arm
|
||||||
# UNAME_M := arm64
|
# UNAME_M := arm64
|
||||||
|
@ -30,8 +30,9 @@ endif
|
||||||
# Compile flags
|
# Compile flags
|
||||||
#
|
#
|
||||||
|
|
||||||
|
# keep standard at C11 and C++11
|
||||||
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||||
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++17 -fPIC
|
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||||
LDFLAGS =
|
LDFLAGS =
|
||||||
|
|
||||||
# OS specific
|
# OS specific
|
||||||
|
@ -52,6 +53,10 @@ ifeq ($(UNAME_S),NetBSD)
|
||||||
CFLAGS += -pthread
|
CFLAGS += -pthread
|
||||||
CXXFLAGS += -pthread
|
CXXFLAGS += -pthread
|
||||||
endif
|
endif
|
||||||
|
ifeq ($(UNAME_S),OpenBSD)
|
||||||
|
CFLAGS += -pthread
|
||||||
|
CXXFLAGS += -pthread
|
||||||
|
endif
|
||||||
ifeq ($(UNAME_S),Haiku)
|
ifeq ($(UNAME_S),Haiku)
|
||||||
CFLAGS += -pthread
|
CFLAGS += -pthread
|
||||||
CXXFLAGS += -pthread
|
CXXFLAGS += -pthread
|
||||||
|
@ -95,30 +100,59 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||||
CFLAGS += -msse3
|
CFLAGS += -msse3
|
||||||
endif
|
endif
|
||||||
|
AVX512F_M := $(shell grep "avx512f " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512f,$(AVX512F_M)))
|
||||||
|
CFLAGS += -mavx512f
|
||||||
|
endif
|
||||||
|
AVX512BW_M := $(shell grep "avx512bw " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512bw,$(AVX512BW_M)))
|
||||||
|
CFLAGS += -mavx512bw
|
||||||
|
endif
|
||||||
|
AVX512DQ_M := $(shell grep "avx512dq " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512dq,$(AVX512DQ_M)))
|
||||||
|
CFLAGS += -mavx512dq
|
||||||
|
endif
|
||||||
|
AVX512VL_M := $(shell grep "avx512vl " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512vl,$(AVX512VL_M)))
|
||||||
|
CFLAGS += -mavx512vl
|
||||||
|
endif
|
||||||
|
AVX512CD_M := $(shell grep "avx512cd " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512cd,$(AVX512CD_M)))
|
||||||
|
CFLAGS += -mavx512cd
|
||||||
|
endif
|
||||||
|
AVX512ER_M := $(shell grep "avx512er " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512er,$(AVX512ER_M)))
|
||||||
|
CFLAGS += -mavx512er
|
||||||
|
endif
|
||||||
|
AVX512IFMA_M := $(shell grep "avx512ifma " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512ifma,$(AVX512IFMA_M)))
|
||||||
|
CFLAGS += -mavx512ifma
|
||||||
|
endif
|
||||||
|
AVX512PF_M := $(shell grep "avx512pf " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx512pf,$(AVX512PF_M)))
|
||||||
|
CFLAGS += -mavx512pf
|
||||||
|
endif
|
||||||
else ifeq ($(UNAME_S),Haiku)
|
else ifeq ($(UNAME_S),Haiku)
|
||||||
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
AVX1_M := $(shell sysinfo -cpu | grep -w "AVX")
|
||||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
ifneq (,$(findstring AVX,$(AVX1_M)))
|
||||||
CFLAGS += -mavx
|
CFLAGS += -mavx
|
||||||
endif
|
endif
|
||||||
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
|
AVX2_M := $(shell sysinfo -cpu | grep -w "AVX2")
|
||||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
ifneq (,$(findstring AVX2,$(AVX2_M)))
|
||||||
CFLAGS += -mavx2
|
CFLAGS += -mavx2
|
||||||
endif
|
endif
|
||||||
FMA_M := $(shell sysinfo -cpu | grep "FMA ")
|
FMA_M := $(shell sysinfo -cpu | grep -w "FMA")
|
||||||
ifneq (,$(findstring fma,$(FMA_M)))
|
ifneq (,$(findstring FMA,$(FMA_M)))
|
||||||
CFLAGS += -mfma
|
CFLAGS += -mfma
|
||||||
endif
|
endif
|
||||||
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
|
F16C_M := $(shell sysinfo -cpu | grep -w "F16C")
|
||||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
ifneq (,$(findstring F16C,$(F16C_M)))
|
||||||
CFLAGS += -mf16c
|
CFLAGS += -mf16c
|
||||||
endif
|
endif
|
||||||
else
|
else
|
||||||
CFLAGS += -mfma -mf16c -mavx -mavx2
|
CFLAGS += -mfma -mf16c -mavx -mavx2
|
||||||
endif
|
endif
|
||||||
endif
|
endif
|
||||||
ifeq ($(UNAME_M),amd64)
|
|
||||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
|
||||||
endif
|
|
||||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||||
|
@ -130,7 +164,8 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||||
endif
|
endif
|
||||||
endif
|
endif
|
||||||
ifndef LLAMA_NO_ACCELERATE
|
ifndef LLAMA_NO_ACCELERATE
|
||||||
# Mac M1 - include Accelerate framework
|
# Mac M1 - include Accelerate framework.
|
||||||
|
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
||||||
ifeq ($(UNAME_S),Darwin)
|
ifeq ($(UNAME_S),Darwin)
|
||||||
CFLAGS += -DGGML_USE_ACCELERATE
|
CFLAGS += -DGGML_USE_ACCELERATE
|
||||||
LDFLAGS += -framework Accelerate
|
LDFLAGS += -framework Accelerate
|
||||||
|
@ -193,7 +228,7 @@ clean:
|
||||||
|
|
||||||
main: main.cpp ggml.o utils.o
|
main: main.cpp ggml.o utils.o
|
||||||
$(CXX) $(CXXFLAGS) main.cpp ggml.o utils.o -o main $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) main.cpp ggml.o utils.o -o main $(LDFLAGS)
|
||||||
./main -h
|
@echo "\x1b[36mrun ./main -h for help\x1b[0m"
|
||||||
|
|
||||||
quantize: quantize.cpp ggml.o utils.o
|
quantize: quantize.cpp ggml.o utils.o
|
||||||
$(CXX) $(CXXFLAGS) quantize.cpp ggml.o utils.o -o quantize $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) quantize.cpp ggml.o utils.o -o quantize $(LDFLAGS)
|
||||||
|
|
18
README.md
18
README.md
|
@ -178,10 +178,15 @@ If you want a more ChatGPT-like experience, you can run in interactive mode by p
|
||||||
In this mode, you can always interrupt generation by pressing Ctrl+C and enter one or more lines of text which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt which makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
In this mode, you can always interrupt generation by pressing Ctrl+C and enter one or more lines of text which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt which makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||||
|
|
||||||
Here is an example few-shot interaction, invoked with the command
|
Here is an example few-shot interaction, invoked with the command
|
||||||
```
|
|
||||||
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# default arguments using 7B model
|
||||||
|
./chat.sh
|
||||||
|
|
||||||
|
# custom arguments using 13B model
|
||||||
|
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
Note the use of `--color` to distinguish between user input and generated text.
|
Note the use of `--color` to distinguish between user input and generated text.
|
||||||
|
|
||||||

|

|
||||||
|
@ -192,11 +197,10 @@ First, download the `ggml` Alpaca model into the `./models` folder:
|
||||||
|
|
||||||
```
|
```
|
||||||
# use one of these
|
# use one of these
|
||||||
# NOTE: these are copied from the alpaca.cpp repo - not sure how long these will work
|
|
||||||
# TODO: add a script to simplify the download
|
# TODO: add a script to simplify the download
|
||||||
curl -o ggml-alpaca-7b-q4.bin -C - https://gateway.estuary.tech/gw/ipfs/QmQ1bf2BTnYxq73MFJWu1B7bQ2UD6qG7D7YDCxhTndVkPC
|
curl -o ./models/ggml-alpaca-7b-q4.bin -C - https://gateway.estuary.tech/gw/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||||
curl -o ggml-alpaca-7b-q4.bin -C - https://ipfs.io/ipfs/QmQ1bf2BTnYxq73MFJWu1B7bQ2UD6qG7D7YDCxhTndVkPC
|
curl -o ./models/ggml-alpaca-7b-q4.bin -C - https://ipfs.io/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||||
curl -o ggml-alpaca-7b-q4.bin -C - https://cloudflare-ipfs.com/ipfs/QmQ1bf2BTnYxq73MFJWu1B7bQ2UD6qG7D7YDCxhTndVkPC
|
curl -o ./models/ggml-alpaca-7b-q4.bin -C - https://cloudflare-ipfs.com/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||||
```
|
```
|
||||||
|
|
||||||
Now run the `main` tool like this:
|
Now run the `main` tool like this:
|
||||||
|
@ -219,7 +223,7 @@ Sample run:
|
||||||
There 26 letters in the English Alphabet
|
There 26 letters in the English Alphabet
|
||||||
> What is the most common way of transportation in Amsterdam?
|
> What is the most common way of transportation in Amsterdam?
|
||||||
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
|
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
|
||||||
> List 5 words that start with "ca".
|
> List 5 words that start with "ca".
|
||||||
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
|
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
|
||||||
>
|
>
|
||||||
```
|
```
|
||||||
|
|
|
@ -3,4 +3,4 @@
|
||||||
# Temporary script - will be removed in the future
|
# Temporary script - will be removed in the future
|
||||||
#
|
#
|
||||||
|
|
||||||
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins --top_k 10000 --temp 0.96 --repeat_penalty 1 -t 7
|
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7
|
||||||
|
|
6
chat.sh
Executable file
6
chat.sh
Executable file
|
@ -0,0 +1,6 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#
|
||||||
|
# Temporary script - will be removed in the future
|
||||||
|
#
|
||||||
|
|
||||||
|
./main -m ./models/7B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
172
convert-gptq-to-ggml.py
Normal file
172
convert-gptq-to-ggml.py
Normal file
|
@ -0,0 +1,172 @@
|
||||||
|
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
|
||||||
|
# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||||
|
#
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
import struct
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
|
if len(sys.argv) != 4:
|
||||||
|
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
fname_model = sys.argv[1]
|
||||||
|
fname_tokenizer = sys.argv[2]
|
||||||
|
dir_out = sys.argv[3]
|
||||||
|
|
||||||
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
|
||||||
|
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
|
||||||
|
n_layer = 1 + max(int(m.group(1)) for name in model
|
||||||
|
if (m := re.match(r'model\.layers\.([0-9]+)', name)))
|
||||||
|
|
||||||
|
# hardcoded:
|
||||||
|
n_mult = 256
|
||||||
|
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
|
||||||
|
|
||||||
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||||
|
|
||||||
|
assert tokenizer.vocab_size() == n_vocab
|
||||||
|
|
||||||
|
fname_out = sys.argv[3]
|
||||||
|
|
||||||
|
fout = open(fname_out, "wb")
|
||||||
|
|
||||||
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||||
|
fout.write(struct.pack("i", n_vocab))
|
||||||
|
fout.write(struct.pack("i", n_embd))
|
||||||
|
fout.write(struct.pack("i", n_mult))
|
||||||
|
fout.write(struct.pack("i", n_head))
|
||||||
|
fout.write(struct.pack("i", n_layer))
|
||||||
|
fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
|
||||||
|
fout.write(struct.pack("i", 4))
|
||||||
|
|
||||||
|
|
||||||
|
# This loop unchanged from convert-pth-to-ggml.py:
|
||||||
|
for i in range(tokenizer.vocab_size()):
|
||||||
|
if tokenizer.is_unknown(i):
|
||||||
|
# "<unk>" token (translated as ??)
|
||||||
|
text = " \u2047 ".encode("utf-8")
|
||||||
|
fout.write(struct.pack("i", len(text)))
|
||||||
|
fout.write(text)
|
||||||
|
elif tokenizer.is_control(i):
|
||||||
|
# "<s>"/"</s>" tokens
|
||||||
|
fout.write(struct.pack("i", 0))
|
||||||
|
elif tokenizer.is_byte(i):
|
||||||
|
# "<U+XX>" tokens (which may be invalid UTF-8)
|
||||||
|
piece = tokenizer.id_to_piece(i)
|
||||||
|
if len(piece) != 6:
|
||||||
|
print("Invalid token: " + piece)
|
||||||
|
sys.exit(1)
|
||||||
|
byte_value = int(piece[3:-1], 16)
|
||||||
|
fout.write(struct.pack("i", 1))
|
||||||
|
fout.write(struct.pack("B", byte_value))
|
||||||
|
else:
|
||||||
|
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
|
||||||
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||||
|
fout.write(struct.pack("i", len(text)))
|
||||||
|
fout.write(text)
|
||||||
|
|
||||||
|
def write_header(shape, dst_name, ftype_cur):
|
||||||
|
sname = dst_name.encode('utf-8')
|
||||||
|
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
|
||||||
|
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||||
|
fout.write(sname)
|
||||||
|
|
||||||
|
def convert_non_q4(src_name, dst_name):
|
||||||
|
v = model[src_name]
|
||||||
|
shape = v.shape
|
||||||
|
print("Processing non-Q4 variable: " + src_name + " with shape: ", shape, " and type: ", v.dtype)
|
||||||
|
if len(shape) == 1:
|
||||||
|
print(" Converting to float32")
|
||||||
|
v = v.to(torch.float32)
|
||||||
|
|
||||||
|
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
|
||||||
|
|
||||||
|
# header
|
||||||
|
write_header(shape, dst_name, ftype_cur)
|
||||||
|
|
||||||
|
# data
|
||||||
|
v.numpy().tofile(fout)
|
||||||
|
|
||||||
|
def convert_q4(src_name, dst_name, permute=False):
|
||||||
|
zeros = model[f"{src_name}.zeros"].numpy()
|
||||||
|
scales = model[f"{src_name}.scales"].numpy()
|
||||||
|
bias = model[f"{src_name}.bias"].numpy()
|
||||||
|
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
|
||||||
|
|
||||||
|
# Q4_1 does not support bias; good thing the bias is always all zeros.
|
||||||
|
assert not np.any(bias)
|
||||||
|
|
||||||
|
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
|
||||||
|
shape = (qweight.shape[0], qweight.shape[1] * 8)
|
||||||
|
|
||||||
|
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
|
||||||
|
|
||||||
|
# The output format has the int4 weights in groups of 32 rather than 8.
|
||||||
|
# It looks like this:
|
||||||
|
# For each row:
|
||||||
|
# For each group of 32 columns:
|
||||||
|
# - addend (float32, 4 bytes)
|
||||||
|
# - scale (float32, 4 bytes)
|
||||||
|
# - weights (int4 * 32, 16 bytes)
|
||||||
|
# Note that in the input, the scales and addends are shared between all
|
||||||
|
# the columns in a row, so we end up wasting quite a bit of memory with
|
||||||
|
# repeated scales and addends.
|
||||||
|
|
||||||
|
addends = -zeros # flip sign
|
||||||
|
|
||||||
|
# Since the output format is mixed between integers and floats, we have
|
||||||
|
# to hackily view the floats as int32s just so numpy will let us
|
||||||
|
# concatenate them.
|
||||||
|
addends_view = addends.view(dtype=np.int32)
|
||||||
|
scales_view = scales.view(dtype=np.int32)
|
||||||
|
|
||||||
|
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
|
||||||
|
grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
|
||||||
|
|
||||||
|
# Repeat addends and scales:
|
||||||
|
addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
|
||||||
|
scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
|
||||||
|
|
||||||
|
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
|
||||||
|
|
||||||
|
if permute:
|
||||||
|
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
|
||||||
|
# This can be done after the above conversion because it doesn't affect column order/layout.
|
||||||
|
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
|
||||||
|
.swapaxes(1, 2)
|
||||||
|
.reshape(blob.shape))
|
||||||
|
|
||||||
|
# header
|
||||||
|
write_header(shape, dst_name, 3) # ftype = Q4_1
|
||||||
|
|
||||||
|
# data
|
||||||
|
blob.tofile(fout)
|
||||||
|
|
||||||
|
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
|
||||||
|
convert_non_q4("model.norm.weight", "norm.weight")
|
||||||
|
convert_non_q4("lm_head.weight", "output.weight")
|
||||||
|
|
||||||
|
for i in range(n_layer):
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
|
||||||
|
|
||||||
|
convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
|
||||||
|
convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
|
||||||
|
convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
|
||||||
|
|
||||||
|
convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
|
||||||
|
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
|
||||||
|
|
||||||
|
|
||||||
|
fout.close()
|
||||||
|
|
||||||
|
print("Done. Output file: " + fname_out)
|
||||||
|
print("")
|
|
@ -10,25 +10,26 @@
|
||||||
# - Name (char[name_length])
|
# - Name (char[name_length])
|
||||||
# - Data (float[n_dims])
|
# - Data (float[n_dims])
|
||||||
#
|
#
|
||||||
# By default, the bigger matrices are converted to 16-bit floats.
|
|
||||||
# This can be disabled by adding the "use-f32" CLI argument.
|
|
||||||
#
|
|
||||||
# At the start of the ggml file we write the model parameters
|
# At the start of the ggml file we write the model parameters
|
||||||
# and vocabulary.
|
# and vocabulary.
|
||||||
#
|
#
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import os
|
||||||
import sys
|
import sys
|
||||||
import json
|
import json
|
||||||
import struct
|
import struct
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
def parse_args():
|
def parse_args():
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||||
parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
|
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||||
|
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
def get_n_parts(dim):
|
def get_n_parts(dim):
|
||||||
|
@ -44,8 +45,14 @@ def get_n_parts(dim):
|
||||||
|
|
||||||
def load_hparams_and_tokenizer(dir_model):
|
def load_hparams_and_tokenizer(dir_model):
|
||||||
|
|
||||||
|
# `dir_model` is something like `models/7B` or `models/7B/`.
|
||||||
|
# "tokenizer.model" is expected under model's parent dir.
|
||||||
|
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
|
||||||
|
# Let's use the model's parent dir directly.
|
||||||
|
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
|
||||||
|
|
||||||
fname_hparams = f"{dir_model}/params.json"
|
fname_hparams = f"{dir_model}/params.json"
|
||||||
fname_tokenizer = f"{dir_model}/../tokenizer.model"
|
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
|
||||||
|
|
||||||
with open(fname_hparams, "r") as f:
|
with open(fname_hparams, "r") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
@ -60,7 +67,7 @@ def write_header(fout, hparams, ftype):
|
||||||
|
|
||||||
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
||||||
values = [
|
values = [
|
||||||
0x67676d66, # magic: ggml in hex
|
0x67676d66, # magic: ggmf in hex
|
||||||
1, # file version
|
1, # file version
|
||||||
*[hparams[key] for key in keys],
|
*[hparams[key] for key in keys],
|
||||||
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
||||||
|
@ -127,6 +134,29 @@ def main():
|
||||||
ftype_str = ["f32", "f16"]
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
||||||
|
|
||||||
|
print(args)
|
||||||
|
|
||||||
|
# if only writing vocab to file
|
||||||
|
if args.vocab_only:
|
||||||
|
|
||||||
|
fname_model = f"{dir_model}/consolidated.00.pth"
|
||||||
|
fname_out = f"{dir_model}/ggml-vocab.bin"
|
||||||
|
|
||||||
|
print(f"Extracting only the vocab from '{fname_model}'\n")
|
||||||
|
|
||||||
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
|
||||||
|
with open(fname_out, "wb") as fout:
|
||||||
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||||
|
write_tokens(fout, tokenizer)
|
||||||
|
|
||||||
|
del model
|
||||||
|
|
||||||
|
print(f"Done. Output file: {fname_out}\n")
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
n_parts = get_n_parts(hparams["dim"])
|
n_parts = get_n_parts(hparams["dim"])
|
||||||
|
|
||||||
for p in range(n_parts):
|
for p in range(n_parts):
|
||||||
|
@ -144,6 +174,7 @@ def main():
|
||||||
process_and_write_variables(fout, model, ftype)
|
process_and_write_variables(fout, model, ftype)
|
||||||
|
|
||||||
del model
|
del model
|
||||||
|
|
||||||
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
53
examples/chatLLaMa
Executable file
53
examples/chatLLaMa
Executable file
|
@ -0,0 +1,53 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
cd "$(dirname "$0")/.." || exit
|
||||||
|
|
||||||
|
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
|
||||||
|
USER_NAME="${USER_NAME:-User}"
|
||||||
|
AI_NAME="${AI_NAME:-ChatLLaMa}"
|
||||||
|
|
||||||
|
# Adjust to the number of CPU cores you want to use.
|
||||||
|
N_THREAD="${N_THREAD:-8}"
|
||||||
|
# Number of tokens to predict (made it larger than default because we want a long interaction)
|
||||||
|
N_PREDICTS="${N_PREDICTS:-2048}"
|
||||||
|
|
||||||
|
# Note: you can also override the generation options by specifying them on the command line:
|
||||||
|
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
|
||||||
|
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --repeat_penalty 1.17647}"
|
||||||
|
|
||||||
|
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
|
||||||
|
./main $GEN_OPTIONS \
|
||||||
|
--model "$MODEL" \
|
||||||
|
--threads "$N_THREAD" \
|
||||||
|
--n_predict "$N_PREDICTS" \
|
||||||
|
--color --interactive \
|
||||||
|
--reverse-prompt "${USER_NAME}:" \
|
||||||
|
--prompt "
|
||||||
|
Text transcript of a never ending dialog, where ${USER_NAME} interacts with an AI assistant named ${AI_NAME}.
|
||||||
|
${AI_NAME} is helpful, kind, honest, friendly, good at writing and never fails to answer ${USER_NAME}’s requests immediately and with details and precision.
|
||||||
|
There are no annotations like (30 seconds passed...) or (to himself), just what ${USER_NAME} and ${AI_NAME} say alound to each other.
|
||||||
|
The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long.
|
||||||
|
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||||
|
|
||||||
|
$USER_NAME: Hello, $AI_NAME!
|
||||||
|
$AI_NAME: Hello $USER_NAME! How may I help you today?
|
||||||
|
$USER_NAME: What time is it?
|
||||||
|
$AI_NAME: It is $(date +%H:%M).
|
||||||
|
$USER_NAME: What year is it?
|
||||||
|
$AI_NAME: We are in $(date +%Y).
|
||||||
|
$USER_NAME: Please tell me the largest city in Europe.
|
||||||
|
$AI_NAME: The largest city in Europe is Moscow, the capital of Russia.
|
||||||
|
$USER_NAME: What can you tell me about Moscow?
|
||||||
|
$AI_NAME: Moscow, on the Moskva River in western Russia, is the nation’s cosmopolitan capital. In its historic core is the Kremlin, a complex that’s home to the president and tsarist treasures in the Armoury. Outside its walls is Red Square, Russia’s symbolic center.
|
||||||
|
$USER_NAME: What is a cat?
|
||||||
|
$AI_NAME: A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||||
|
$USER_NAME: How do I pass command line arguments to a Node.js program?
|
||||||
|
$AI_NAME: The arguments are stored in process.argv.
|
||||||
|
|
||||||
|
argv[0] is the path to the Node. js executable.
|
||||||
|
argv[1] is the path to the script file.
|
||||||
|
argv[2] is the first argument passed to the script.
|
||||||
|
argv[3] is the second argument passed to the script and so on.
|
||||||
|
$USER_NAME: Name a color.
|
||||||
|
$AI_NAME: Blue
|
||||||
|
$USER_NAME:" "$@"
|
|
@ -34,6 +34,7 @@
|
||||||
cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml
|
cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml
|
||||||
chmod +x $out/bin/convert-pth-to-ggml
|
chmod +x $out/bin/convert-pth-to-ggml
|
||||||
'';
|
'';
|
||||||
|
meta.mainProgram = "llama";
|
||||||
};
|
};
|
||||||
devShells.default = pkgs.mkShell {
|
devShells.default = pkgs.mkShell {
|
||||||
packages = with pkgs; [
|
packages = with pkgs; [
|
||||||
|
|
82
ggml.c
82
ggml.c
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__)
|
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||||
#include <alloca.h>
|
#include <alloca.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -361,7 +361,7 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
|
||||||
|
|
||||||
// AVX routines provided by GH user Const-me
|
// AVX routines provided by GH user Const-me
|
||||||
// ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
|
// ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
|
||||||
#if __AVX2__
|
#if __AVX2__ || __AVX512F__
|
||||||
// Unpack 32 4-bit fields into 32 bytes
|
// Unpack 32 4-bit fields into 32 bytes
|
||||||
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
|
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
|
||||||
static inline __m256i bytesFromNibbles( const uint8_t* rsi )
|
static inline __m256i bytesFromNibbles( const uint8_t* rsi )
|
||||||
|
@ -397,7 +397,6 @@ static inline __m128i packNibbles( __m256i bytes )
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
// method 5
|
// method 5
|
||||||
// blocks of QK elements
|
// blocks of QK elements
|
||||||
// represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
|
// represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
|
||||||
|
@ -1262,6 +1261,47 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float
|
||||||
*s = sumf;
|
*s = sumf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if __AVX512F__ && QK == 32
|
||||||
|
static inline __m512 dot_q4_0_oneblock_avx512(
|
||||||
|
__m512 acc,
|
||||||
|
const uint8_t * pd0,
|
||||||
|
const uint8_t * pd1,
|
||||||
|
const uint8_t * pb0,
|
||||||
|
const uint8_t * pb1,
|
||||||
|
size_t bs,
|
||||||
|
int i
|
||||||
|
) {
|
||||||
|
const float * d0_0 = (const float *) (pd0 + i*bs);
|
||||||
|
const float * d1_0 = (const float *) (pd1 + i*bs);
|
||||||
|
|
||||||
|
const uint8_t * restrict p0 = pb0 + (i+0)*bs;
|
||||||
|
const uint8_t * restrict p1 = pb1 + (i+0)*bs;
|
||||||
|
|
||||||
|
// Compute combined scale for the block
|
||||||
|
float scaleScalar = d0_0[0] * d1_0[0];
|
||||||
|
__m512 scale = _mm512_set1_ps( scaleScalar );
|
||||||
|
|
||||||
|
__m256i bx = bytesFromNibbles( p0 );
|
||||||
|
__m256i by = bytesFromNibbles( p1 );
|
||||||
|
|
||||||
|
// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
|
||||||
|
const __m256i off = _mm256_set1_epi8( 8 );
|
||||||
|
bx = _mm256_sub_epi8( bx, off );
|
||||||
|
by = _mm256_sub_epi8( by, off );
|
||||||
|
|
||||||
|
// Sign-extend 16 signed bytes into int16_t
|
||||||
|
__m512i x32 = _mm512_cvtepi8_epi16( bx );
|
||||||
|
__m512i y32 = _mm512_cvtepi8_epi16( by );
|
||||||
|
// Compute products of int16_t integers, add pairwise
|
||||||
|
__m512i i64 = _mm512_madd_epi16( x32, y32 );
|
||||||
|
|
||||||
|
// Convert int32_t to float
|
||||||
|
__m512 p = _mm512_cvtepi32_ps( i64 );
|
||||||
|
// Apply the scale, and accumulate
|
||||||
|
return _mm512_fmadd_ps( scale, p, acc );
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
|
inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
|
||||||
ggml_float sumf = 0.0;
|
ggml_float sumf = 0.0;
|
||||||
|
|
||||||
|
@ -1417,6 +1457,40 @@ inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void
|
||||||
#else
|
#else
|
||||||
#error "not implemented for QK"
|
#error "not implemented for QK"
|
||||||
#endif
|
#endif
|
||||||
|
#elif defined(__AVX512F__)
|
||||||
|
|
||||||
|
#if QK == 32
|
||||||
|
// Initialize accumulator with zeros
|
||||||
|
__m512 acc0 = _mm512_setzero_ps();
|
||||||
|
__m512 acc1 = _mm512_setzero_ps();
|
||||||
|
|
||||||
|
const int superblock_size = 8;
|
||||||
|
const int superblock_count = nb / superblock_size;
|
||||||
|
const int remainder = nb % superblock_size;
|
||||||
|
|
||||||
|
for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
|
||||||
|
int i = superblock_ix * superblock_size;
|
||||||
|
|
||||||
|
acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
|
||||||
|
acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
|
||||||
|
acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
|
||||||
|
acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
|
||||||
|
acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
|
||||||
|
acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
|
||||||
|
acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
|
||||||
|
acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
|
||||||
|
}
|
||||||
|
|
||||||
|
// Remainders
|
||||||
|
for (int i = superblock_count * superblock_size; i < nb; ++i) {
|
||||||
|
acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
|
||||||
|
}
|
||||||
|
|
||||||
|
// Horizontal sum of all lanes of the accumulator
|
||||||
|
sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
|
||||||
|
#else
|
||||||
|
#error "not implemented for QK"
|
||||||
|
#endif
|
||||||
#elif defined(__AVX2__)
|
#elif defined(__AVX2__)
|
||||||
#if QK == 32
|
#if QK == 32
|
||||||
const size_t countBlocks = nb;
|
const size_t countBlocks = nb;
|
||||||
|
@ -1928,7 +2002,7 @@ inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * res
|
||||||
const size_t bs = 2*sizeof(float) + QK/2;
|
const size_t bs = 2*sizeof(float) + QK/2;
|
||||||
|
|
||||||
const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
|
const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
|
||||||
const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
|
const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
|
||||||
const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
|
const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
|
||||||
|
|
||||||
for (int i = 0; i < nb; i++) {
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
315
main.cpp
315
main.cpp
|
@ -9,7 +9,6 @@
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <map>
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
@ -20,6 +19,13 @@
|
||||||
#include <signal.h>
|
#include <signal.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if defined (_WIN32)
|
||||||
|
#pragma comment(lib,"kernel32.lib")
|
||||||
|
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
|
||||||
|
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
|
||||||
|
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
|
||||||
|
#endif
|
||||||
|
|
||||||
#define ANSI_COLOR_RED "\x1b[31m"
|
#define ANSI_COLOR_RED "\x1b[31m"
|
||||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||||
|
@ -29,10 +35,40 @@
|
||||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||||
#define ANSI_BOLD "\x1b[1m"
|
#define ANSI_BOLD "\x1b[1m"
|
||||||
|
|
||||||
|
/* Keep track of current color of output, and emit ANSI code if it changes. */
|
||||||
|
enum console_state {
|
||||||
|
CONSOLE_STATE_DEFAULT=0,
|
||||||
|
CONSOLE_STATE_PROMPT,
|
||||||
|
CONSOLE_STATE_USER_INPUT
|
||||||
|
};
|
||||||
|
|
||||||
|
static console_state con_st = CONSOLE_STATE_DEFAULT;
|
||||||
|
static bool con_use_color = false;
|
||||||
|
|
||||||
|
void set_console_state(console_state new_st)
|
||||||
|
{
|
||||||
|
if (!con_use_color) return;
|
||||||
|
// only emit color code if state changed
|
||||||
|
if (new_st != con_st) {
|
||||||
|
con_st = new_st;
|
||||||
|
switch(con_st) {
|
||||||
|
case CONSOLE_STATE_DEFAULT:
|
||||||
|
printf(ANSI_COLOR_RESET);
|
||||||
|
return;
|
||||||
|
case CONSOLE_STATE_PROMPT:
|
||||||
|
printf(ANSI_COLOR_YELLOW);
|
||||||
|
return;
|
||||||
|
case CONSOLE_STATE_USER_INPUT:
|
||||||
|
printf(ANSI_BOLD ANSI_COLOR_GREEN);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static const int EOS_TOKEN_ID = 2;
|
static const int EOS_TOKEN_ID = 2;
|
||||||
|
|
||||||
// determine number of model parts based on the dimension
|
// determine number of model parts based on the dimension
|
||||||
static const std::map<int, int> LLAMA_N_PARTS = {
|
static const std::unordered_map<int, int> LLAMA_N_PARTS = {
|
||||||
{ 4096, 1 },
|
{ 4096, 1 },
|
||||||
{ 5120, 2 },
|
{ 5120, 2 },
|
||||||
{ 6656, 4 },
|
{ 6656, 4 },
|
||||||
|
@ -86,11 +122,12 @@ struct llama_model {
|
||||||
|
|
||||||
//
|
//
|
||||||
struct ggml_context * ctx;
|
struct ggml_context * ctx;
|
||||||
std::map<std::string, struct ggml_tensor *> tensors;
|
std::unordered_map<std::string, struct ggml_tensor *> tensors;
|
||||||
};
|
};
|
||||||
|
|
||||||
// load the model's weights from a file
|
// load the model's weights from a file
|
||||||
bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx, ggml_type memory_type = GGML_TYPE_F32) {
|
|
||||||
|
bool llama_model_load(const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_parts, ggml_type memory_type = GGML_TYPE_F32) {
|
||||||
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
||||||
|
|
||||||
std::vector<char> f_buf(1024*1024);
|
std::vector<char> f_buf(1024*1024);
|
||||||
|
@ -106,12 +143,12 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
||||||
{
|
{
|
||||||
uint32_t magic;
|
uint32_t magic;
|
||||||
fin.read((char *) &magic, sizeof(magic));
|
fin.read((char *) &magic, sizeof(magic));
|
||||||
if (magic == 0x67676d6c) {
|
if (magic == FILE_MAGIC_UNVERSIONED) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
||||||
__func__, fname.c_str());
|
__func__, fname.c_str());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
if (magic != 0x67676d66) {
|
if (magic != FILE_MAGIC) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -119,15 +156,14 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
||||||
uint32_t format_version;
|
uint32_t format_version;
|
||||||
fin.read((char *) &format_version, sizeof(format_version));
|
fin.read((char *) &format_version, sizeof(format_version));
|
||||||
|
|
||||||
if (format_version != 1) {
|
if (format_version != FILE_VERSION) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ")\n",
|
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
|
||||||
__func__, fname.c_str(), format_version);
|
__func__, fname.c_str(), format_version, FILE_VERSION);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
int n_ff = 0;
|
int n_ff = 0;
|
||||||
int n_parts = 0;
|
|
||||||
|
|
||||||
// load hparams
|
// load hparams
|
||||||
{
|
{
|
||||||
|
@ -145,7 +181,16 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
||||||
hparams.n_ctx = n_ctx;
|
hparams.n_ctx = n_ctx;
|
||||||
|
|
||||||
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
||||||
n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
|
|
||||||
|
if (n_parts < 1) {
|
||||||
|
n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
|
||||||
|
}
|
||||||
|
|
||||||
|
// temp warning to tell the user to use "--n_parts"
|
||||||
|
if (hparams.f16 == 4 && n_parts != 1) {
|
||||||
|
fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
|
||||||
|
fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
|
||||||
|
}
|
||||||
|
|
||||||
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||||
fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||||
|
@ -162,34 +207,43 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
||||||
// load vocab
|
// load vocab
|
||||||
{
|
{
|
||||||
std::string word;
|
std::string word;
|
||||||
|
vocab.id_to_token.resize(model.hparams.n_vocab);
|
||||||
|
std::vector<char> tmp(64);
|
||||||
|
|
||||||
for (int i = 0; i < model.hparams.n_vocab; i++) {
|
for (int i = 0; i < model.hparams.n_vocab; i++) {
|
||||||
uint32_t len;
|
uint32_t len;
|
||||||
fin.read((char *) &len, sizeof(len));
|
fin.read((char *) &len, sizeof(len));
|
||||||
|
|
||||||
word.resize(len);
|
word.resize(len);
|
||||||
fin.read((char *) word.data(), len);
|
if (len > 0) {
|
||||||
|
tmp.resize(len);
|
||||||
|
fin.read(tmp.data(), len);
|
||||||
|
word.assign(tmp.data(), len);
|
||||||
|
} else {
|
||||||
|
word.clear();
|
||||||
|
}
|
||||||
|
|
||||||
float score;
|
float score;
|
||||||
fin.read((char *) &score, sizeof(score));
|
fin.read((char *) &score, sizeof(score));
|
||||||
|
|
||||||
vocab.token_to_id[word] = i;
|
vocab.token_to_id[word] = i;
|
||||||
vocab.id_to_token[i] = word;
|
|
||||||
vocab.score[i] = score;
|
|
||||||
|
|
||||||
//if (i < 30000) {
|
auto &tok_score = vocab.id_to_token[i];
|
||||||
// fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
tok_score.tok = word;
|
||||||
//}
|
tok_score.score = score;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||||
// in order to save memory and also to speed up the computation
|
// in order to save memory and also to speed up the computation
|
||||||
ggml_type wtype = GGML_TYPE_COUNT;
|
// wtype is for per-layer weights, while vtype is for other weights
|
||||||
|
ggml_type wtype, vtype;
|
||||||
switch (model.hparams.f16) {
|
switch (model.hparams.f16) {
|
||||||
case 0: wtype = GGML_TYPE_F32; break;
|
case 0: wtype = vtype = GGML_TYPE_F32; break;
|
||||||
case 1: wtype = GGML_TYPE_F16; break;
|
case 1: wtype = vtype = GGML_TYPE_F16; break;
|
||||||
case 2: wtype = GGML_TYPE_Q4_0; break;
|
case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
|
||||||
case 3: wtype = GGML_TYPE_Q4_1; break;
|
case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
|
||||||
|
case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
||||||
|
@ -210,11 +264,11 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
||||||
const int n_ctx = hparams.n_ctx;
|
const int n_ctx = hparams.n_ctx;
|
||||||
const int n_vocab = hparams.n_vocab;
|
const int n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings
|
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
|
||||||
|
|
||||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
||||||
|
|
||||||
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output
|
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
|
||||||
|
|
||||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
||||||
|
|
||||||
|
@ -261,10 +315,10 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
||||||
|
|
||||||
model.layers.resize(n_layer);
|
model.layers.resize(n_layer);
|
||||||
|
|
||||||
model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
|
||||||
|
|
||||||
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
|
||||||
|
|
||||||
// map by name
|
// map by name
|
||||||
model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
|
model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
|
||||||
|
@ -544,9 +598,10 @@ bool llama_eval(
|
||||||
const llama_model & model,
|
const llama_model & model,
|
||||||
const int n_threads,
|
const int n_threads,
|
||||||
const int n_past,
|
const int n_past,
|
||||||
const std::vector<gpt_vocab::id> & embd_inp,
|
const std::vector<llama_vocab::id> & embd_inp,
|
||||||
std::vector<float> & embd_w,
|
std::vector<float> & embd_w,
|
||||||
size_t & mem_per_token) {
|
size_t & mem_per_token,
|
||||||
|
bool return_all_logits = false) {
|
||||||
const int N = embd_inp.size();
|
const int N = embd_inp.size();
|
||||||
|
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
|
@ -564,7 +619,7 @@ bool llama_eval(
|
||||||
static void * buf = malloc(buf_size);
|
static void * buf = malloc(buf_size);
|
||||||
|
|
||||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
|
||||||
//fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
//fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||||
|
|
||||||
// reallocate
|
// reallocate
|
||||||
|
@ -750,9 +805,14 @@ bool llama_eval(
|
||||||
//embd_w.resize(n_vocab*N);
|
//embd_w.resize(n_vocab*N);
|
||||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||||
|
|
||||||
// return result for just the last token
|
if (return_all_logits) {
|
||||||
embd_w.resize(n_vocab);
|
embd_w.resize(n_vocab * N);
|
||||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||||
|
} else {
|
||||||
|
// return result for just the last token
|
||||||
|
embd_w.resize(n_vocab);
|
||||||
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||||
|
}
|
||||||
|
|
||||||
if (mem_per_token == 0) {
|
if (mem_per_token == 0) {
|
||||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||||
|
@ -764,11 +824,81 @@ bool llama_eval(
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<double> softmax(const std::vector<float>& logits) {
|
||||||
|
std::vector<double> probs(logits.size());
|
||||||
|
float max_logit = logits[0];
|
||||||
|
for (float v : logits) max_logit = std::max(max_logit, v);
|
||||||
|
double sum_exp = 0.0;
|
||||||
|
for (size_t i = 0; i < logits.size(); i++) {
|
||||||
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
||||||
|
float logit = logits[i] - max_logit;
|
||||||
|
double exp_logit = std::exp(logit);
|
||||||
|
sum_exp += exp_logit;
|
||||||
|
probs[i] = exp_logit;
|
||||||
|
}
|
||||||
|
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
|
||||||
|
return probs;
|
||||||
|
}
|
||||||
|
|
||||||
|
void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params ¶ms, size_t mem_per_token) {
|
||||||
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||||
|
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||||
|
// Output: `perplexity: 13.5106 [114/114]`
|
||||||
|
std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
|
||||||
|
|
||||||
|
int count = 0;
|
||||||
|
double nll = 0.0;
|
||||||
|
int seq_count = tokens.size() / params.n_ctx;
|
||||||
|
printf("Calculating perplexity over %d chunks\n", seq_count);
|
||||||
|
for (int i = 0; i < seq_count; ++i) {
|
||||||
|
int start = i * params.n_ctx;
|
||||||
|
int end = start + params.n_ctx - 1;
|
||||||
|
std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
|
||||||
|
std::vector<float> logits;
|
||||||
|
auto start_t = std::chrono::high_resolution_clock::now();
|
||||||
|
if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
|
||||||
|
fprintf(stderr, "Failed to predict\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
auto end_t = std::chrono::high_resolution_clock::now();
|
||||||
|
if (i == 0) {
|
||||||
|
double seconds = std::chrono::duration<double>(end_t - start_t).count();
|
||||||
|
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
|
||||||
|
}
|
||||||
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
||||||
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
||||||
|
// calculate the perplexity over the last half the window (so the model always has
|
||||||
|
// some context to predict the token).
|
||||||
|
//
|
||||||
|
// We rely on the fact that attention in the forward pass only looks at previous
|
||||||
|
// tokens here, so the logits returned for each token are an accurate representation
|
||||||
|
// of what the model would have predicted at that point.
|
||||||
|
//
|
||||||
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||||
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||||
|
// process the entire prompt.
|
||||||
|
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
|
||||||
|
// Calculate probability of next token, given the previous ones.
|
||||||
|
int n_vocab = model.hparams.n_vocab;
|
||||||
|
std::vector<float> tok_logits(
|
||||||
|
logits.begin() + j * n_vocab,
|
||||||
|
logits.begin() + (j + 1) * n_vocab);
|
||||||
|
double prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||||
|
nll += -std::log(prob);
|
||||||
|
++count;
|
||||||
|
}
|
||||||
|
// perplexity is e^(average negative log-likelihood)
|
||||||
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
|
||||||
static bool is_interacting = false;
|
static bool is_interacting = false;
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
void sigint_handler(int signo) {
|
void sigint_handler(int signo) {
|
||||||
printf(ANSI_COLOR_RESET);
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
||||||
printf("\n"); // this also force flush stdout.
|
printf("\n"); // this also force flush stdout.
|
||||||
if (signo == SIGINT) {
|
if (signo == SIGINT) {
|
||||||
if (!is_interacting) {
|
if (!is_interacting) {
|
||||||
|
@ -827,19 +957,23 @@ int main(int argc, char ** argv) {
|
||||||
params.prompt = gpt_random_prompt(rng);
|
params.prompt = gpt_random_prompt(rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// save choice to use color for later
|
||||||
|
// (note for later: this is a slightly awkward choice)
|
||||||
|
con_use_color = params.use_color;
|
||||||
|
|
||||||
// params.prompt = R"(// this function checks if the number n is prime
|
// params.prompt = R"(// this function checks if the number n is prime
|
||||||
//bool is_prime(int n) {)";
|
//bool is_prime(int n) {)";
|
||||||
|
|
||||||
int64_t t_load_us = 0;
|
int64_t t_load_us = 0;
|
||||||
|
|
||||||
gpt_vocab vocab;
|
llama_vocab vocab;
|
||||||
llama_model model;
|
llama_model model;
|
||||||
|
|
||||||
// load the model
|
// load the model
|
||||||
{
|
{
|
||||||
const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||||
const int64_t t_start_us = ggml_time_us();
|
const int64_t t_start_us = ggml_time_us();
|
||||||
if (!llama_model_load(params.model, model, vocab, params.n_ctx, memory_type)) {
|
if (!llama_model_load(params.model, model, vocab, params.n_ctx, params.n_parts, memory_type)) {
|
||||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
@ -854,23 +988,32 @@ int main(int argc, char ** argv) {
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<float> logits;
|
||||||
|
|
||||||
|
// determine the required inference memory per token:
|
||||||
|
size_t mem_per_token = 0;
|
||||||
|
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
||||||
|
|
||||||
|
if (params.perplexity) {
|
||||||
|
perplexity(vocab, model, params, mem_per_token);
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
|
||||||
int n_past = 0;
|
int n_past = 0;
|
||||||
|
|
||||||
int64_t t_sample_us = 0;
|
int64_t t_sample_us = 0;
|
||||||
int64_t t_predict_us = 0;
|
int64_t t_predict_us = 0;
|
||||||
|
|
||||||
std::vector<float> logits;
|
|
||||||
|
|
||||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||||
params.prompt.insert(0, 1, ' ');
|
params.prompt.insert(0, 1, ' ');
|
||||||
// tokenize the prompt
|
// tokenize the prompt
|
||||||
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
|
std::vector<llama_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
|
||||||
|
|
||||||
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
||||||
|
|
||||||
// prefix & suffix for instruct mode
|
// prefix & suffix for instruct mode
|
||||||
const std::vector<gpt_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
|
const std::vector<llama_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
|
||||||
const std::vector<gpt_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);
|
const std::vector<llama_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);
|
||||||
|
|
||||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||||
if (params.instruct) {
|
if (params.instruct) {
|
||||||
|
@ -878,18 +1021,14 @@ int main(int argc, char ** argv) {
|
||||||
params.antiprompt.push_back("### Instruction:\n\n");
|
params.antiprompt.push_back("### Instruction:\n\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
// tokenize the reverse prompt
|
// tokenize the first reverse prompt
|
||||||
std::vector<std::vector<gpt_vocab::id>> antipromptv_inp;
|
std::vector<llama_vocab::id> first_antiprompt;
|
||||||
|
if (!params.antiprompt.empty()) {
|
||||||
for (auto antiprompt : params.antiprompt) {
|
first_antiprompt = ::llama_tokenize(vocab, params.antiprompt.front(), false);
|
||||||
antipromptv_inp.push_back(::llama_tokenize(vocab, antiprompt, false));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// tokenize the first reverse prompt
|
|
||||||
std::vector<llama_vocab::id> first_antiprompt = ::llama_tokenize(vocab, params.antiprompt.front(), false);
|
|
||||||
|
|
||||||
// enable interactive mode if reverse prompt is specified
|
// enable interactive mode if reverse prompt is specified
|
||||||
if (antipromptv_inp.size() != 0) {
|
if (params.antiprompt.size() != 0) {
|
||||||
params.interactive = true;
|
params.interactive = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -897,7 +1036,7 @@ int main(int argc, char ** argv) {
|
||||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
|
||||||
}
|
}
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
|
@ -913,29 +1052,19 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
||||||
|
|
||||||
if(antipromptv_inp.size()) {
|
if(params.antiprompt.size()) {
|
||||||
for (size_t apindex = 0; apindex < antipromptv_inp.size(); ++apindex) {
|
for (auto antiprompt : params.antiprompt) {
|
||||||
auto antiprompt_inp = antipromptv_inp.at(apindex);
|
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||||
fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.at(apindex).c_str());
|
|
||||||
fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
|
|
||||||
for (int i = 0; i < (int) antiprompt_inp.size(); i++) {
|
|
||||||
fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
|
|
||||||
}
|
|
||||||
fprintf(stderr, "\n");
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
|
|
||||||
std::vector<gpt_vocab::id> embd;
|
std::vector<llama_vocab::id> embd;
|
||||||
|
|
||||||
// determine the required inference memory per token:
|
|
||||||
size_t mem_per_token = 0;
|
|
||||||
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
||||||
|
|
||||||
int last_n_size = params.repeat_last_n;
|
int last_n_size = params.repeat_last_n;
|
||||||
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
|
std::vector<llama_vocab::id> last_n_tokens(last_n_size);
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
|
@ -956,10 +1085,18 @@ int main(int argc, char ** argv) {
|
||||||
// dynamically determine the newline token
|
// dynamically determine the newline token
|
||||||
const auto NEWLINE_TOKEN_ID = vocab.token_to_id["\n"];
|
const auto NEWLINE_TOKEN_ID = vocab.token_to_id["\n"];
|
||||||
|
|
||||||
// set the color for the prompt which will be output initially
|
#if defined (_WIN32)
|
||||||
if (params.use_color) {
|
if (params.use_color) {
|
||||||
printf(ANSI_COLOR_YELLOW);
|
// Enable ANSI colors on Windows 10+
|
||||||
|
unsigned long dwMode = 0;
|
||||||
|
void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
|
||||||
|
if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
|
||||||
|
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
|
set_console_state(CONSOLE_STATE_PROMPT);
|
||||||
|
|
||||||
while (remaining_tokens > 0 || params.interactive) {
|
while (remaining_tokens > 0 || params.interactive) {
|
||||||
// predict
|
// predict
|
||||||
|
@ -977,7 +1114,7 @@ int main(int argc, char ** argv) {
|
||||||
n_past += embd.size();
|
n_past += embd.size();
|
||||||
embd.clear();
|
embd.clear();
|
||||||
|
|
||||||
if (embd_inp.size() <= input_consumed) {
|
if ((int) embd_inp.size() <= input_consumed) {
|
||||||
// out of user input, sample next token
|
// out of user input, sample next token
|
||||||
const float top_k = params.top_k;
|
const float top_k = params.top_k;
|
||||||
const float top_p = params.top_p;
|
const float top_p = params.top_p;
|
||||||
|
@ -986,7 +1123,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
const int n_vocab = model.hparams.n_vocab;
|
const int n_vocab = model.hparams.n_vocab;
|
||||||
|
|
||||||
gpt_vocab::id id = 0;
|
llama_vocab::id id = 0;
|
||||||
|
|
||||||
{
|
{
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
@ -1023,7 +1160,7 @@ int main(int argc, char ** argv) {
|
||||||
--remaining_tokens;
|
--remaining_tokens;
|
||||||
} else {
|
} else {
|
||||||
// some user input remains from prompt or interaction, forward it to processing
|
// some user input remains from prompt or interaction, forward it to processing
|
||||||
while (embd_inp.size() > input_consumed) {
|
while ((int) embd_inp.size() > input_consumed) {
|
||||||
embd.push_back(embd_inp[input_consumed]);
|
embd.push_back(embd_inp[input_consumed]);
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(embd_inp[input_consumed]);
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
||||||
|
@ -1037,27 +1174,35 @@ int main(int argc, char ** argv) {
|
||||||
// display text
|
// display text
|
||||||
if (!input_noecho) {
|
if (!input_noecho) {
|
||||||
for (auto id : embd) {
|
for (auto id : embd) {
|
||||||
printf("%s", vocab.id_to_token[id].c_str());
|
printf("%s", vocab.id_to_token[id].tok.c_str());
|
||||||
}
|
}
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
// reset color to default if we there is no pending user input
|
// reset color to default if we there is no pending user input
|
||||||
if (!input_noecho && params.use_color && (int)embd_inp.size() == input_consumed) {
|
if (!input_noecho && (int)embd_inp.size() == input_consumed) {
|
||||||
printf(ANSI_COLOR_RESET);
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
||||||
}
|
}
|
||||||
|
|
||||||
// in interactive mode, and not currently processing queued inputs;
|
// in interactive mode, and not currently processing queued inputs;
|
||||||
// check if we should prompt the user for more
|
// check if we should prompt the user for more
|
||||||
if (params.interactive && embd_inp.size() <= input_consumed) {
|
if (params.interactive && (int) embd_inp.size() <= input_consumed) {
|
||||||
// check for reverse prompt
|
// check for reverse prompt
|
||||||
for (auto antiprompt_inp : antipromptv_inp) {
|
std::string last_output;
|
||||||
if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
|
for (auto id : last_n_tokens) {
|
||||||
// reverse prompt found
|
last_output += vocab.id_to_token[id].tok;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if each of the reverse prompts appears at the end of the output.
|
||||||
|
for (std::string antiprompt : params.antiprompt) {
|
||||||
|
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||||
is_interacting = true;
|
is_interacting = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (is_interacting) {
|
if (is_interacting) {
|
||||||
|
// potentially set color to indicate we are taking user input
|
||||||
|
set_console_state(CONSOLE_STATE_USER_INPUT);
|
||||||
|
|
||||||
if (params.instruct) {
|
if (params.instruct) {
|
||||||
input_consumed = embd_inp.size();
|
input_consumed = embd_inp.size();
|
||||||
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
||||||
|
@ -1065,8 +1210,6 @@ int main(int argc, char ** argv) {
|
||||||
printf("\n> ");
|
printf("\n> ");
|
||||||
}
|
}
|
||||||
|
|
||||||
// currently being interactive
|
|
||||||
if (params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
|
|
||||||
std::string buffer;
|
std::string buffer;
|
||||||
std::string line;
|
std::string line;
|
||||||
bool another_line = true;
|
bool another_line = true;
|
||||||
|
@ -1079,9 +1222,11 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
buffer += line + '\n'; // Append the line to the result
|
buffer += line + '\n'; // Append the line to the result
|
||||||
} while (another_line);
|
} while (another_line);
|
||||||
if (params.use_color) printf(ANSI_COLOR_RESET);
|
|
||||||
|
|
||||||
std::vector<gpt_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
|
// done taking input, reset color
|
||||||
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
||||||
|
|
||||||
|
std::vector<llama_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
|
||||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||||
|
|
||||||
if (params.instruct) {
|
if (params.instruct) {
|
||||||
|
@ -1126,9 +1271,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
ggml_free(model.ctx);
|
ggml_free(model.ctx);
|
||||||
|
|
||||||
if (params.use_color) {
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
||||||
printf(ANSI_COLOR_RESET);
|
|
||||||
}
|
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
BIN
models/ggml-vocab.bin
Normal file
BIN
models/ggml-vocab.bin
Normal file
Binary file not shown.
20
quantize.cpp
20
quantize.cpp
|
@ -8,7 +8,6 @@
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
#include <map>
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <regex>
|
#include <regex>
|
||||||
|
@ -44,7 +43,7 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_vocab vocab;
|
llama_vocab vocab;
|
||||||
|
|
||||||
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
|
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
|
||||||
|
|
||||||
|
@ -64,12 +63,12 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
|
||||||
{
|
{
|
||||||
uint32_t magic;
|
uint32_t magic;
|
||||||
finp.read((char *) &magic, sizeof(magic));
|
finp.read((char *) &magic, sizeof(magic));
|
||||||
if (magic == 0x67676d6c) {
|
if (magic == FILE_MAGIC_UNVERSIONED) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
||||||
__func__, fname_inp.c_str());
|
__func__, fname_inp.c_str());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
if (magic != 0x67676d66) {
|
if (magic != FILE_MAGIC) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -79,9 +78,9 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
|
||||||
uint32_t format_version;
|
uint32_t format_version;
|
||||||
finp.read((char *) &format_version, sizeof(format_version));
|
finp.read((char *) &format_version, sizeof(format_version));
|
||||||
|
|
||||||
if (format_version != 1) {
|
if (format_version != FILE_VERSION) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ")\n",
|
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
|
||||||
__func__, fname_inp.c_str(), format_version);
|
__func__, fname_inp.c_str(), format_version, FILE_VERSION);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -130,6 +129,7 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string word;
|
std::string word;
|
||||||
|
vocab.id_to_token.resize(n_vocab);
|
||||||
for (int i = 0; i < n_vocab; i++) {
|
for (int i = 0; i < n_vocab; i++) {
|
||||||
uint32_t len;
|
uint32_t len;
|
||||||
finp.read ((char *) &len, sizeof(len));
|
finp.read ((char *) &len, sizeof(len));
|
||||||
|
@ -144,8 +144,10 @@ bool llama_model_quantize(const std::string & fname_inp, const std::string & fna
|
||||||
fout.write((char *) &score, sizeof(score));
|
fout.write((char *) &score, sizeof(score));
|
||||||
|
|
||||||
vocab.token_to_id[word] = i;
|
vocab.token_to_id[word] = i;
|
||||||
vocab.id_to_token[i] = word;
|
|
||||||
vocab.score[i] = score;
|
auto &tok_score = vocab.id_to_token[i];
|
||||||
|
tok_score.tok = word;
|
||||||
|
tok_score.score = score;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
4
tests/CMakeLists.txt
Normal file
4
tests/CMakeLists.txt
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
set(TEST_TARGET test-tokenizer-0)
|
||||||
|
add_executable(${TEST_TARGET} ${TEST_TARGET}.cpp)
|
||||||
|
target_link_libraries(${TEST_TARGET} PRIVATE utils)
|
||||||
|
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
|
69
tests/test-tokenizer-0.cpp
Normal file
69
tests/test-tokenizer-0.cpp
Normal file
|
@ -0,0 +1,69 @@
|
||||||
|
#include "utils.h"
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <string>
|
||||||
|
#include <map>
|
||||||
|
|
||||||
|
static const std::map<std::string, std::vector<llama_vocab::id>> k_tests = {
|
||||||
|
{ "Hello World", { 1, 10994, 2787, }, },
|
||||||
|
{ " Hello World", { 1, 15043, 2787, }, },
|
||||||
|
{ " Hello World!", { 1, 15043, 2787, 29991, }, },
|
||||||
|
{ " this is 🦙.cpp", { 1, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
|
||||||
|
{ "w048 7tuijk dsdfhu", { 1, 29893, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
|
||||||
|
{ "нещо на Български", { 1, 821, 4851, 665, 1386, 29713, 1305, }, },
|
||||||
|
};
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
if (argc < 2) {
|
||||||
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string fname = argv[1];
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
||||||
|
|
||||||
|
llama_vocab vocab;
|
||||||
|
|
||||||
|
if (!llama_vocab_load(fname, vocab)) {
|
||||||
|
fprintf(stderr, "%s : failed to load vocab from: '%s'\n", __func__, fname.c_str());
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_vocab = vocab.id_to_token.size();
|
||||||
|
|
||||||
|
if (n_vocab != 32000) {
|
||||||
|
fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (const auto & test_kv : k_tests) {
|
||||||
|
const auto res = llama_tokenize(vocab, test_kv.first, true);
|
||||||
|
|
||||||
|
bool correct = res.size() == test_kv.second.size();
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) res.size() && correct; ++i) {
|
||||||
|
if (res[i] != test_kv.second[i]) {
|
||||||
|
correct = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!correct) {
|
||||||
|
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
|
||||||
|
fprintf(stderr, "%s : expected tokens: ", __func__);
|
||||||
|
for (const auto & t : test_kv.second) {
|
||||||
|
fprintf(stderr, "%6d, ", t);
|
||||||
|
}
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "%s : got tokens: ", __func__);
|
||||||
|
for (const auto & t : res) {
|
||||||
|
fprintf(stderr, "%6d, ", t);
|
||||||
|
}
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
202
utils.cpp
202
utils.cpp
|
@ -12,7 +12,7 @@
|
||||||
|
|
||||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__)
|
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||||
#include <alloca.h>
|
#include <alloca.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -72,8 +72,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
params.use_color = true;
|
params.use_color = true;
|
||||||
} else if (arg == "-r" || arg == "--reverse-prompt") {
|
} else if (arg == "-r" || arg == "--reverse-prompt") {
|
||||||
params.antiprompt.push_back(argv[++i]);
|
params.antiprompt.push_back(argv[++i]);
|
||||||
|
} else if (arg == "--perplexity") {
|
||||||
|
params.perplexity = true;
|
||||||
} else if (arg == "--ignore-eos") {
|
} else if (arg == "--ignore-eos") {
|
||||||
params.ignore_eos = true;
|
params.ignore_eos = true;
|
||||||
|
} else if (arg == "--n_parts") {
|
||||||
|
params.n_parts = std::stoi(argv[++i]);
|
||||||
} else if (arg == "-h" || arg == "--help") {
|
} else if (arg == "-h" || arg == "--help") {
|
||||||
gpt_print_usage(argc, argv, params);
|
gpt_print_usage(argc, argv, params);
|
||||||
exit(0);
|
exit(0);
|
||||||
|
@ -116,7 +120,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating\n");
|
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating\n");
|
||||||
fprintf(stderr, " --memory_f16 use f16 instead of f32 for memory key+value\n");
|
fprintf(stderr, " --memory_f16 use f16 instead of f32 for memory key+value\n");
|
||||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||||
|
fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n");
|
||||||
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
|
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
|
||||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
|
@ -149,8 +155,8 @@ void replace(std::string & str, const std::string & needle, const std::string &
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
std::unordered_map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||||
std::map<std::string, int32_t> result;
|
std::unordered_map<std::string, int32_t> result;
|
||||||
|
|
||||||
// read file into string
|
// read file into string
|
||||||
std::string json;
|
std::string json;
|
||||||
|
@ -240,61 +246,6 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
|
||||||
std::vector<std::string> words;
|
|
||||||
|
|
||||||
// first split the text into words
|
|
||||||
{
|
|
||||||
std::string str = text;
|
|
||||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
|
||||||
|
|
||||||
std::regex re(pat);
|
|
||||||
std::smatch m;
|
|
||||||
|
|
||||||
while (std::regex_search(str, m, re)) {
|
|
||||||
for (auto x : m) {
|
|
||||||
words.push_back(x);
|
|
||||||
}
|
|
||||||
str = m.suffix();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// find the longest tokens that form the words:
|
|
||||||
std::vector<gpt_vocab::id> tokens;
|
|
||||||
for (const auto & word : words) {
|
|
||||||
if (word.size() == 0) continue;
|
|
||||||
|
|
||||||
int i = 0;
|
|
||||||
int n = word.size();
|
|
||||||
while (i < n) {
|
|
||||||
int j = n;
|
|
||||||
while (j > i) {
|
|
||||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
|
||||||
if (it != vocab.token_to_id.end()) {
|
|
||||||
tokens.push_back(it->second);
|
|
||||||
i = j;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
--j;
|
|
||||||
}
|
|
||||||
if (i == n) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (j == i) {
|
|
||||||
auto sub = word.substr(i, 1);
|
|
||||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
|
||||||
tokens.push_back(vocab.token_to_id.at(sub));
|
|
||||||
} else {
|
|
||||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
|
||||||
}
|
|
||||||
++i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return tokens;
|
|
||||||
}
|
|
||||||
|
|
||||||
static size_t utf8_len(char src) {
|
static size_t utf8_len(char src) {
|
||||||
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||||
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
|
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
|
||||||
|
@ -305,7 +256,8 @@ struct llama_sp_symbol {
|
||||||
using index = int;
|
using index = int;
|
||||||
index prev;
|
index prev;
|
||||||
index next;
|
index next;
|
||||||
std::string_view text;
|
const char * text;
|
||||||
|
size_t n;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sp_bigram {
|
struct llama_sp_bigram {
|
||||||
|
@ -322,19 +274,23 @@ struct llama_sp_bigram {
|
||||||
size_t size;
|
size_t size;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// original implementation:
|
||||||
|
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
|
||||||
struct llama_tokenizer {
|
struct llama_tokenizer {
|
||||||
llama_tokenizer(const gpt_vocab & vocab): vocab_(vocab) {}
|
llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
|
||||||
|
|
||||||
void tokenize(std::string_view text, std::vector<gpt_vocab::id> & output) {
|
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
||||||
// split string into utf8 chars
|
// split string into utf8 chars
|
||||||
int index = 0;
|
int index = 0;
|
||||||
while (!text.empty()) {
|
size_t offs = 0;
|
||||||
|
while (offs < text.size()) {
|
||||||
llama_sp_symbol sym;
|
llama_sp_symbol sym;
|
||||||
size_t char_len = std::min(text.size(), utf8_len(text.data()[0]));
|
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
|
||||||
sym.text = std::string_view(text.data(), char_len);
|
sym.text = text.c_str() + offs;
|
||||||
|
sym.n = char_len;
|
||||||
|
offs += char_len;
|
||||||
sym.prev = index - 1;
|
sym.prev = index - 1;
|
||||||
text.remove_prefix(char_len);
|
sym.next = offs == text.size() ? -1 : index + 1;
|
||||||
sym.next = text.empty() ? -1 : index + 1;
|
|
||||||
index++;
|
index++;
|
||||||
symbols_.emplace_back(std::move(sym));
|
symbols_.emplace_back(std::move(sym));
|
||||||
}
|
}
|
||||||
|
@ -353,14 +309,16 @@ struct llama_tokenizer {
|
||||||
auto & right_sym = symbols_[bigram.right];
|
auto & right_sym = symbols_[bigram.right];
|
||||||
|
|
||||||
// if one of the symbols already got merged, skip it.
|
// if one of the symbols already got merged, skip it.
|
||||||
if (left_sym.text.empty() || right_sym.text.empty() ||
|
if (left_sym.n == 0 || right_sym.n == 0 ||
|
||||||
left_sym.text.size() + right_sym.text.size() != bigram.size) {
|
left_sym.n + right_sym.n != bigram.size) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// merge the right sym into the left one
|
// merge the right sym into the left one
|
||||||
left_sym.text = std::string_view(left_sym.text.data(), left_sym.text.size() + right_sym.text.size());
|
left_sym.n += right_sym.n;
|
||||||
right_sym.text = std::string_view("");
|
right_sym.n = 0;
|
||||||
|
|
||||||
|
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
|
||||||
|
|
||||||
// remove the right sym from the chain
|
// remove the right sym from the chain
|
||||||
left_sym.next = right_sym.next;
|
left_sym.next = right_sym.next;
|
||||||
|
@ -374,13 +332,13 @@ struct llama_tokenizer {
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i != -1; i = symbols_[i].next) {
|
for (int i = 0; i != -1; i = symbols_[i].next) {
|
||||||
auto& symbol = symbols_[i];
|
auto & symbol = symbols_[i];
|
||||||
auto token = vocab_.token_to_id.find(std::string(symbol.text));
|
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
|
||||||
|
|
||||||
if (token == vocab_.token_to_id.end()) {
|
if (token == vocab_.token_to_id.end()) {
|
||||||
// output any symbols that did not form tokens as bytes.
|
// output any symbols that did not form tokens as bytes.
|
||||||
for (int j = 0; j < symbol.text.size(); ++j) {
|
for (int j = 0; j < (int) symbol.n; ++j) {
|
||||||
gpt_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
|
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
|
||||||
output.push_back(token_id);
|
output.push_back(token_id);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
@ -395,35 +353,77 @@ private:
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string_view text(symbols_[left].text.data(), symbols_[left].text.size() + symbols_[right].text.size());
|
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
|
||||||
auto token = vocab_.token_to_id.find(std::string(text));
|
auto token = vocab_.token_to_id.find(text);
|
||||||
|
|
||||||
if (token == vocab_.token_to_id.end()) {
|
if (token == vocab_.token_to_id.end()) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto score = vocab_.score.find((*token).second);
|
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
|
||||||
|
|
||||||
if (score == vocab_.score.end()) {
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const auto &tok_score = vocab_.id_to_token[(*token).second];
|
||||||
|
|
||||||
llama_sp_bigram bigram;
|
llama_sp_bigram bigram;
|
||||||
bigram.left = left;
|
bigram.left = left;
|
||||||
bigram.right = right;
|
bigram.right = right;
|
||||||
bigram.score = (*score).second;
|
bigram.score = tok_score.score;
|
||||||
bigram.size = text.size();
|
bigram.size = text.size();
|
||||||
work_queue_.push(bigram);
|
work_queue_.push(bigram);
|
||||||
}
|
}
|
||||||
|
|
||||||
const gpt_vocab & vocab_;
|
const llama_vocab & vocab_;
|
||||||
std::vector<llama_sp_symbol> symbols_;
|
std::vector<llama_sp_symbol> symbols_;
|
||||||
llama_sp_bigram::queue work_queue_;
|
llama_sp_bigram::queue work_queue_;
|
||||||
};
|
};
|
||||||
|
|
||||||
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_view text, bool bos) {
|
// TODO: temporary code duplication with llama.cpp
|
||||||
|
// will resolve after #77 is merged
|
||||||
|
bool llama_vocab_load(const std::string & fname, llama_vocab & vocab) {
|
||||||
|
std::ifstream fin(fname, std::ios::binary);
|
||||||
|
if (!fin.is_open()) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
int n_vocab = 0;
|
||||||
|
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
||||||
|
|
||||||
|
std::string word;
|
||||||
|
std::vector<char> tmp(64);
|
||||||
|
|
||||||
|
vocab.id_to_token.resize(n_vocab);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_vocab; i++) {
|
||||||
|
uint32_t len;
|
||||||
|
fin.read((char *) &len, sizeof(len));
|
||||||
|
|
||||||
|
word.resize(len);
|
||||||
|
if (len > 0) {
|
||||||
|
tmp.resize(len);
|
||||||
|
fin.read(tmp.data(), len);
|
||||||
|
word.assign(tmp.data(), len);
|
||||||
|
} else {
|
||||||
|
word.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
float score;
|
||||||
|
fin.read((char *) &score, sizeof(score));
|
||||||
|
|
||||||
|
vocab.token_to_id[word] = i;
|
||||||
|
|
||||||
|
auto &tok_score = vocab.id_to_token[i];
|
||||||
|
tok_score.tok = word;
|
||||||
|
tok_score.score = score;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
|
||||||
llama_tokenizer tokenizer(vocab);
|
llama_tokenizer tokenizer(vocab);
|
||||||
std::vector<gpt_vocab::id> output;
|
std::vector<llama_vocab::id> output;
|
||||||
|
|
||||||
if (text.size() == 0) {
|
if (text.size() == 0) {
|
||||||
return output;
|
return output;
|
||||||
|
@ -437,42 +437,22 @@ std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_v
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
|
||||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
|
||||||
|
|
||||||
vocab.token_to_id = ::json_parse(fname);
|
|
||||||
|
|
||||||
for (const auto & kv : vocab.token_to_id) {
|
|
||||||
vocab.id_to_token[kv.second] = kv.first;
|
|
||||||
}
|
|
||||||
|
|
||||||
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
|
||||||
|
|
||||||
// print the vocabulary
|
|
||||||
//for (auto kv : vocab.token_to_id) {
|
|
||||||
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
|
||||||
//}
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k) {
|
|
||||||
// find the top K tokens
|
// find the top K tokens
|
||||||
std::partial_sort(
|
std::partial_sort(
|
||||||
logits_id.begin(),
|
logits_id.begin(),
|
||||||
logits_id.begin() + top_k, logits_id.end(),
|
logits_id.begin() + top_k, logits_id.end(),
|
||||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
[](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
|
||||||
return a.first > b.first;
|
return a.first > b.first;
|
||||||
});
|
});
|
||||||
|
|
||||||
logits_id.resize(top_k);
|
logits_id.resize(top_k);
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_vocab::id llama_sample_top_p_top_k(
|
llama_vocab::id llama_sample_top_p_top_k(
|
||||||
const gpt_vocab & vocab,
|
const llama_vocab & vocab,
|
||||||
const float * logits,
|
const float * logits,
|
||||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
std::vector<llama_vocab::id> & last_n_tokens,
|
||||||
double repeat_penalty,
|
double repeat_penalty,
|
||||||
int top_k,
|
int top_k,
|
||||||
double top_p,
|
double top_p,
|
||||||
|
@ -480,7 +460,7 @@ gpt_vocab::id llama_sample_top_p_top_k(
|
||||||
std::mt19937 & rng) {
|
std::mt19937 & rng) {
|
||||||
int n_logits = vocab.id_to_token.size();
|
int n_logits = vocab.id_to_token.size();
|
||||||
|
|
||||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
std::vector<std::pair<double, llama_vocab::id>> logits_id;
|
||||||
logits_id.reserve(n_logits);
|
logits_id.reserve(n_logits);
|
||||||
|
|
||||||
{
|
{
|
||||||
|
@ -623,7 +603,7 @@ size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t
|
||||||
|
|
||||||
char * pdst = (char *) dst;
|
char * pdst = (char *) dst;
|
||||||
|
|
||||||
for (int j = 0; j < n; j += k) {
|
for (int j = 0; j < n; j += k) {
|
||||||
uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
|
uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
|
||||||
uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
|
uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
|
||||||
uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
|
uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
|
||||||
|
@ -646,7 +626,7 @@ size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t
|
||||||
|
|
||||||
*(float *) pd = d;
|
*(float *) pd = d;
|
||||||
*(float *) pm = min;
|
*(float *) pm = min;
|
||||||
pd += bs;
|
pd += bs;
|
||||||
pm += bs;
|
pm += bs;
|
||||||
|
|
||||||
for (int l = 0; l < qk; l += 2) {
|
for (int l = 0; l < qk; l += 2) {
|
||||||
|
|
83
utils.h
83
utils.h
|
@ -3,7 +3,7 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <map>
|
#include <unordered_map>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <random>
|
#include <random>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
|
@ -13,33 +13,34 @@
|
||||||
//
|
//
|
||||||
|
|
||||||
struct gpt_params {
|
struct gpt_params {
|
||||||
int32_t seed = -1; // RNG seed
|
int32_t seed = -1; // RNG seed
|
||||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||||
int32_t n_predict = 128; // new tokens to predict
|
int32_t n_predict = 128; // new tokens to predict
|
||||||
int32_t repeat_last_n = 64; // last n tokens to penalize
|
int32_t repeat_last_n = 64; // last n tokens to penalize
|
||||||
int32_t n_ctx = 512; //context size
|
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
|
||||||
bool memory_f16 = false; // use f16 instead of f32 for memory kv
|
int32_t n_ctx = 512; //context size
|
||||||
|
|
||||||
// sampling parameters
|
// sampling parameters
|
||||||
int32_t top_k = 40;
|
int32_t top_k = 40;
|
||||||
float top_p = 0.95f;
|
float top_p = 0.95f;
|
||||||
float temp = 0.80f;
|
float temp = 0.80f;
|
||||||
float repeat_penalty = 1.30f;
|
float repeat_penalty = 1.10f;
|
||||||
|
|
||||||
int32_t n_batch = 8; // batch size for prompt processing
|
int32_t n_batch = 8; // batch size for prompt processing
|
||||||
|
|
||||||
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
||||||
std::string prompt = "";
|
std::string prompt = "";
|
||||||
|
|
||||||
bool random_prompt = false;
|
|
||||||
|
|
||||||
bool use_color = false; // use color to distinguish generations and inputs
|
|
||||||
|
|
||||||
bool interactive = false; // interactive mode
|
|
||||||
bool interactive_start = false; // reverse prompt immediately
|
|
||||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
|
||||||
bool ignore_eos = false; // do not stop generating after eos
|
bool memory_f16 = false; // use f16 instead of f32 for memory kv
|
||||||
|
bool random_prompt = false; // do not randomize prompt if none provided
|
||||||
|
bool use_color = false; // use color to distinguish generations and inputs
|
||||||
|
bool interactive = false; // interactive mode
|
||||||
|
bool interactive_start = false; // reverse prompt immediately
|
||||||
|
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||||
|
bool ignore_eos = false; // do not stop generating after eos
|
||||||
|
bool perplexity = false; // compute perplexity over the prompt
|
||||||
};
|
};
|
||||||
|
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||||
|
@ -48,52 +49,52 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||||
|
|
||||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Model file parsing
|
||||||
|
//
|
||||||
|
|
||||||
|
#define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||||
|
#define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
|
||||||
|
#define FILE_VERSION 1
|
||||||
|
|
||||||
//
|
//
|
||||||
// Vocab utils
|
// Vocab utils
|
||||||
//
|
//
|
||||||
|
|
||||||
struct gpt_vocab {
|
struct llama_vocab {
|
||||||
using id = int32_t;
|
using id = int32_t;
|
||||||
using token = std::string;
|
using token = std::string;
|
||||||
|
|
||||||
std::map<token, id> token_to_id;
|
struct token_score {
|
||||||
std::map<id, token> id_to_token;
|
token tok;
|
||||||
std::map<id, float> score;
|
float score;
|
||||||
|
};
|
||||||
|
|
||||||
|
std::unordered_map<token, id> token_to_id;
|
||||||
|
std::vector<token_score> id_to_token;
|
||||||
};
|
};
|
||||||
|
|
||||||
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
||||||
|
|
||||||
// poor-man's JSON parsing
|
// poor-man's JSON parsing
|
||||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
std::unordered_map<std::string, int32_t> json_parse(const std::string & fname);
|
||||||
|
|
||||||
// split text into tokens
|
// TODO: temporary until #77 is merged, need this now for some tokenizer tests
|
||||||
//
|
bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
|
||||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
|
||||||
//
|
|
||||||
// Regex (Python):
|
|
||||||
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
|
||||||
//
|
|
||||||
// Regex (C++):
|
|
||||||
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
|
||||||
//
|
|
||||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
|
||||||
|
|
||||||
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
|
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
|
||||||
// ref: https://github.com/google/sentencepiece
|
// ref: https://github.com/google/sentencepiece
|
||||||
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_view text, bool bos);
|
std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
|
||||||
|
|
||||||
// load the tokens from encoder.json
|
|
||||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
|
||||||
|
|
||||||
// sample next token given probabilities for each embedding
|
// sample next token given probabilities for each embedding
|
||||||
//
|
//
|
||||||
// - consider only the top K tokens
|
// - consider only the top K tokens
|
||||||
// - from them, consider only the top tokens with cumulative probability > P
|
// - from them, consider only the top tokens with cumulative probability > P
|
||||||
//
|
//
|
||||||
gpt_vocab::id llama_sample_top_p_top_k(
|
llama_vocab::id llama_sample_top_p_top_k(
|
||||||
const gpt_vocab & vocab,
|
const llama_vocab & vocab,
|
||||||
const float * logits,
|
const float * logits,
|
||||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
std::vector<llama_vocab::id> & last_n_tokens,
|
||||||
double repeat_penalty,
|
double repeat_penalty,
|
||||||
int top_k,
|
int top_k,
|
||||||
double top_p,
|
double top_p,
|
||||||
|
@ -101,7 +102,7 @@ gpt_vocab::id llama_sample_top_p_top_k(
|
||||||
std::mt19937 & rng);
|
std::mt19937 & rng);
|
||||||
|
|
||||||
// filer to top K tokens from list of logits
|
// filer to top K tokens from list of logits
|
||||||
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
|
void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Quantization
|
// Quantization
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue