diff --git a/.devops/llama-cli-cann.Dockerfile b/.devops/llama-cli-cann.Dockerfile new file mode 100644 index 000000000..db5ba2f25 --- /dev/null +++ b/.devops/llama-cli-cann.Dockerfile @@ -0,0 +1,44 @@ +ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8 + +FROM cosdt/cann:$ASCEND_VERSION AS build + +WORKDIR /app + +COPY . . + +RUN yum install -y gcc g++ cmake make +ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest +ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH +ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH} +ENV PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:${PYTHONPATH} +ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${PATH} +ENV ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME} +ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp +ENV TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit +ENV ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME} + +# find libascend_hal.so, because the drive hasn`t been mounted. +ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH + +RUN echo "Building with static libs" && \ + source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \ + cmake -B build -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \ + cmake --build build --config Release --target llama-cli + +# TODO: use image with NNRT +FROM cosdt/cann:$ASCEND_VERSION AS runtime +COPY --from=build /app/build/bin/llama-cli /llama-cli + +ENV LC_ALL=C.utf8 + +ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest +ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH +ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH} +ENV PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:${PYTHONPATH} +ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${PATH} +ENV ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME} +ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp +ENV TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit +ENV ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME} + +ENTRYPOINT ["/llama-cli" ] diff --git a/.github/workflows/bench.yml b/.github/workflows/bench.yml.disabled similarity index 97% rename from .github/workflows/bench.yml rename to .github/workflows/bench.yml.disabled index eb69b82c4..bfdbb4ef5 100644 --- a/.github/workflows/bench.yml +++ b/.github/workflows/bench.yml.disabled @@ -1,3 +1,6 @@ +# TODO: there have been some issues with the workflow, so disabling for now +# https://github.com/ggerganov/llama.cpp/issues/7893 +# # Benchmark name: Benchmark @@ -129,6 +132,8 @@ jobs: - name: Server bench id: server_bench + env: + HEAD_REF: ${{ github.head_ref || github.ref_name }} run: | set -eux @@ -137,7 +142,7 @@ jobs: python bench.py \ --runner-label ${{ env.RUNNER_LABEL }} \ --name ${{ github.job }} \ - --branch ${{ github.head_ref || github.ref_name }} \ + --branch $HEAD_REF \ --commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \ --scenario script.js \ --duration ${{ github.event.inputs.duration || env.DURATION }} \ diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index b9246659a..74b5d4f69 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -47,7 +47,7 @@ jobs: sysctl -a mkdir build cd build - cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF .. + cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF .. cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) - name: Test @@ -105,7 +105,7 @@ jobs: sysctl -a # Metal is disabled due to intermittent failures with Github runners not having a GPU: # https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313 - cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF + cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) - name: Test @@ -222,7 +222,7 @@ jobs: run: | mkdir build cd build - cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF + cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF cmake --build . --config Release -j $(nproc) - name: Test @@ -696,22 +696,20 @@ jobs: strategy: matrix: include: - - build: 'rpc-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON' - build: 'noavx-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx2-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON' - build: 'avx-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx512-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON' - build: 'openblas-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' - build: 'kompute-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON' - build: 'vulkan-x64' - defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON' + defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON' - build: 'llvm-arm64' defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' - build: 'msvc-arm64' diff --git a/.github/workflows/python-check-requirements.yml b/.github/workflows/python-check-requirements.yml index 4e0374fc6..46e80aecd 100644 --- a/.github/workflows/python-check-requirements.yml +++ b/.github/workflows/python-check-requirements.yml @@ -6,15 +6,13 @@ on: - '.github/workflows/python-check-requirements.yml' - 'scripts/check-requirements.sh' - 'convert*.py' - - 'requirements.txt' - - 'requirements/*.txt' + - '**/requirements*.txt' pull_request: paths: - '.github/workflows/python-check-requirements.yml' - 'scripts/check-requirements.sh' - 'convert*.py' - - 'requirements.txt' - - 'requirements/*.txt' + - '**/requirements*.txt' concurrency: group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} diff --git a/.gitignore b/.gitignore index c9b4d9983..9986ac6b1 100644 --- a/.gitignore +++ b/.gitignore @@ -79,7 +79,6 @@ models-mnt !models/ggml-vocab-*.gguf* # Zig - zig-out/ zig-cache/ @@ -130,3 +129,6 @@ poetry.toml # Scripts !/scripts/install-oneapi.bat + +# Test models for lora adapters +/lora-tests diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index b688f78ec..a9e000e52 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -5,6 +5,7 @@ - Execute [the full CI locally on your machine](ci/README.md) before publishing - Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs. - The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your convenience +- Consider allowing write access to your branch for faster review - If your PR becomes stale, don't hesitate to ping the maintainers in the comments # Pull requests (for collaborators) diff --git a/Makefile b/Makefile index f4ce4f1fb..332496cfc 100644 --- a/Makefile +++ b/Makefile @@ -19,6 +19,7 @@ BUILD_TARGETS = \ llama-imatrix \ llama-infill \ llama-llava-cli \ + llama-minicpmv-cli\ llama-lookahead \ llama-lookup \ llama-lookup-create \ @@ -762,6 +763,10 @@ ifdef GGML_VULKAN_MEMORY_DEBUG MK_CPPFLAGS += -DGGML_VULKAN_MEMORY_DEBUG endif +ifdef GGML_VULKAN_PERF + MK_CPPFLAGS += -DGGML_VULKAN_PERF +endif + ifdef GGML_VULKAN_VALIDATE MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE endif @@ -888,15 +893,16 @@ ggml/src/ggml-metal-embed.o: \ ggml/src/ggml-common.h @echo "Embedding Metal library" @sed -e '/#include "ggml-common.h"/r ggml/src/ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml/src/ggml-metal.metal > ggml/src/ggml-metal-embed.metal - $(eval TEMP_ASSEMBLY=$(shell mktemp)) - @echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY) - @echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY) - @echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY) - @echo ".incbin \"ggml/src/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY) - @echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY) - @echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY) - @$(AS) $(TEMP_ASSEMBLY) -o $@ - @rm -f ${TEMP_ASSEMBLY} + $(eval TEMP_ASSEMBLY=$(shell mktemp -d)) + @echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s + @echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s + @echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s + @echo ".incbin \"ggml/src/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s + @echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s + @echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s + $(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@ + @rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s + @rmdir ${TEMP_ASSEMBLY} endif endif # GGML_METAL @@ -1205,6 +1211,7 @@ clean: rm -rvf ggml/*.dll rm -rvf ggml/*.so rm -vrf ggml/src/*.o + rm -rvf ggml/src/llamafile/*.o rm -rvf common/build-info.cpp rm -vrf ggml/src/ggml-metal-embed.metal rm -vrf ggml/src/ggml-cuda/*.o @@ -1451,15 +1458,20 @@ libllava.a: examples/llava/llava.cpp \ $(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual llama-llava-cli: examples/llava/llava-cli.cpp \ - examples/llava/clip.h \ - examples/llava/clip.cpp \ - examples/llava/llava.h \ examples/llava/llava.cpp \ + examples/llava/llava.h \ + examples/llava/clip.cpp \ + examples/llava/clip.h \ $(OBJ_ALL) - $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) - $(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual - $(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp) - $(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual + +llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \ + examples/llava/llava.cpp \ + examples/llava/llava.h \ + examples/llava/clip.cpp \ + examples/llava/clip.h \ + $(OBJ_ALL) + $(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual ifeq ($(UNAME_S),Darwin) swift: examples/batched.swift diff --git a/README.md b/README.md index 1283f6805..04d315db7 100644 --- a/README.md +++ b/README.md @@ -105,6 +105,7 @@ Typically finetunes of the base models below are supported as well. - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca) - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) +- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) (instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md)) @@ -186,10 +187,12 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML - [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption +- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage **Infrastructure:** - [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp +- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs **Games:** - [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you. @@ -422,6 +425,7 @@ Please refer to [Build llama.cpp locally](./docs/build.md) | [CUDA](./docs/build.md#cuda) | Nvidia GPU | | [hipBLAS](./docs/build.md#hipblas) | AMD GPU | | [Vulkan](./docs/build.md#vulkan) | GPU | +| [CANN](./docs/build.md#cann) | Ascend NPU | ## Tools diff --git a/common/common.cpp b/common/common.cpp index 521f849e2..382d585a5 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -110,8 +110,34 @@ int32_t cpu_get_num_physical_cores() { if (result == 0) { return num_physical_cores; } -#elif defined(_WIN32) - //TODO: Implement +#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later + // TODO: windows + arm64 + mingw64 + unsigned int n_threads_win = std::thread::hardware_concurrency(); + unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4; + + DWORD buffer_size = 0; + if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) { + if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { + return default_threads; + } + } + + std::vector buffer(buffer_size); + if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast(buffer.data()), &buffer_size)) { + return default_threads; + } + + int32_t num_physical_cores = 0; + PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast(buffer.data()); + while (buffer_size > 0) { + if (info->Relationship == RelationProcessorCore) { + num_physical_cores += info->Processor.GroupCount; + } + buffer_size -= info->Size; + info = reinterpret_cast(reinterpret_cast(info) + info->Size); + } + + return num_physical_cores > 0 ? num_physical_cores : default_threads; #endif unsigned int n_threads = std::thread::hardware_concurrency(); return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; @@ -684,14 +710,24 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa } if (arg == "--lora") { CHECK_ARG - params.lora_adapter.emplace_back(argv[i], 1.0f); + params.lora_adapters.push_back({ + std::string(argv[i]), + 1.0, + }); return true; } if (arg == "--lora-scaled") { CHECK_ARG - const char* lora_adapter = argv[i]; + std::string lora_adapter = argv[i]; CHECK_ARG - params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i])); + params.lora_adapters.push_back({ + lora_adapter, + std::stof(argv[i]), + }); + return true; + } + if (arg == "--lora-init-without-apply") { + params.lora_init_without_apply = true; return true; } if (arg == "--control-vector") { @@ -1654,6 +1690,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" }); options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY", "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity }); + options.push_back({ "server", " --lora-init-without-apply", "load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"}); #ifndef LOG_DISABLE_LOGS options.push_back({ "logging" }); @@ -1716,7 +1753,13 @@ std::string gpt_params_get_system_info(const gpt_params & params) { if (params.n_threads_batch != -1) { os << " (n_threads_batch = " << params.n_threads_batch << ")"; } +#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later + // TODO: windows + arm64 + mingw64 + DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS); + os << " / " << logicalProcessorCount << " | " << llama_print_system_info(); +#else os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); +#endif return os.str(); } @@ -1766,6 +1809,17 @@ std::string string_get_sortable_timestamp() { return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } +void string_replace_all(std::string & s, const std::string & search, const std::string & replace) { + if (search.empty()) { + return; // Avoid infinite loop if 'search' is an empty string + } + size_t pos = 0; + while ((pos = s.find(search, pos)) != std::string::npos) { + s.replace(pos, search.length(), replace); + pos += replace.length(); + } +} + void string_process_escapes(std::string & input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; @@ -2039,8 +2093,8 @@ std::string fs_get_cache_file(const std::string & filename) { // // Model utils // - -std::tuple llama_init_from_gpt_params(gpt_params & params) { +struct llama_init_result llama_init_from_gpt_params(gpt_params & params) { + llama_init_result iparams; auto mparams = llama_model_params_from_gpt_params(params); llama_model * model = nullptr; @@ -2055,7 +2109,7 @@ std::tuple llama_init_from_gpt_par if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); - return std::make_tuple(nullptr, nullptr); + return iparams; } auto cparams = llama_context_params_from_gpt_params(params); @@ -2064,7 +2118,7 @@ std::tuple llama_init_from_gpt_par if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } if (!params.control_vectors.empty()) { @@ -2075,7 +2129,7 @@ std::tuple llama_init_from_gpt_par if (cvec.n_embd == -1) { llama_free(lctx); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } int err = llama_control_vector_apply(lctx, @@ -2087,21 +2141,26 @@ std::tuple llama_init_from_gpt_par if (err) { llama_free(lctx); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } } - for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { - const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]); - float lora_scale = std::get<1>(params.lora_adapter[i]); - auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str()); - if (adapter == nullptr) { - fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); + // load and optionally apply lora adapters + for (auto & la : params.lora_adapters) { + llama_lora_adapter_container loaded_la; + loaded_la.path = la.path; + loaded_la.scale = la.scale; + loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str()); + if (loaded_la.adapter == nullptr) { + fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); llama_free(lctx); llama_free_model(model); - return std::make_tuple(nullptr, nullptr); + return iparams; } - llama_lora_adapter_set(lctx, adapter, lora_scale); + iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters + } + if (!params.lora_init_without_apply) { + llama_lora_adapters_apply(lctx, iparams.lora_adapters); } if (params.ignore_eos) { @@ -2129,13 +2188,26 @@ std::tuple llama_init_from_gpt_par tmp.clear(); tmp.push_back(decoder_start_token_id); } - llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); + if (llama_model_has_decoder(model)) { + llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); + } llama_kv_cache_clear(lctx); llama_synchronize(lctx); llama_reset_timings(lctx); } - return std::make_tuple(model, lctx); + iparams.model = model; + iparams.context = lctx; + return iparams; +} + +void llama_lora_adapters_apply(struct llama_context * ctx, std::vector & lora_adapters) { + llama_lora_adapter_clear(ctx); + for (auto & la : lora_adapters) { + if (la.scale != 0.0f) { + llama_lora_adapter_set(ctx, la.adapter, la.scale); + } + } } struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { @@ -2662,12 +2734,6 @@ std::string llama_detokenize(llama_context * ctx, const std::vector return text; } -bool llama_should_add_bos_token(const llama_model * model) { - const int add_bos = llama_add_bos_token(model); - - return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); -} - // // Chat template utils // @@ -3160,19 +3226,18 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l } fprintf(stream, "lora:\n"); - for (std::tuple la : params.lora_adapter) { - if (std::get<1>(la) != 1.0f) { - continue; + for (auto & la : params.lora_adapters) { + if (la.scale == 1.0f) { + fprintf(stream, " - %s\n", la.path.c_str()); } - fprintf(stream, " - %s\n", std::get<0>(la).c_str()); } fprintf(stream, "lora_scaled:\n"); - for (std::tuple la : params.lora_adapter) { - if (std::get<1>(la) == 1.0f) { - continue; + for (auto & la : params.lora_adapters) { + if (la.scale != 1.0f) { + fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale); } - fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); } + fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false"); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); diff --git a/common/common.h b/common/common.h index 8240ff99b..df23460a5 100644 --- a/common/common.h +++ b/common/common.h @@ -33,6 +33,15 @@ #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf" +struct llama_lora_adapter_info { + std::string path; + float scale; +}; + +struct llama_lora_adapter_container : llama_lora_adapter_info { + struct llama_lora_adapter * adapter; +}; + // build info extern int LLAMA_BUILD_NUMBER; extern char const * LLAMA_COMMIT; @@ -126,8 +135,8 @@ struct gpt_params { std::vector antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) std::vector kv_overrides; - // TODO: avoid tuple, use struct - std::vector> lora_adapter; // lora adapter path with user defined scale + bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply) + std::vector lora_adapters; // lora adapter path with user defined scale std::vector control_vectors; // control vector with user defined scale @@ -277,6 +286,8 @@ std::vector string_split(std::string input, char separator); std::string string_strip(const std::string & str); std::string string_get_sortable_timestamp(); +void string_replace_all(std::string & s, const std::string & search, const std::string & replace); + template static std::vector string_split(const std::string & str, char delim) { std::vector values; @@ -308,8 +319,13 @@ std::string fs_get_cache_file(const std::string & filename); // Model utils // -// TODO: avoid tuplue, use struct -std::tuple llama_init_from_gpt_params(gpt_params & params); +struct llama_init_result { + struct llama_model * model = nullptr; + struct llama_context * context = nullptr; + std::vector lora_adapters; +}; + +struct llama_init_result llama_init_from_gpt_params(gpt_params & params); struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); @@ -317,6 +333,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params); struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params); +// clear LoRA adapters from context, then apply new list of adapters +void llama_lora_adapters_apply(struct llama_context * ctx, std::vector & lora_adapters); + // Batch utils void llama_batch_clear(struct llama_batch & batch); @@ -361,10 +380,6 @@ std::string llama_detokenize( const std::vector & tokens, bool special = true); -// Uses the value from the model metadata if possible, otherwise -// defaults to true when model type is SPM, otherwise false. -bool llama_should_add_bos_token(const llama_model * model); - // // Chat template utils // diff --git a/common/grammar-parser.cpp b/common/grammar-parser.cpp index a518b766d..438452eab 100644 --- a/common/grammar-parser.cpp +++ b/common/grammar-parser.cpp @@ -369,6 +369,9 @@ namespace grammar_parser { } // Validate the state to ensure that all rules are defined for (const auto & rule : state.rules) { + if (rule.empty()) { + throw std::runtime_error("Undefined rule"); + } for (const auto & elem : rule) { if (elem.type == LLAMA_GRETYPE_RULE_REF) { // Ensure that the rule at that location exists diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 8b33c30d9..6a1a3a937 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -251,12 +251,7 @@ class Model: return [(self.map_tensor_name(name), data_torch)] - def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: - del name, new_name, bid, n_dims # unused - - return False - - def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: + def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: del name, new_name, bid, n_dims # unused return False @@ -285,55 +280,47 @@ class Model: for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)): data: np.ndarray # type hint n_dims = len(data.shape) - data_dtype = data.dtype - data_qtype: gguf.GGMLQuantizationType | None = None - - # when both are True, f32 should win - extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims) - extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims) + data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims) # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors - # Conditions should closely match those in llama_model_quantize_internal in llama.cpp - extra_f32 = any(cond for cond in ( - extra_f32, - n_dims == 1, - new_name.endswith("_norm.weight"), - )) - - # Some tensor types are always in float32 - extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in ( - gguf.MODEL_TENSOR.FFN_GATE_INP, - gguf.MODEL_TENSOR.POS_EMBD, - gguf.MODEL_TENSOR.TOKEN_TYPES, - )) - - # if f16 desired, convert any float32 2-dim weight tensors to float16 - extra_f16 = any(cond for cond in ( - extra_f16, - (name.endswith(".weight") and n_dims >= 2), - )) - - if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32: - if self.ftype == gguf.LlamaFileType.MOSTLY_BF16: - data = gguf.quantize_bf16(data) - assert data.dtype == np.uint16 - data_qtype = gguf.GGMLQuantizationType.BF16 - - elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data): - data = gguf.quantize_q8_0(data) - assert data.dtype == np.uint8 - data_qtype = gguf.GGMLQuantizationType.Q8_0 - - else: # default to float16 for quantized tensors - if data_dtype != np.float16: - data = data.astype(np.float16) - data_qtype = gguf.GGMLQuantizationType.F16 - - if data_qtype is None: # by default, convert to float32 - if data_dtype != np.float32: - data = data.astype(np.float32) + if n_dims <= 1 or new_name.endswith("_norm.weight"): data_qtype = gguf.GGMLQuantizationType.F32 + # Conditions should closely match those in llama_model_quantize_internal in llama.cpp + # Some tensor types are always in float32 + if data_qtype is False and ( + any( + self.match_model_tensor_name(new_name, key, bid) + for key in ( + gguf.MODEL_TENSOR.FFN_GATE_INP, + gguf.MODEL_TENSOR.POS_EMBD, + gguf.MODEL_TENSOR.TOKEN_TYPES, + ) + ) + or not name.endswith(".weight") + ): + data_qtype = gguf.GGMLQuantizationType.F32 + + # No override (data_qtype is False), or wants to be quantized (data_qtype is True) + if isinstance(data_qtype, bool): + if self.ftype == gguf.LlamaFileType.ALL_F32: + data_qtype = gguf.GGMLQuantizationType.F32 + elif self.ftype == gguf.LlamaFileType.MOSTLY_F16: + data_qtype = gguf.GGMLQuantizationType.F16 + elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16: + data_qtype = gguf.GGMLQuantizationType.BF16 + elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0: + data_qtype = gguf.GGMLQuantizationType.Q8_0 + else: + raise ValueError(f"Unknown file type: {self.ftype.name}") + + try: + data = gguf.quants.quantize(data, data_qtype) + except gguf.QuantError as e: + logger.warning("%s, %s", e, "falling back to F16") + data_qtype = gguf.GGMLQuantizationType.F16 + data = gguf.quants.quantize(data, data_qtype) + shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape # reverse shape to make it similar to the internal ggml dimension order @@ -603,6 +590,15 @@ class Model: if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249": # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M res = "smollm" + if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7": + # ref: https://huggingface.co/bigscience/bloom + res = "bloom" + if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21": + # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small + res = "gpt3-finnish" + if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": + # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct + res = "exaone" if res is None: logger.warning("\n") @@ -906,7 +902,7 @@ class GPTNeoXModel(Model): return tensors -@Model.register("BloomForCausalLM") +@Model.register("BloomForCausalLM", "BloomModel") class BloomModel(Model): model_arch = gguf.MODEL_ARCH.BLOOM @@ -1765,7 +1761,7 @@ class DbrxModel(Model): return [(new_name, data_torch)] - def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: + def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: del name, new_name, bid # unused return n_dims > 1 @@ -2506,6 +2502,112 @@ class NomicBertModel(BertModel): self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) +@Model.register("XLMRobertaModel") +class XLMRobertaModel(BertModel): + model_arch = gguf.MODEL_ARCH.BERT + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # we need the pad_token_id to know how to chop down position_embd matrix + if (pad_token_id := self.hparams.get("pad_token_id")) is not None: + self._position_offset = 1 + pad_token_id + if "max_position_embeddings" in self.hparams: + self.hparams["max_position_embeddings"] -= self._position_offset + else: + self._position_offset = None + + def set_vocab(self): + # to avoid TypeError: Descriptors cannot be created directly + # exception when importing sentencepiece_model_pb2 + os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'sentencepiece.bpe.model' + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") + + sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces + precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + + # realign tokens (see HF tokenizer code) + tokens = [b'', b'', b'', b''] + tokens[3:-1] + scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1] + toktypes = [ + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.UNKNOWN, + ] + toktypes[3:-1] + + self.gguf_writer.add_tokenizer_model("t5") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + self.gguf_writer.add_token_type_count(1) + self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) + if precompiled_charsmap: + self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + self.gguf_writer.add_add_bos_token(True) + self.gguf_writer.add_add_eos_token(True) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # position embeddings start at pad_token_id + 1, so just chop down the weight tensor + if name == "embeddings.position_embeddings.weight": + if self._position_offset is not None: + data_torch = data_torch[self._position_offset:,:] + + return super().modify_tensors(data_torch, name, bid) + + @Model.register("GemmaForCausalLM") class GemmaModel(Model): model_arch = gguf.MODEL_ARCH.GEMMA @@ -2680,18 +2782,22 @@ class MambaModel(Model): return [(new_name, data_torch)] - def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: - del n_dims # unused - - return bid is not None and new_name in ( - self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [ + def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: + if bid is not None and new_name in ( + self.format_tensor_name( + n, bid, ".weight" if name.endswith(".weight") else "" + ) + for n in [ gguf.MODEL_TENSOR.SSM_CONV1D, gguf.MODEL_TENSOR.SSM_X, gguf.MODEL_TENSOR.SSM_DT, gguf.MODEL_TENSOR.SSM_A, gguf.MODEL_TENSOR.SSM_D, ] - ) + ): + return gguf.GGMLQuantizationType.F32 + + return super().tensor_force_quant(name, new_name, bid, n_dims) @Model.register("CohereForCausalLM") @@ -3227,6 +3333,145 @@ class T5Model(Model): return [(self.map_tensor_name(name), data_torch)] +@Model.register("T5EncoderModel") +class T5EncoderModel(Model): + model_arch = gguf.MODEL_ARCH.T5ENCODER + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.shared_token_embeddings_found = False + + def set_vocab(self): + # to avoid TypeError: Descriptors cannot be created directly + # exception when importing sentencepiece_model_pb2 + os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'tokenizer.model' + + # many older models use spiece.model tokenizer model filename + if not tokenizer_path.is_file(): + tokenizer_path = self.dir_model / 'spiece.model' + + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") + + sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + + # some models like Pile-T5 family use BPE tokenizer instead of Unigram + if sentencepiece_model.trainer_spec.model_type == 2: # BPE + # assure the tokenizer model file name is correct + assert tokenizer_path.name == 'tokenizer.model' + return self._set_vocab_sentencepiece() + else: + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces + precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + for key in added_tokens_json: + token_id = added_tokens_json[key] + if token_id >= vocab_size: + logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + tokens[token_id] = key.encode("utf-8") + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + + self.gguf_writer.add_tokenizer_model("t5") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) + if precompiled_charsmap: + self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + self.gguf_writer.add_add_bos_token(False) + self.gguf_writer.add_add_eos_token(True) + + def set_gguf_parameters(self): + if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: + logger.warning("Couldn't find context length in config.json, assuming default value of 512") + n_ctx = 512 + self.gguf_writer.add_context_length(n_ctx) + self.gguf_writer.add_embedding_length(self.hparams["d_model"]) + self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) + self.gguf_writer.add_block_count(self.hparams["num_layers"]) + self.gguf_writer.add_head_count(self.hparams["num_heads"]) + self.gguf_writer.add_key_length(self.hparams["d_kv"]) + self.gguf_writer.add_value_length(self.hparams["d_kv"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight", + # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored + # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder + # and decoder and ignore the remaining ones. + if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: + if not self.shared_token_embeddings_found: + name = "shared.weight" + self.shared_token_embeddings_found = True + else: + logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") + return [] + + return [(self.map_tensor_name(name), data_torch)] + + @Model.register("JAISLMHeadModel") class JaisModel(Model): model_arch = gguf.MODEL_ARCH.JAIS @@ -3498,6 +3743,118 @@ class ChatGLMModel(Model): name = name.removeprefix("transformer.") return [(self.map_tensor_name(name), data_torch)] + +@Model.register("NemotronForCausalLM") +class NemotronModel(Model): + model_arch = gguf.MODEL_ARCH.NEMOTRON + + def set_vocab(self): + self._set_vocab_sentencepiece() + self.gguf_writer.add_pad_token_id(0) + self.gguf_writer.add_unk_token_id(1) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"]) + self.gguf_writer.add_layer_norm_eps(f_norm_eps) + + # * Partial RoPE + rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"]) + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) + + # * RopeScaling for Nemotron + if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + else: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side + # model.layers.{l}.input_layernorm.weight + # model.layers.{l}.post_attention_layernorm.weight + # model.norm.weight + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("ExaoneForCausalLM") +class ExaoneModel(Model): + model_arch = gguf.MODEL_ARCH.EXAONE + + def set_gguf_parameters(self): + hparams = self.hparams + + assert(hparams["activation_function"] == "silu") + + max_position_embeddings = hparams["max_position_embeddings"] + embed_dim = hparams["hidden_size"] + num_heads = hparams["num_attention_heads"] + num_kv_heads = hparams.get("num_key_value_heads", num_heads) + layer_norm_eps = hparams["layer_norm_epsilon"] + intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim + num_layers = hparams["num_layers"] + # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0 + # attention_dropout_rate = hparams["attention_dropout"] + # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0 + # embed_dropout_rate = hparams["embed_dropout"] + self.gguf_writer.add_embedding_length(embed_dim) + self.gguf_writer.add_head_count(num_heads) + self.gguf_writer.add_head_count_kv(num_kv_heads) + self.gguf_writer.add_context_length(max_position_embeddings) + self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps) + self.gguf_writer.add_feed_forward_length(intermediate_size) + self.gguf_writer.add_block_count(num_layers) + self.gguf_writer.add_file_type(self.ftype) + + if (rope_theta := self.hparams.get("rope_theta")) is not None: + self.gguf_writer.add_rope_freq_base(rope_theta) + rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True) + rotary_factor = rotary_factor if rotary_factor is not None else 1.0 + self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) + if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]: + if hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"]) + + def prepare_tensors(self): + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10000.0) + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 8.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + assert low_freq_wavelen != high_freq_wavelen + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32)) + + super().prepare_tensors() + ###### CONVERSION LOGIC ###### diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index d5a2d925e..ff4955f9c 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -94,6 +94,9 @@ models = [ {"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", }, {"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", }, {"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, + {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, + {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, + {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, ] diff --git a/convert_llama_ggml_to_gguf.py b/convert_llama_ggml_to_gguf.py index 7b00b4398..29b14e98d 100755 --- a/convert_llama_ggml_to_gguf.py +++ b/convert_llama_ggml_to_gguf.py @@ -116,7 +116,7 @@ class Tensor: assert quant is not None, 'Unknown tensor type' (blksize, tysize) = quant offset += 12 - self.dtype= dtype + self.dtype= gguf.GGMLQuantizationType(dtype) self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)]) offset += 4 * n_dims self.name = bytes(data[offset:offset + name_len]) diff --git a/docs/backend/CANN.md b/docs/backend/CANN.md new file mode 100644 index 000000000..6bdd9d2da --- /dev/null +++ b/docs/backend/CANN.md @@ -0,0 +1,259 @@ +# llama.cpp for CANN + + - [Background](#background) + - [News](#news) + - [OS](#os) + - [Hardware](#hardware) + - [Model Supports](#model-supports) + - [DataType Supports](#datatype-supports) + - [Docker](#docker) + - [Linux](#linux) + - [TODO](#todo) + + +## Background + +**Ascend NPU** is a range of AI processors using Neural Processing Unit. It will efficiently handle matrix-matrix multiplication, dot-product and scalars. + +**CANN** (Compute Architecture for Neural Networks) is a heterogeneous computing architecture for AI scenarios, providing support for multiple AI frameworks on the top and serving AI processors and programming at the bottom. It plays a crucial role in bridging the gap between upper and lower layers, and is a key platform for improving the computing efficiency of Ascend AI processors. Meanwhile, it offers a highly efficient and easy-to-use programming interface for diverse application scenarios, allowing users to rapidly build AI applications and services based on the Ascend platform. + +**Llama.cpp + CANN** + +The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the ability of AscendC and ACLNN which are intergrated to CANN Toolkit and kernels to using Ascend NPU directly. + +## News + +- 2024.8 + - Support `Q4_0` and `Q8_0` data type for Ascend NPU. +- 2024.7 + - Create CANN backend for Ascend NPU. + +## OS + +| OS | Status | Verified | +|:-------:|:-------:|:----------------------------------------------:| +| Linux | Support | Ubuntu 22.04, OpenEuler22.03 | + + +## Hardware + +### Ascend NPU + +**Verified devices** +| Ascend NPU | Status | +|:-----------------------------:|:-------:| +| Atlas 300T A2 | Support | + +*Notes:* + +- If you have trouble with Ascend NPU device, please create a issue with **[CANN]** prefix/tag. +- If you run successfully with your Ascend NPU device, please help update the upper table. + + +## Model Supports + +| Model Name | FP16 | Q8_0 | Q4_0 | +|:----------------------------|:-----:|:----:|:----:| +| AquilaChat2-7B | √ | √ | √ | +| Baichuan-7b | √ | √ | √ | +| Baichuan2-7B-Chat | √ | √ | √ | +| bitnet_b1_58-large | √ | √ | √ | +| bloom-560m | √ | x | √ | +| bloomz-alpaca-560m | √ | x | √ | +| c4ai-command-r-35B-v01 | x | x | x | +| chatglm3-6B | x | x | x | +| chinese-alpaca-2-1.3b | √ | √ | √ | +| CodeShell-7B | √ | √ | √ | +| deepseek-ai_deepseek-coder-1.3B-base | x | x | x | +| deepseek-ai_DeepSeek-V2-Lite | x | x | x | +| deepseek-coder-6.7B-instruct | x | x | x | +| DeepSeek-V2-Lite-64x1.5B | x | x | x | +| falcon-7b-instruct | √ | √ | √ | +| flan-t5-large | √ | √ | √ | +| gemma-2-9b-it | √ | √ | √ | +| glm-4-9B | x | x | x | +| gpt2 | √ | √ | √ | +| Gpt2-163M | √ | √ | √ | +| granite-3B-code-instruct | √ | √ | √ | +| GritLM-7B | √ | √ | √ | +| internlm2_5-7b-chat | √ | √ | √ | +| koala-7B-HF | √ | √ | √ | +| Llama-2-7b-chat-hf | √ | √ | √ | +| Llama-3-Smaug-8B | √ | √ | √ | +| Llama2-Chinese-7b-Chat | √ | √ | √ | +| Llama3-8B | √ | √ | √ | +| Llama3-8b-chinese | √ | √ | √ | +| mamba-130m-hf | √ | √ | √ | +| Mistral-7B-Instruct-v0.2 | √ | √ | √ | +| Mixtral-8x7B-Instruct-v0.1 | x | √ | √ | +| mpt-7B | √ | √ | √ | +| OLMo-1B-hf | √ | √ | √ | +| OpenELM-3B-Instruct | √ | √ | √ | +| Orion-14b-base | √ | √ | √ | +| phi1 | x | x | x | +| phi2 | x | x | x | +| Phi-3-mini-4k-instruct | √ | √ | √ | +| plamo-13b | √ | √ | √ | +| pythia-70M | x | x | x | +| Qwen-7B | √ | √ | √ | +| Qwen2-1.5B-Instruct | √ | x | √ | +| Refact-1_6B-fim | √ | √ | √ | +| SmolLM-135M | √ | √ | √ | +| stablelm-zephyr | x | x | x | +| stablelm-2-zephyr-1_6b | x | x | x | +| starcoderbase-1b | √ | √ | √ | +| starcoder2-3b | √ | √ | √ | +| vigogne-7b-chat | √ | √ | √ | +| xverse-7b-chat | √ | √ | √ | +| Yi-6b-Chat | √ | √ | √ | + + + +## DataType Supports + +| DataType | Status | +|:----------------------:|:-------:| +| FP16 | Support | +| Q8_0 | Support | +| Q4_0 | Support | + +## Docker + +### Build Images +You can get a image with llama.cpp in one command. +```sh +docker build -t llama-cpp-cann -f .devops/llama-cli-cann.Dockerfile . +``` + +### Run container + +```sh +# Find all cards. +npu-smi info + +# Select the cards that you want to use, make sure these cards are not used by someone. +# Following using cards of device0. +docker run --name llamacpp --device /dev/davinci0 --device /dev/davinci_manager --device /dev/devmm_svm --device /dev/hisi_hdc -v /usr/local/dcmi:/usr/local/dcmi -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi -v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ -v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info -v /PATH_TO_YOUR_MODELS/:/app/models -it llama-cpp-cann -m /app/models/MODEL_PATH -ngl 32 -p "Building a website can be done in 10 simple steps:" +``` + +*Notes:* + +- You may need to install Ascend Driver and firmware on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*. + +## Linux + +### I. Setup Environment + +1. **Install Ascend Driver and firmware** + + ```sh + # create driver running user. + sudo groupadd -g HwHiAiUser + sudo useradd -g HwHiAiUser -d /home/HwHiAiUser -m HwHiAiUser -s /bin/bash + sudo usermod -aG HwHiAiUser $USER + + # download driver from https://www.hiascend.com/hardware/firmware-drivers/community according to your system + # and install driver. + sudo sh Ascend-hdk-910b-npu-driver_x.x.x_linux-{arch}.run --full --install-for-all + ``` + + Once installed, run `npu-smi info` to check whether driver is installed successfully. + ```sh + +-------------------------------------------------------------------------------------------+ + | npu-smi 24.1.rc2 Version: 24.1.rc2 | + +----------------------+---------------+----------------------------------------------------+ + | NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)| + | Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) | + +======================+===============+====================================================+ + | 2 xxx | OK | 64.4 51 15 / 15 | + | 0 | 0000:01:00.0 | 0 1873 / 15077 0 / 32768 | + +======================+===============+====================================================+ + | 5 xxx | OK | 64.0 52 15 / 15 | + | 0 | 0000:81:00.0 | 0 1874 / 15077 0 / 32768 | + +======================+===============+====================================================+ + | No running processes found in NPU 2 | + +======================+===============+====================================================+ + | No running processes found in NPU 5 | + +======================+===============+====================================================+ + ``` + +2. **Install Ascend Firmware** + ```sh + # download driver from https://www.hiascend.com/hardware/firmware-drivers/community according to your system + # and install driver. + sudo sh Ascend-hdk-910b-npu-firmware_x.x.x.x.X.run --full + ``` + If the following messaage appers, firmware is installed successfully. + ```sh + Firmware package installed successfully! + ``` + + +3. **Install CANN toolkit and kernels** + + CANN toolkit and kernels can be obtained from the official [CANN Toolkit](https://www.hiascend.com/zh/developer/download/community/result?module=cann) page. + + Please download the corresponding version that satified your system. The minimum version required is 8.0.RC2.alpha002 and here is the install command. + ```sh + pip3 install attrs numpy decorator sympy cffi pyyaml pathlib2 psutil protobuf scipy requests absl-py wheel typing_extensions + sh Ascend-cann-toolkit_8.0.RC2.alpha002_linux-aarch64.run --install + sh Ascend-cann-kernels-910b_8.0.RC2.alpha002_linux.run --install + ``` + + Set Ascend Variables: + ```sh + echo "source ~/Ascend/ascend-toolkit/set_env.sh" >> ~/.bashrc + source ~/.bashrc + ``` + +Upon a successful installation, CANN is enabled for the available ascend devices. + +### II. Build llama.cpp + +```sh +cmake -B build -DGGML_CANN=on -DCMAKE_BUILD_TYPE=release +cmake --build build --config release +``` + +### III. Run the inference + +1. **Retrieve and prepare model** + + You can refer to the general [*Prepare and Quantize*](../../README.md#prepare-and-quantize) guide for model prepration. + + **Notes**: + + - CANN backend only supports FP16/Q4_0/Q8_0 models currently. + +2. **Launch inference** + + There are two device selection modes: + + - Single device: Use one device target specified by the user. + - Multiple devices: Automatically choose the devices with the same backend. + + | Device selection | Parameter | + |:----------------:|:--------------------------------------:| + | Single device | --split-mode none --main-gpu DEVICE_ID | + | Multiple devices | --split-mode layer (default) | + + Examples: + + - Use device 0: + + ```sh + ./build/bin/llama-cli -m path_to_model -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0 + ``` + + - Use multiple devices: + + ```sh + ./build/bin/llama-cli -m path_to_model -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer + ``` + +### **GitHub contribution**: +Please add the **[CANN]** prefix/tag in issues/PRs titles to help the CANN-team check/address them without delay. + + +## TODO +- Support more models and data types. diff --git a/docs/backend/SYCL.md b/docs/backend/SYCL.md index d36ac0a15..59a39fbb6 100644 --- a/docs/backend/SYCL.md +++ b/docs/backend/SYCL.md @@ -80,7 +80,14 @@ The following release is verified with good quality: ### Intel GPU -**Verified devices** +SYCL backend supports Intel GPU Family: + +- Intel Data Center Max Series +- Intel Flex Series, Arc Series +- Intel Built-in Arc GPU +- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)). + +#### Verified devices | Intel GPU | Status | Verified Model | |-------------------------------|---------|---------------------------------------| @@ -88,7 +95,7 @@ The following release is verified with good quality: | Intel Data Center Flex Series | Support | Flex 170 | | Intel Arc Series | Support | Arc 770, 730M, Arc A750 | | Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake | -| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 | +| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 | *Notes:* @@ -237,6 +244,13 @@ Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA devic ### II. Build llama.cpp #### Intel GPU + +``` +./examples/sycl/build.sh +``` + +or + ```sh # Export relevant ENV variables source /opt/intel/oneapi/setvars.sh @@ -276,23 +290,26 @@ cmake --build build --config Release -j -v ### III. Run the inference -1. Retrieve and prepare model +#### Retrieve and prepare model You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example. -2. Enable oneAPI running environment +##### Check device + +1. Enable oneAPI running environment ```sh source /opt/intel/oneapi/setvars.sh ``` -3. List devices information +2. List devices information Similar to the native `sycl-ls`, available SYCL devices can be queried as follow: ```sh ./build/bin/llama-ls-sycl-device ``` + This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following: ``` found 2 SYCL devices: @@ -304,12 +321,37 @@ found 2 SYCL devices: | 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216| ``` +#### Choose level-zero devices -4. Launch inference +|Chosen Device ID|Setting| +|-|-| +|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action| +|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`| +|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`| + +#### Execute + +Choose one of following methods to run. + +1. Script + +- Use device 0: + +```sh +./examples/sycl/run_llama2.sh 0 +``` +- Use multiple devices: + +```sh +./examples/sycl/run_llama2.sh +``` + +2. Command line +Launch inference There are two device selection modes: -- Single device: Use one device target specified by the user. +- Single device: Use one device assigned by user. Default device id is 0. - Multiple devices: Automatically choose the devices with the same backend. In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR. @@ -326,11 +368,6 @@ Examples: ```sh ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0 ``` -or run by script: - -```sh -./examples/sycl/run_llama2.sh 0 -``` - Use multiple devices: @@ -338,12 +375,6 @@ or run by script: ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer ``` -Otherwise, you can run the script: - -```sh -./examples/sycl/run_llama2.sh -``` - *Notes:* - Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow: @@ -390,7 +421,7 @@ c. Verify installation In the oneAPI command line, run the following to print the available SYCL devices: ``` -sycl-ls +sycl-ls.exe ``` There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device: @@ -411,6 +442,18 @@ b. The new Visual Studio will install Ninja as default. (If not, please install ### II. Build llama.cpp +You could download the release package for Windows directly, which including binary files and depended oneAPI dll files. + +Choose one of following methods to build from source code. + +1. Script + +```sh +.\examples\sycl\win-build-sycl.bat +``` + +2. CMake + On the oneAPI command line window, step into the llama.cpp main directory and run the following: ``` @@ -425,12 +468,8 @@ cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPI cmake --build build --config Release -j ``` -Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions: -```sh -.\examples\sycl\win-build-sycl.bat -``` - Or, use CMake presets to build: + ```sh cmake --preset x64-windows-sycl-release cmake --build build-x64-windows-sycl-release -j --target llama-cli @@ -442,7 +481,9 @@ cmake --preset x64-windows-sycl-debug cmake --build build-x64-windows-sycl-debug -j --target llama-cli ``` -Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project. +3. Visual Studio + +You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project. *Notes:* @@ -450,23 +491,25 @@ Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choos ### III. Run the inference -1. Retrieve and prepare model +#### Retrieve and prepare model -You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example. +You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example. -2. Enable oneAPI running environment +##### Check device + +1. Enable oneAPI running environment On the oneAPI command line window, run the following and step into the llama.cpp directory: ``` "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 ``` -3. List devices information +2. List devices information Similar to the native `sycl-ls`, available SYCL devices can be queried as follow: ``` -build\bin\ls-sycl-device.exe +build\bin\llama-ls-sycl-device.exe ``` This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following: @@ -479,9 +522,27 @@ found 2 SYCL devices: | 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216| ``` +#### Choose level-zero devices +|Chosen Device ID|Setting| +|-|-| +|0|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action| +|1|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"`| +|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`| -4. Launch inference +#### Execute + +Choose one of following methods to run. + +1. Script + +``` +examples\sycl\win-run-llama2.bat +``` + +2. Command line + +Launch inference There are two device selection modes: @@ -508,11 +569,7 @@ build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website ca ``` build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer ``` -Otherwise, run the following wrapper script: -``` -.\examples\sycl\win-run-llama2.bat -``` Note: @@ -526,17 +583,18 @@ Or use 1 SYCL GPUs: [0] with Max compute units:512 ``` + ## Environment Variable #### Build | Name | Value | Function | |--------------------|-----------------------------------|---------------------------------------------| -| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. | +| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.
FP32 path - recommended for better perforemance than FP16 on quantized model| | GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. | | GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. | -| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. | -| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. | +| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. | +| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. | #### Runtime @@ -572,9 +630,18 @@ use 1 SYCL GPUs: [0] with Max compute units:512 ``` Otherwise, please double-check the GPU driver installation steps. +- Can I report Ollama issue on Intel GPU to llama.cpp SYCL backend? + + No. We can't support Ollama issue directly, because we aren't familiar with Ollama. + + Sugguest reproducing on llama.cpp and report similar issue to llama.cpp. We will surpport it. + + It's same for other projects including llama.cpp SYCL backend. + + ### **GitHub contribution**: Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay. ## TODO -- Support row layer split for multiple card runs. +- NA diff --git a/docs/build.md b/docs/build.md index 8b16d1a35..152d46d6f 100644 --- a/docs/build.md +++ b/docs/build.md @@ -352,6 +352,31 @@ cmake --build build --config Release # ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32 ``` +### CANN +This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU. + +For more information about Ascend NPU in [Ascend Community](https://www.hiascend.com/en/). + +Make sure to have the CANN toolkit installed. You can download it from here: [CANN Toolkit](https://www.hiascend.com/developer/download/community/result?module=cann) + +Go to `llama.cpp` directory and build using CMake. +```bash +cmake -B build -DGGML_CANN=on -DCMAKE_BUILD_TYPE=release +cmake --build build --config release +``` + +You can test with: + +`./build/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32` + +If the fllowing info is output on screen, you are using `llama.cpp by CANN backend`: +```bash +llm_load_tensors: CANN buffer size = 13313.00 MiB +llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB +``` + +For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md). + ### Android To read documentation for how to build on Android, [click here](./android.md) diff --git a/examples/cvector-generator/cvector-generator.cpp b/examples/cvector-generator/cvector-generator.cpp index d4e126ac2..8fa492571 100644 --- a/examples/cvector-generator/cvector-generator.cpp +++ b/examples/cvector-generator/cvector-generator.cpp @@ -271,7 +271,7 @@ struct tokenized_prompt { size_t max_seq_len; tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) { - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true); tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true); max_seq_len = std::max(tokens_pos.size(), tokens_neg.size()); @@ -414,9 +414,10 @@ int main(int argc, char ** argv) { llama_numa_init(params.numa); // load the model to get hparams - llama_model * model; - llama_context * ctx; - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // int n_ctx = llama_n_ctx(ctx); int n_layers = llama_n_layer(model); diff --git a/examples/embedding/README.md b/examples/embedding/README.md index e3705b454..12b372bf1 100644 --- a/examples/embedding/README.md +++ b/examples/embedding/README.md @@ -9,13 +9,13 @@ To get started right away, run the following command, making sure to use the cor ### Unix-based systems (Linux, macOS, etc.): ```bash -./llama-embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null +./llama-embedding -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>/dev/null ``` ### Windows: ```powershell -llama-embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null +llama-embedding.exe -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>$null ``` The above command will output space-separated float values. @@ -50,11 +50,11 @@ The above command will output space-separated float values. ### Unix-based systems (Linux, macOS, etc.): ```bash -./embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null +./llama-embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null ``` ### Windows: ```powershell -embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null +llama-embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null ``` diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 1466e5b2b..b05aa006e 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -31,13 +31,24 @@ static void batch_add_seq(llama_batch & batch, const std::vector & toke } static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) { + const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); + const struct llama_model * model = llama_get_model(ctx); + // clear previous kv_cache values (irrelevant for embeddings) llama_kv_cache_clear(ctx); // run model fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); - if (llama_decode(ctx, batch) < 0) { - fprintf(stderr, "%s : failed to decode\n", __func__); + if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) { + // encoder-only model + if (llama_encode(ctx, batch) < 0) { + fprintf(stderr, "%s : failed to encode\n", __func__); + } + } else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) { + // decoder-only model + if (llama_decode(ctx, batch) < 0) { + fprintf(stderr, "%s : failed to decode\n", __func__); + } } for (int i = 0; i < batch.n_tokens; i++) { @@ -45,11 +56,22 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu continue; } - // try to get sequence embeddings - supported only when pooling_type is not NONE - const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); - GGML_ASSERT(embd != NULL && "failed to get sequence embeddings"); + const float * embd = nullptr; + int embd_pos = 0; - float * out = output + batch.seq_id[i][0] * n_embd; + if (pooling_type == LLAMA_POOLING_TYPE_NONE) { + // try to get token embeddings + embd = llama_get_embeddings_ith(ctx, i); + embd_pos = i; + GGML_ASSERT(embd != NULL && "failed to get token embeddings"); + } else { + // try to get sequence embeddings - supported only when pooling_type is not NONE + embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); + embd_pos = batch.seq_id[i][0]; + GGML_ASSERT(embd != NULL && "failed to get sequence embeddings"); + } + + float * out = output + embd_pos * n_embd; llama_embd_normalize(embd, out, n_embd, embd_norm); } } @@ -79,11 +101,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model; - llama_context * ctx; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; @@ -93,8 +115,9 @@ int main(int argc, char ** argv) { const int n_ctx = llama_n_ctx(ctx); const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); - if (pooling_type == LLAMA_POOLING_TYPE_NONE) { - fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__); + + if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) { + fprintf(stderr, "%s: error: computing embeddings in encoder-decoder models is not supported\n", __func__); return 1; } @@ -153,13 +176,23 @@ int main(int argc, char ** argv) { const int n_prompts = prompts.size(); struct llama_batch batch = llama_batch_init(n_batch, 0, 1); + // count number of embeddings + int n_embd_count = 0; + if (pooling_type == LLAMA_POOLING_TYPE_NONE) { + for (int k = 0; k < n_prompts; k++) { + n_embd_count += inputs[k].size(); + } + } else { + n_embd_count = n_prompts; + } + // allocate output const int n_embd = llama_n_embd(model); - std::vector embeddings(n_prompts * n_embd, 0); + std::vector embeddings(n_embd_count * n_embd, 0); float * emb = embeddings.data(); // break into batches - int p = 0; // number of prompts processed already + int e = 0; // number of embeddings already stored int s = 0; // number of prompts in current batch for (int k = 0; k < n_prompts; k++) { // clamp to n_batch tokens @@ -169,11 +202,11 @@ int main(int argc, char ** argv) { // encode if at capacity if (batch.n_tokens + n_toks > n_batch) { - float * out = emb + p * n_embd; + float * out = emb + e * n_embd; batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); - llama_batch_clear(batch); - p += s; + e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s; s = 0; + llama_batch_clear(batch); } // add to batch @@ -182,40 +215,63 @@ int main(int argc, char ** argv) { } // final batch - float * out = emb + p * n_embd; + float * out = emb + e * n_embd; batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); if (params.embd_out.empty()) { - // print the first part of the embeddings or for a single prompt, the full embedding fprintf(stdout, "\n"); - for (int j = 0; j < n_prompts; j++) { - fprintf(stdout, "embedding %d: ", j); - for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) { - if (params.embd_normalize == 0) { - fprintf(stdout, "%6.0f ", emb[j * n_embd + i]); - } else { - fprintf(stdout, "%9.6f ", emb[j * n_embd + i]); - } - } - fprintf(stdout, "\n"); - } - // print cosine similarity matrix - if (n_prompts > 1) { - fprintf(stdout, "\n"); - printf("cosine similarity matrix:\n\n"); - for (int i = 0; i < n_prompts; i++) { - fprintf(stdout, "%6.6s ", prompts[i].c_str()); - } - fprintf(stdout, "\n"); - for (int i = 0; i < n_prompts; i++) { - for (int j = 0; j < n_prompts; j++) { - float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); - fprintf(stdout, "%6.2f ", sim); + if (pooling_type == LLAMA_POOLING_TYPE_NONE) { + for (int j = 0; j < n_embd_count; j++) { + fprintf(stdout, "embedding %d: ", j); + for (int i = 0; i < std::min(3, n_embd); i++) { + if (params.embd_normalize == 0) { + fprintf(stdout, "%6.0f ", emb[j * n_embd + i]); + } else { + fprintf(stdout, "%9.6f ", emb[j * n_embd + i]); + } + } + fprintf(stdout, " ... "); + for (int i = n_embd - 3; i < n_embd; i++) { + if (params.embd_normalize == 0) { + fprintf(stdout, "%6.0f ", emb[j * n_embd + i]); + } else { + fprintf(stdout, "%9.6f ", emb[j * n_embd + i]); + } } - fprintf(stdout, "%1.10s", prompts[i].c_str()); fprintf(stdout, "\n"); } + } else { + // print the first part of the embeddings or for a single prompt, the full embedding + for (int j = 0; j < n_prompts; j++) { + fprintf(stdout, "embedding %d: ", j); + for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) { + if (params.embd_normalize == 0) { + fprintf(stdout, "%6.0f ", emb[j * n_embd + i]); + } else { + fprintf(stdout, "%9.6f ", emb[j * n_embd + i]); + } + } + fprintf(stdout, "\n"); + } + + // print cosine similarity matrix + if (n_prompts > 1) { + fprintf(stdout, "\n"); + printf("cosine similarity matrix:\n\n"); + for (int i = 0; i < n_prompts; i++) { + fprintf(stdout, "%6.6s ", prompts[i].c_str()); + } + fprintf(stdout, "\n"); + for (int i = 0; i < n_prompts; i++) { + for (int j = 0; j < n_prompts; j++) { + float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); + fprintf(stdout, "%6.2f ", sim); + } + fprintf(stdout, "%1.10s", prompts[i].c_str()); + fprintf(stdout, "\n"); + } + } } } @@ -233,23 +289,23 @@ int main(int argc, char ** argv) { } fprintf(stdout, notArray ? "]\n }" : "]"); j++; - if (j < n_prompts) fprintf(stdout, notArray ? ",\n" : ","); else break; + if (j < n_embd_count) fprintf(stdout, notArray ? ",\n" : ","); else break; } fprintf(stdout, notArray ? "\n ]" : "]\n"); if (params.embd_out == "json+" && n_prompts > 1) { fprintf(stdout, ",\n \"cosineSimilarity\": [\n"); - for (int i = 0;;) { // at least two iteration (n_prompts > 1) + for (int i = 0;;) { // at least two iteration (n_embd_count > 1) fprintf(stdout, " ["); - for (int j = 0;;) { // at least two iteration (n_prompts > 1) + for (int j = 0;;) { // at least two iteration (n_embd_count > 1) float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); fprintf(stdout, "%6.2f", sim); j++; - if (j < n_prompts) fprintf(stdout, ", "); else break; + if (j < n_embd_count) fprintf(stdout, ", "); else break; } fprintf(stdout, " ]"); i++; - if (i < n_prompts) fprintf(stdout, ",\n"); else break; + if (i < n_embd_count) fprintf(stdout, ",\n"); else break; } fprintf(stdout, "\n ]"); } diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp index 37d30ab8c..5e89988e2 100644 --- a/examples/eval-callback/eval-callback.cpp +++ b/examples/eval-callback/eval-callback.cpp @@ -127,7 +127,7 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) { } static bool run(llama_context * ctx, const gpt_params & params) { - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); @@ -163,9 +163,10 @@ int main(int argc, char ** argv) { params.warmup = false; // init - llama_model * model; - llama_context * ctx; - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; diff --git a/examples/export-lora/README.md b/examples/export-lora/README.md index 91c33c34a..7dce99c9a 100644 --- a/examples/export-lora/README.md +++ b/examples/export-lora/README.md @@ -17,9 +17,9 @@ For example: ```bash ./bin/llama-export-lora \ - -m open-llama-3b-v2-q8_0.gguf \ - -o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \ - --lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf + -m open-llama-3b-v2.gguf \ + -o open-llama-3b-v2-english2tokipona-chat.gguf \ + --lora lora-open-llama-3b-v2-english2tokipona-chat-LATEST.gguf ``` Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters: diff --git a/examples/export-lora/export-lora.cpp b/examples/export-lora/export-lora.cpp index 150f7e8d5..c7e5ca788 100644 --- a/examples/export-lora/export-lora.cpp +++ b/examples/export-lora/export-lora.cpp @@ -10,6 +10,12 @@ static bool g_verbose = false; +struct tensor_transformation { + struct ggml_tensor * in; + struct ggml_tensor * out; + bool is_copy; +}; + static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){ int id = gguf_find_key(ctx_gguf, key.c_str()); return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id)); @@ -50,20 +56,6 @@ static struct gguf_context * load_gguf(std::string & fname, struct ggml_context return ctx_gguf; } -static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - std::string result; - for (size_t pos = 0; ; pos += search.length()) { - auto new_pos = s.find(search, pos); - if (new_pos == std::string::npos) { - result += s.substr(pos, s.size() - pos); - break; - } - result += s.substr(pos, new_pos - pos) + replace; - pos = new_pos; - } - s = std::move(result); -} - struct file_input { struct ggml_context * ctx_meta = nullptr; struct gguf_context * ctx_gguf = nullptr; @@ -135,7 +127,7 @@ struct lora_merge_ctx { lora_merge_ctx( std::string & base_fname, - std::vector> & lora_files, + std::vector & lora_files, std::string & outfile, int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) { fout.exceptions(std::ofstream::failbit); // fail fast on write errors @@ -144,9 +136,9 @@ struct lora_merge_ctx { throw std::runtime_error("split model is not yet supported"); } - for (auto lora_inp : lora_files) { - auto fname = std::get<0>(lora_inp); - auto scale = std::get<1>(lora_inp); + for (auto & lora_inp : lora_files) { + auto fname = lora_inp.path; + auto scale = lora_inp.scale; std::unique_ptr adapter(new file_input(fname, scale)); check_metadata_lora(adapter.get()); adapters.push_back(std::move(adapter)); @@ -212,8 +204,7 @@ struct lora_merge_ctx { } // mapping base tensor to out tensor (same shape with base, but different type) - // if out_tensor == nullptr, we only copy it - std::vector> base_to_out_tensors; + std::vector trans; for (auto & it : base_model.tensors) { bool t_a = true; bool t_b = true; @@ -226,14 +217,22 @@ struct lora_merge_ctx { // only copy struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor); ggml_set_name(cpy_tensor, base_tensor->name); - base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr)); + trans.push_back({ + cpy_tensor, + cpy_tensor, + true, + }); gguf_add_tensor(ctx_out, cpy_tensor); } else if (t_a && t_b) { // need merging struct ggml_tensor * out_tensor = ggml_new_tensor( ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne); ggml_set_name(out_tensor, base_tensor->name); - base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor)); + trans.push_back({ + base_tensor, + out_tensor, + false, + }); gguf_add_tensor(ctx_out, out_tensor); } else { throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b"); @@ -248,12 +247,12 @@ struct lora_merge_ctx { // process base model tensors size_t n_merged = 0; - for (auto & it : base_to_out_tensors) { - if (it.second != nullptr) { - merge_tensor(it.first, it.second); + for (auto & it : trans) { + if (!it.is_copy) { + merge_tensor(it.in, it.out); n_merged++; } else { - copy_tensor(it.first); + copy_tensor(it.in); } } @@ -266,7 +265,7 @@ struct lora_merge_ctx { } printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged); - printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size()); + printf("%s : wrote %ld tensors to output file\n", __func__, trans.size()); } void copy_tensor(struct ggml_tensor * base) { @@ -299,6 +298,10 @@ struct lora_merge_ctx { for (size_t i = 0; i < adapters.size(); ++i) { auto t_a = adapters[i]->get_tensor(name_lora_a); auto t_b = adapters[i]->get_tensor(name_lora_b); + // TODO: add support for quantized lora + if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) { + throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32"); + } inp_a[i] = ggml_dup_tensor(ctx, t_a); inp_b[i] = ggml_dup_tensor(ctx, t_b); } @@ -407,7 +410,7 @@ int main(int argc, char ** argv) { g_verbose = (params.verbosity == 1); try { - lora_merge_ctx ctx(params.model, params.lora_adapter, params.lora_outfile, params.n_threads); + lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads); ctx.run_merge(); } catch (const std::exception & err) { fprintf(stderr, "%s\n", err.what()); diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 6ce1863cf..83b85d72b 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -433,8 +433,8 @@ static void process_logits( } static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); const int n_ctx = llama_n_ctx(ctx); auto tim1 = std::chrono::high_resolution_clock::now(); @@ -611,10 +611,10 @@ int main(int argc, char ** argv) { params.warmup = false; // init - llama_model * model; - llama_context * ctx; + llama_init_result llama_init = llama_init_from_gpt_params(params); - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index dc93d2301..05700c1d5 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -179,7 +179,10 @@ int main(int argc, char ** argv) { // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + model = llama_init.model; + ctx = llama_init.context; if (model == NULL) { LOG_TEE("%s: error: unable to load model\n", __func__); @@ -200,8 +203,8 @@ int main(int argc, char ** argv) { LOG_TEE("\n"); LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str()); } - const bool add_bos = llama_should_add_bos_token(model); - GGML_ASSERT(llama_add_eos_token(model) != 1); + const bool add_bos = llama_add_bos_token(model); + GGML_ASSERT(!llama_add_eos_token(model)); LOG("add_bos: %d\n", add_bos); std::vector embd_inp; diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 521fa8880..42918bfc7 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -27,6 +27,14 @@ #include "ggml-cann.h" #endif +#ifdef _WIN32 +#define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX +# define NOMINMAX +#endif +#include +#endif + // utils static uint64_t get_time_ns() { using clock = std::chrono::high_resolution_clock; @@ -96,6 +104,27 @@ static std::string get_cpu_info() { } fclose(f); } +#elif defined(_WIN32) + HKEY hKey; + if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, + TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"), + 0, + KEY_READ, + &hKey) != ERROR_SUCCESS) { + // fail to open registry key + return ""; + } + char cpu_brand[256]; + DWORD cpu_brand_size = sizeof(cpu_brand); + if (RegQueryValueExA(hKey, + TEXT("ProcessorNameString"), + NULL, + NULL, + (LPBYTE)cpu_brand, + &cpu_brand_size) == ERROR_SUCCESS) { + id.assign(cpu_brand, cpu_brand_size); + } + RegCloseKey(hKey); #endif // TODO: other platforms return id; diff --git a/examples/llava/CMakeLists.txt b/examples/llava/CMakeLists.txt index e9fa73acb..bbf5fec58 100644 --- a/examples/llava/CMakeLists.txt +++ b/examples/llava/CMakeLists.txt @@ -36,3 +36,10 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-cli) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) + +set(TARGET llama-minicpmv-cli) +add_executable(${TARGET} minicpmv-cli.cpp) +set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-minicpmv-cli) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/llava/README-minicpmv2.5.md b/examples/llava/README-minicpmv2.5.md new file mode 100644 index 000000000..62009b0af --- /dev/null +++ b/examples/llava/README-minicpmv2.5.md @@ -0,0 +1,99 @@ +## MiniCPM-Llama3-V 2.5 + +### Prepare models and code + +Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder. + +Clone llama.cpp: +```bash +git clone https://github.com/ggerganov/llama.cpp +cd llama.cpp +``` + +### Usage + +Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us) + +```bash +python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5 +python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2 +python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model + +# quantize int4 version +./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M +``` + +Build for Linux or Mac + +```bash +make +make llama-minicpmv-cli +``` + +Inference on Linux or Mac +``` +# run f16 version +./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# run quantized int4 version +./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# or run in interactive mode +./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i +``` + +### Android + +#### Build on Android device using Termux +We found that build on Android device would bring better runtime performance, so we recommend to build on device. + +[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required). + +Install tools in Termux: +``` +apt update && apt upgrade -y +apt install git make cmake +``` + +It's recommended to move your model inside the `~/` directory for best performance: +``` +cd storage/downloads +mv model.gguf ~/ +``` + +#### Building the Project using Android NDK +Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake. + +Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux: + +```bash +mkdir build-android +cd build-android +export NDK=/your_ndk_path +cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod .. +make +``` + +Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice). + +Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission: + +(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`) +``` +$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/ +$cd /data/data/com.termux/files/home/bin +$chmod +x ./* +``` + +Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/` + +``` +$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/ +$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/ +``` + +Now, you can start chatting: +``` +$cd /data/data/com.termux/files/home/bin +$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" +``` diff --git a/examples/llava/README-minicpmv2.6.md b/examples/llava/README-minicpmv2.6.md new file mode 100644 index 000000000..c4be5e5dd --- /dev/null +++ b/examples/llava/README-minicpmv2.6.md @@ -0,0 +1,107 @@ +## MiniCPM-V 2.6 + +### Prepare models and code + +Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder. + +Clone llama.cpp: +```bash +git clone git@github.com:OpenBMB/llama.cpp.git +cd llama.cpp +git checkout minicpmv-main +``` + +### Usage of MiniCPM-V 2.6 + +Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us) + +```bash +python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6 +python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3 +python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model + +# quantize int4 version +./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M +``` + +Build for Linux or Mac + +```bash +make +make llama-minicpmv-cli +``` + +Inference on Linux or Mac +``` +# run f16 version +./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# run quantized int4 version +./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" + +# or run in interactive mode +./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i +``` + +### Video +Install FFmpeg +``` +brew install ffmpeg +brew install pkg-config +``` + +### Android + +#### Build on Android device using Termux +We found that build on Android device would bring better runtime performance, so we recommend to build on device. + +[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required). + +Install tools in Termux: +``` +apt update && apt upgrade -y +apt install git make cmake +``` + +It's recommended to move your model inside the `~/` directory for best performance: +``` +cd storage/downloads +mv model.gguf ~/ +``` + +#### Building the Project using Android NDK +Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake. + +Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux: + +```bash +mkdir build-android +cd build-android +export NDK=/your_ndk_path +cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod .. +make +``` + +Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice). + +Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission: + +(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`) +``` +$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/ +$cd /data/data/com.termux/files/home/bin +$chmod +x ./* +``` + +Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/` + +``` +$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/ +$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/ +``` + +Now, you can start chatting: +``` +$cd /data/data/com.termux/files/home/bin +$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" +``` diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 7cda5f10c..342042ffb 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -74,26 +74,28 @@ static std::string format(const char * fmt, ...) { // key constants // -#define KEY_FTYPE "general.file_type" -#define KEY_NAME "general.name" -#define KEY_DESCRIPTION "general.description" -#define KEY_HAS_TEXT_ENC "clip.has_text_encoder" -#define KEY_HAS_VIS_ENC "clip.has_vision_encoder" -#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" -#define KEY_USE_GELU "clip.use_gelu" -#define KEY_N_EMBD "clip.%s.embedding_length" -#define KEY_N_FF "clip.%s.feed_forward_length" -#define KEY_N_BLOCK "clip.%s.block_count" -#define KEY_N_HEAD "clip.%s.attention.head_count" -#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" -#define KEY_PROJ_DIM "clip.%s.projection_dim" -#define KEY_TOKENS "tokenizer.ggml.tokens" -#define KEY_N_POSITIONS "clip.text.context_length" -#define KEY_IMAGE_SIZE "clip.vision.image_size" -#define KEY_PATCH_SIZE "clip.vision.patch_size" -#define KEY_IMAGE_MEAN "clip.vision.image_mean" -#define KEY_IMAGE_STD "clip.vision.image_std" -#define KEY_PROJ_TYPE "clip.projector_type" +#define KEY_FTYPE "general.file_type" +#define KEY_NAME "general.name" +#define KEY_DESCRIPTION "general.description" +#define KEY_HAS_TEXT_ENC "clip.has_text_encoder" +#define KEY_HAS_VIS_ENC "clip.has_vision_encoder" +#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" +#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector" +#define KEY_MINICPMV_VERSION "clip.minicpmv_version" +#define KEY_USE_GELU "clip.use_gelu" +#define KEY_N_EMBD "clip.%s.embedding_length" +#define KEY_N_FF "clip.%s.feed_forward_length" +#define KEY_N_BLOCK "clip.%s.block_count" +#define KEY_N_HEAD "clip.%s.attention.head_count" +#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" +#define KEY_PROJ_DIM "clip.%s.projection_dim" +#define KEY_TOKENS "tokenizer.ggml.tokens" +#define KEY_N_POSITIONS "clip.text.context_length" +#define KEY_IMAGE_SIZE "clip.vision.image_size" +#define KEY_PATCH_SIZE "clip.vision.patch_size" +#define KEY_IMAGE_MEAN "clip.vision.image_mean" +#define KEY_IMAGE_STD "clip.vision.image_std" +#define KEY_PROJ_TYPE "clip.projector_type" #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type" #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints" @@ -127,12 +129,20 @@ static std::string format(const char * fmt, ...) { #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" #define TN_IMAGE_NEWLINE "model.image_newline" +#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k" +#define TN_MINICPMV_QUERY "resampler.query" +#define TN_MINICPMV_PROJ "resampler.proj.weight" +#define TN_MINICPMV_KV_PROJ "resampler.kv.weight" +#define TN_MINICPMV_ATTN "resampler.attn.%s.%s" +#define TN_MINICPMV_LN "resampler.ln_%s.%s" + enum projector_type { PROJECTOR_TYPE_MLP, PROJECTOR_TYPE_MLP_NORM, PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_LDPV2, + PROJECTOR_TYPE_RESAMPLER, PROJECTOR_TYPE_UNKNOWN, }; @@ -140,6 +150,7 @@ static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_LDP, "ldp" }, { PROJECTOR_TYPE_LDPV2, "ldpv2"}, + { PROJECTOR_TYPE_RESAMPLER, "resampler"}, }; @@ -200,17 +211,14 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - std::string result; - for (size_t pos = 0; ; pos += search.length()) { - auto new_pos = s.find(search, pos); - if (new_pos == std::string::npos) { - result += s.substr(pos, s.size() - pos); - break; - } - result += s.substr(pos, new_pos - pos) + replace; - pos = new_pos; + if (search.empty()) { + return; // Avoid infinite loop if 'search' is an empty string + } + size_t pos = 0; + while ((pos = s.find(search, pos)) != std::string::npos) { + s.replace(pos, search.length(), replace); + pos += replace.length(); } - s = std::move(result); } static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { @@ -492,12 +500,34 @@ struct clip_vision_model { struct ggml_tensor * mm_model_mlp_2_b; struct ggml_tensor * mm_model_peg_0_w; struct ggml_tensor * mm_model_peg_0_b; + + // MINICPMV projection + struct ggml_tensor * mm_model_pos_embed_k; + struct ggml_tensor * mm_model_query; + struct ggml_tensor * mm_model_proj; + struct ggml_tensor * mm_model_kv_proj; + struct ggml_tensor * mm_model_attn_q_w; + struct ggml_tensor * mm_model_attn_q_b; + struct ggml_tensor * mm_model_attn_k_w; + struct ggml_tensor * mm_model_attn_k_b; + struct ggml_tensor * mm_model_attn_v_w; + struct ggml_tensor * mm_model_attn_v_b; + struct ggml_tensor * mm_model_attn_o_w; + struct ggml_tensor * mm_model_attn_o_b; + struct ggml_tensor * mm_model_ln_q_w; + struct ggml_tensor * mm_model_ln_q_b; + struct ggml_tensor * mm_model_ln_kv_w; + struct ggml_tensor * mm_model_ln_kv_b; + struct ggml_tensor * mm_model_ln_post_w; + struct ggml_tensor * mm_model_ln_post_b; }; struct clip_ctx { bool has_text_encoder = false; bool has_vision_encoder = false; bool has_llava_projector = false; + bool has_minicpmv_projector = false; + int minicpmv_version = 2; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; @@ -522,9 +552,11 @@ struct clip_ctx { ggml_backend_t backend = NULL; ggml_gallocr_t compute_alloc = NULL; + + struct clip_image_size * load_image_size; }; -static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) { +static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); return nullptr; @@ -533,20 +565,33 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 const auto & model = ctx->vision_model; const auto & hparams = model.hparams; - const int image_size = hparams.image_size; + const int image_size = hparams.image_size; + int image_size_width = image_size; + int image_size_height = image_size; + if (ctx->has_minicpmv_projector) { + if (load_image_size == nullptr) { + load_image_size = clip_image_size_init(); + } + LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height); + image_size_width = load_image_size->width; + image_size_height = load_image_size->height; + if (is_inf) { + image_size_width = imgs->data->nx; + image_size_height = imgs->data->ny; + } + } const int patch_size = hparams.patch_size; - const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); - const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side); + const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; - const int n_layer = hparams.n_layer; + int n_layer = hparams.n_layer; const float eps = hparams.eps; const int batch_size = imgs->size; - if (ctx->has_llava_projector) { + if (ctx->has_llava_projector || ctx->has_minicpmv_projector) { GGML_ASSERT(batch_size == 1); } @@ -559,7 +604,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); - struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size); + struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); @@ -572,19 +617,21 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); } - - // concat class_embeddings and patch_embeddings struct ggml_tensor * embeddings = inp; - if (ctx->has_class_embedding) { - embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); - ggml_set_name(embeddings, "embeddings"); - ggml_set_input(embeddings); - embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, - embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); - embeddings = ggml_acc(ctx0, embeddings, inp, - embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); - } + struct ggml_tensor * pos_embed = nullptr; + if (ctx->has_llava_projector) { + // concat class_embeddings and patch_embeddings + if (ctx->has_class_embedding) { + embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); + ggml_set_name(embeddings, "embeddings"); + ggml_set_input(embeddings); + embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, + embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); + embeddings = ggml_acc(ctx0, embeddings, inp, + embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); + } + } struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); ggml_set_name(positions, "positions"); @@ -593,6 +640,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); + if (ctx->has_minicpmv_projector) { + int pos_w = image_size_width/patch_size; + int pos_h = image_size_height/patch_size; + if (ctx->minicpmv_version == 2) { + pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); + } + else if (ctx->minicpmv_version == 3) { + pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); + } + ggml_set_name(pos_embed, "pos_embed"); + ggml_set_input(pos_embed); + } + // pre-layernorm if (ctx->has_pre_norm) { embeddings = ggml_norm(ctx0, embeddings, eps); @@ -602,6 +662,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } // loop over layers + if (ctx->has_minicpmv_projector) { + n_layer += 1; + } for (int il = 0; il < n_layer - 1; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states @@ -691,7 +754,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } // llava projector - { + if (ctx->has_llava_projector) { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); @@ -712,8 +775,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings = ggml_gelu(ctx0, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); - - } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { + } + else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); @@ -872,6 +935,75 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 GGML_ABORT("fatal error"); } } + // minicpmv projector + else if (ctx->has_minicpmv_projector) + { + if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { + struct ggml_tensor * q = model.mm_model_query; + { // layernorm + q = ggml_norm(ctx0, q, eps); + q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); + } + struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); + { // layernorm + v = ggml_norm(ctx0, v, eps); + v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); + } + struct ggml_tensor * k; + { // position + // q = ggml_add(ctx0, q, model.mm_model_pos_embed); + k = ggml_add(ctx0, v, pos_embed); + } + + { // attention + int hidden_size = 4096; + const int d_head = 128; + int n_head = hidden_size/d_head; + int num_query = 96; + if (ctx->minicpmv_version == 2) { + hidden_size = 4096; + n_head = hidden_size/d_head; + num_query = 96; + } + else if (ctx->minicpmv_version == 3) { + hidden_size = 3584; + n_head = hidden_size/d_head; + num_query = 64; + } + + struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); + Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); + struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); + struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); + // permute + Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); + Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); + Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); + K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); + K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); + K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); + V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); + V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); + V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + KQ = ggml_soft_max_inplace(ctx0, KQ); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); + KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); + KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); + + embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); + } + { // layernorm + embeddings = ggml_norm(ctx0, embeddings, eps); + embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); + } + embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); + } + else { + GGML_ASSERT(false); + } + } // build the graph ggml_build_forward_expand(gf, embeddings); @@ -1029,7 +1161,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); } - GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search + idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ); + if (idx != -1) { + new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); + } + + idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION); + if (idx != -1) { + new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx); + } + + // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search + GGML_ASSERT(new_clip->has_vision_encoder); GGML_ASSERT(!new_clip->has_text_encoder); @@ -1040,6 +1183,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); + LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector); LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } @@ -1281,6 +1425,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); } + else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) { + // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); + vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K); + vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY); + vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ); + vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ); + vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight")); + vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight")); + vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight")); + vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias")); + vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias")); + vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias")); + vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight")); + vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias")); + vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight")); + vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias")); + vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight")); + vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias")); + vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); + vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); + } else { std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); @@ -1319,7 +1484,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); clip_image_f32_batch batch; batch.size = 1; - ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); + ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false); ggml_gallocr_reserve(new_clip->compute_alloc, gf); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); @@ -1328,6 +1493,17 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { return new_clip; } +void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) { + ctx_clip->load_image_size = load_image_size; +} + +struct clip_image_size * clip_image_size_init() { + struct clip_image_size * load_image_size = new struct clip_image_size(); + load_image_size->width = 448; + load_image_size->height = 448; + return load_image_size; +} + struct clip_image_u8 * clip_image_u8_init() { return new clip_image_u8(); } @@ -1598,9 +1774,186 @@ static std::vector divide_to_patches_u8(const clip_image_u8 & im return patches; } +static int ensure_divide(int length, int patch_size) { + return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); +} + +static std::pair uhd_find_best_resize(std::pair original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { + int width = original_size.first; + int height = original_size.second; + if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { + float r = static_cast(width) / height; + height = static_cast(scale_resolution / std::sqrt(r)); + width = static_cast(height * r); + } + int best_width = ensure_divide(width, patch_size); + int best_height = ensure_divide(height, patch_size); + return std::make_pair(best_width, best_height); +} + +static std::pair uhd_get_refine_size(std::pair original_size, std::pair grid, int scale_resolution, int patch_size, bool allow_upscale = false) { + int width, height; + std::tie(width, height) = original_size; + int grid_x, grid_y; + std::tie(grid_x, grid_y) = grid; + + int refine_width = ensure_divide(width, grid_x); + int refine_height = ensure_divide(height, grid_y); + + int grid_width = refine_width / grid_x; + int grid_height = refine_height / grid_y; + + // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) + auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair + int best_grid_width, best_grid_height; + std::tie(best_grid_width, best_grid_height) = best_grid_size; + + // std::pair refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) + std::pair refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) + return refine_size; +} + +inline int clip(int x, int lower, int upper) { + return std::max(lower, std::min(x, upper)); +} + +static std::pair uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { + std::vector candidate_split_grids_nums; + for (int i : {multiple - 1, multiple, multiple + 1}) { + if (i == 1 || i > max_slice_nums) { + continue; + } + candidate_split_grids_nums.push_back(i); + } + + std::vector> candidate_grids; + for (int split_grids_nums : candidate_split_grids_nums) { + int m = 1; + while (m <= split_grids_nums) { + if (split_grids_nums % m == 0) { + candidate_grids.emplace_back(m, split_grids_nums / m); + } + ++m; + } + } + + std::pair best_grid{1, 1}; + float min_error = std::numeric_limits::infinity(); + for (const auto& grid : candidate_grids) { + float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); + if (error < min_error) { + best_grid = grid; + min_error = error; + } + } + return best_grid; +} + +// inspired from LLaVA-UHD: +// -> https://arxiv.org/pdf/2403.11703 +// -> https://github.com/thunlp/LLaVA-UHD +// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 +static std::vector> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { + const std::pair original_size={img->nx,img->ny}; + const int original_width = img->nx; + const int original_height = img->ny; + const float log_ratio = log(1.0*original_width/original_height); + const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); + const int multiple = fmin(ceil(ratio), max_slice_nums); + + std::vector> images; + LOG_TEE("%s: multiple %d\n", __func__, multiple); + images.push_back(std::vector()); + + if (multiple <= 1) { + auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); + clip_image_u8 * source_image = clip_image_u8_init(); + bicubic_resize(*img, *source_image, best_size.first, best_size.second); + // source_image = image.resize(best_size, Image.Resampling.BICUBIC) + images[images.size()-1].push_back(source_image); + } + else if (multiple > 1) { + auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); + clip_image_u8 * source_image = clip_image_u8_init(); + bicubic_resize(*img, *source_image, best_size.first, best_size.second); + // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) + LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); + images[images.size()-1].push_back(source_image); + + std::pair best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); + LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); + + auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); + clip_image_u8 * refine_image = clip_image_u8_init(); + bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); + + LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); + + // split_to_patches + int width = refine_image->nx; + int height = refine_image->ny; + int grid_x = int(width / best_grid.first); + int grid_y = int(height / best_grid.second); + for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ + images.push_back(std::vector()); + for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ + clip_image_u8 * patch = clip_image_u8_init(); + patch->nx = grid_x; + patch->ny = grid_y; + patch->buf.resize(3 * patch->nx * patch->ny); + for (int y = patches_i; y < patches_i + grid_y; ++y) { + for (int x = patches_j; x < patches_j + grid_x; ++x) { + const int i = 3 * (y * refine_image->nx + x); + const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); + patch->buf[j] = refine_image->buf[i]; + patch->buf[j+1] = refine_image->buf[i+1]; + patch->buf[j+2] = refine_image->buf[i+2]; + } + } + images[images.size()-1].push_back(patch); + } + } + } + return images; +} + +int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { + const int max_slice_nums=9; + const int scale_resolution=448; + const int original_width = ctx_clip->load_image_size->width; + const int original_height = ctx_clip->load_image_size->height; + const float log_ratio = log(1.0*original_width/original_height); + const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); + const int multiple = fmin(ceil(ratio), max_slice_nums); + std::pair best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); + return best_grid.first; +} + // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector // res_imgs memory is being allocated here, previous allocations will be freed if found bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { + + if(clip_is_minicpmv(ctx)){ + int max_slice_nums = 9; + std::vector> imgs = uhd_slice_image(img, max_slice_nums); + res_imgs->size = 0; + for (size_t i = 0; i < imgs.size(); ++i){ + res_imgs->size += imgs[i].size(); + } + res_imgs->data = new clip_image_f32[res_imgs->size]; + int idx = 0; + for (size_t i = 0; i < imgs.size(); ++i) { + for (size_t j = 0; j < imgs[i].size(); ++j) { + LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); + clip_image_f32 * res = clip_image_f32_init(); + normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std); + res_imgs->data[idx++] = *res; + clip_image_f32_free(res); + } + } + return true; + } + bool pad_to_square = true; if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); @@ -1816,11 +2169,104 @@ int clip_n_patches(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) { n_patches /= 4; + } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { + if (ctx->minicpmv_version == 2) { + n_patches = 96; + } + else if (ctx->minicpmv_version == 3) { + n_patches = 64; + } } return n_patches; } +static std::vector>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector> & pos) { + assert(embed_dim % 2 == 0); + int H = pos.size(); + int W = pos[0].size(); + + std::vector omega(embed_dim / 2); + for (int i = 0; i < embed_dim / 2; ++i) { + omega[i] = 1.0 / pow(10000.0, static_cast(i) / (embed_dim / 2)); + } + + std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); + for (int h = 0; h < H; ++h) { + for (int w = 0; w < W; ++w) { + for (int d = 0; d < embed_dim / 2; ++d) { + float out_value = pos[h][w] * omega[d]; + emb[h][w][d] = sin(out_value); + emb[h][w][d + embed_dim / 2] = cos(out_value); + } + } + } + + return emb; +} + +static std::vector>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector>> & grid) { + assert(embed_dim % 2 == 0); + std::vector>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) + std::vector>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) + + int H = emb_h.size(); + int W = emb_h[0].size(); + std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); + + for (int h = 0; h < H; ++h) { + for (int w = 0; w < W; ++w) { + for (int d = 0; d < embed_dim / 2; ++d) { + emb[h][w][d] = emb_h[h][w][d]; + emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; + } + } + } + return emb; +} + +static std::vector> get_2d_sincos_pos_embed(int embed_dim, const std::pair image_size) { + int grid_h_size = image_size.first; + int grid_w_size = image_size.second; + + std::vector grid_h(grid_h_size); + std::vector grid_w(grid_w_size); + + for (int i = 0; i < grid_h_size; ++i) { + grid_h[i] = static_cast(i); + } + for (int i = 0; i < grid_w_size; ++i) { + grid_w[i] = static_cast(i); + } + + std::vector> grid(grid_h_size, std::vector(grid_w_size)); + for (int h = 0; h < grid_h_size; ++h) { + for (int w = 0; w < grid_w_size; ++w) { + grid[h][w] = grid_w[w]; + } + } + std::vector>> grid_2d = {grid, grid}; + for (int h = 0; h < grid_h_size; ++h) { + for (int w = 0; w < grid_w_size; ++w) { + grid_2d[0][h][w] = grid_h[h]; + grid_2d[1][h][w] = grid_w[w]; + } + } + + std::vector>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); + + int H = image_size.first; + int W = image_size.second; + std::vector> pos_embed_2d(H * W, std::vector(embed_dim)); + for (int h = 0; h < H; ++h) { + for (int w = 0; w < W; ++w) { + pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; + } + } + + return pos_embed_2d; +} + bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); @@ -1843,19 +2289,33 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima if (ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); // TODO: support multiple images } + if (ctx->has_minicpmv_projector) { + GGML_ASSERT(batch_size == 1); + } // build the inference graph - ggml_cgraph * gf = clip_image_build_graph(ctx, imgs); + ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); ggml_gallocr_alloc_graph(ctx->compute_alloc, gf); // set inputs const auto & model = ctx->vision_model; const auto & hparams = model.hparams; - const int image_size = hparams.image_size; + const int image_size = hparams.image_size; + int image_size_width = image_size; + int image_size_height = image_size; + if (ctx->has_minicpmv_projector) { + image_size_width = imgs->data[0].nx; + image_size_height = imgs->data[0].ny; + } const int patch_size = hparams.patch_size; - const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); + const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); + if(ctx->load_image_size==nullptr){ + ctx->load_image_size= clip_image_size_init(); + } + const int pos_w = ctx->load_image_size->width/patch_size; + const int pos_h = ctx->load_image_size->height/patch_size; { struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); @@ -1864,7 +2324,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima for (size_t i = 0; i < imgs->size; i++) { const int nx = imgs->data[i].nx; const int ny = imgs->data[i].ny; - GGML_ASSERT(nx == image_size && ny == image_size); + if (!ctx->has_minicpmv_projector) { + GGML_ASSERT(nx == image_size && ny == image_size); + } const int n = nx * ny; @@ -1881,37 +2343,87 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); free(data); } + if (ctx->has_minicpmv_projector) { + { + // inspired from siglip: + // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit + // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 + struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); + int* positions_data = (int*)malloc(ggml_nbytes(positions)); + int bucket_coords_h[70]; + int bucket_coords_w[70]; + for (int i = 0; i < pos_h; i++){ + bucket_coords_h[i] = std::floor(70.0*i/pos_h); + } + for (int i = 0; i < pos_w; i++){ + bucket_coords_w[i] = std::floor(70.0*i/pos_w); + } + for (int i = 0, id = 0; i < pos_h; i++){ + for (int j = 0; j < pos_w; j++){ + positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; + } + } + ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); + free(positions_data); + } - { - if (ctx->has_class_embedding) { - struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); + { + // inspired from resampler of Qwen-VL: + // -> https://huggingface.co/Qwen/Qwen-VL/tree/main + // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 + struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); + int embed_dim = 4096; + if (ctx->minicpmv_version == 2) { + embed_dim = 4096; + } + else if (ctx->minicpmv_version == 3) { + embed_dim = 3584; + } + auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); - void* zero_mem = malloc(ggml_nbytes(embeddings)); - memset(zero_mem, 0, ggml_nbytes(embeddings)); - ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); - free(zero_mem); + float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); + for(int i=0;ihas_class_embedding) { + struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); - { - struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); - - int* positions_data = (int*)malloc(ggml_nbytes(positions)); - for (int i = 0; i < num_positions; i++) { - positions_data[i] = i; + void* zero_mem = malloc(ggml_nbytes(embeddings)); + memset(zero_mem, 0, ggml_nbytes(embeddings)); + ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); + free(zero_mem); + } } - ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); - free(positions_data); - } - { - struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); - int* patches_data = (int*)malloc(ggml_nbytes(patches)); - for (int i = 0; i < num_patches; i++) { - patches_data[i] = i + 1; + { + struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); + + int* positions_data = (int*)malloc(ggml_nbytes(positions)); + for (int i = 0; i < num_positions; i++) { + positions_data[i] = i; + } + ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); + free(positions_data); + } + + { + struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); + int* patches_data = (int*)malloc(ggml_nbytes(patches)); + for (int i = 0; i < num_patches; i++) { + patches_data[i] = i + 1; + } + ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); + free(patches_data); } - ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); - free(patches_data); } if (ggml_backend_is_cpu(ctx->backend)) { @@ -2081,7 +2593,22 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { return ctx->vision_model.mm_3_b->ne[0]; } + if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { + if (ctx->minicpmv_version == 2) { + return 4096; + } + else if (ctx->minicpmv_version == 3) { + return 3584; + } + } std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } + +int clip_is_minicpmv(const struct clip_ctx * ctx) { + if (ctx->has_minicpmv_projector) { + return ctx->minicpmv_version; + } + return 0; +} diff --git a/examples/llava/clip.h b/examples/llava/clip.h index ca3631384..78588bdf1 100644 --- a/examples/llava/clip.h +++ b/examples/llava/clip.h @@ -18,14 +18,17 @@ # define CLIP_API #endif -struct clip_ctx; - #ifdef __cplusplus extern "C" { #endif struct clip_ctx; +struct clip_image_size { + int width; + int height; +}; + struct clip_image_u8_batch { struct clip_image_u8 * data; size_t size; @@ -55,6 +58,10 @@ CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx); CLIP_API int clip_n_patches (const struct clip_ctx * ctx); CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx); +CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip); +CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size); + +CLIP_API struct clip_image_size * clip_image_size_init(); CLIP_API struct clip_image_u8 * clip_image_u8_init (); CLIP_API struct clip_image_f32 * clip_image_f32_init(); @@ -78,6 +85,8 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype); +CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx); + #ifdef __cplusplus } #endif diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 63878d176..851af0f00 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -202,6 +202,33 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector return true; } +static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) { + int width = image->nx; + int height = image->ny; + int num_patches = (height / patch_size) * (width / patch_size); + clip_image_f32 * patch = clip_image_f32_init(); + patch->nx = patch_size * num_patches; + patch->ny = patch_size; + patch->buf.resize(3 * patch->nx * patch->ny); + + int patch_index = 0; + + for (int i = 0; i < height; i += patch_size) { + for (int j = 0; j < width; j += patch_size) { + for (int pi = 0; pi < patch_size; ++pi) { + for (int pj = 0; pj < patch_size; ++pj) { + int input_index = ((i + pi) * width + (j + pj)) * 3; + int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3; + patch->buf[output_index] = image->buf[input_index]; + patch->buf[output_index+1] = image->buf[input_index+1]; + patch->buf[output_index+2] = image->buf[input_index+2]; + } + } + patch_index++; + } + } + return patch; +} static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { // std::vector img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 @@ -218,7 +245,51 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); - if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { + if (clip_is_minicpmv(ctx_clip)) { + std::vector image_embd_v; + image_embd_v.resize(img_res_v.size); + struct clip_image_size * load_image_size = clip_image_size_init(); + for (size_t i = 0; i < img_res_v.size; i++) { + const int64_t t_img_enc_step_start_us = ggml_time_us(); + image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); + int patch_size=14; + load_image_size->width = img_res_v.data[i].nx; + load_image_size->height = img_res_v.data[i].ny; + clip_add_load_image_size(ctx_clip, load_image_size); + bool encoded = false; + int has_minicpmv_projector = clip_is_minicpmv(ctx_clip); + if (has_minicpmv_projector == 2) { + encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]); + } + else if (has_minicpmv_projector == 3) { + encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); + } + if (!encoded) { + LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); + return false; + } + const int64_t t_img_enc_steop_batch_us = ggml_time_us(); + LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0); + } + const int64_t t_img_enc_batch_us = ggml_time_us(); + LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); + + int n_img_pos_out = 0; + for (size_t i = 0; i < image_embd_v.size(); i++) { + std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip)); + n_img_pos_out += clip_n_patches(ctx_clip); + } + *n_img_pos = n_img_pos_out; + for (size_t i = 0; i < image_embd_v.size(); i++) { + free(image_embd_v[i]); + } + image_embd_v.clear(); + load_image_size->width = img->nx; + load_image_size->height = img->ny; + clip_add_load_image_size(ctx_clip, load_image_size); + LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height); + } + else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) { // flat / default llava-1.5 type embedding *n_img_pos = clip_n_patches(ctx_clip); bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096 @@ -228,7 +299,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli return false; } - } else { + } + else { // spatial_unpad llava-1.6 type embedding // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working std::vector image_embd_v; @@ -297,7 +369,11 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * } bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { - float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model + int num_max_patches = 6; + if (clip_is_minicpmv(ctx_clip)) { + num_max_patches = 10; + } + float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model if (!image_embd) { LOG_TEE("Unable to allocate memory for image embeddings\n"); return false; diff --git a/examples/llava/llava.h b/examples/llava/llava.h index 19212f6e9..b6feb3027 100644 --- a/examples/llava/llava.h +++ b/examples/llava/llava.h @@ -17,12 +17,11 @@ # define LLAVA_API #endif -struct clip_ctx; - #ifdef __cplusplus extern "C" { #endif +struct clip_ctx; struct llava_image_embed { float * embed; int n_image_pos; @@ -37,8 +36,8 @@ LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length); /** build an image embed from a path to an image filename */ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path); -LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed); /** free an embedding made with llava_image_embed_make_* */ +LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed); /** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */ LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past); diff --git a/examples/llava/minicpmv-cli.cpp b/examples/llava/minicpmv-cli.cpp new file mode 100644 index 000000000..379fc295f --- /dev/null +++ b/examples/llava/minicpmv-cli.cpp @@ -0,0 +1,329 @@ +#include "ggml.h" +#include "log.h" +#include "common.h" +#include "clip.h" +#include "llava.h" +#include "llama.h" + +#include +#include +#include + +struct llava_context { + struct clip_ctx * ctx_clip = NULL; + struct llama_context * ctx_llama = NULL; + struct llama_model * model = NULL; +}; + +static void show_additional_info(int /*argc*/, char ** argv) { + LOG_TEE("\n example usage: %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); + LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n"); +} + +static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) { + (void) level; + (void) user_data; + LOG_TEE("%s", text); +} + +static struct llama_model * llava_init(gpt_params * params) { + llama_backend_init(); + llama_numa_init(params->numa); + + llama_model_params model_params = llama_model_params_from_gpt_params(*params); + + llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); + if (model == NULL) { + LOG_TEE("%s: error: unable to load model\n" , __func__); + return NULL; + } + return model; +} + +static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) { + auto prompt = params->prompt; + if (prompt.empty()) { + prompt = "describe the image in detail."; + } + + llama_context_params ctx_params = llama_context_params_from_gpt_params(*params); + if (params->n_ctx < 2048) { + // warn user here, "Image processing requires at least 2048 context, setting context to 2048" + LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__); + ctx_params.n_ctx = 2048; + } else { + ctx_params.n_ctx = params->n_ctx; + } + + llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); + + if (ctx_llama == NULL) { + LOG_TEE("%s: error: failed to create the llama_context\n" , __func__); + return NULL; + } + + auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); + + ctx_llava->ctx_llama = ctx_llama; + ctx_llava->model = model; + return ctx_llava; +} + +static void llava_free(struct llava_context * ctx_llava) { + if (ctx_llava->ctx_clip) { + clip_free(ctx_llava->ctx_clip); + ctx_llava->ctx_clip = NULL; + } + + llama_free(ctx_llava->ctx_llama); + llama_free_model(ctx_llava->model); + llama_backend_free(); +} + +static struct clip_ctx * clip_init_context(gpt_params * params) { + const char * clip_path = params->mmproj.c_str(); + + auto prompt = params->prompt; + if (prompt.empty()) { + prompt = "describe the image in detail."; + } + auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); + return ctx_clip; +} + +static bool eval_tokens(struct llama_context * ctx_llama, std::vector tokens, int n_batch, int * n_past) { + int N = (int) tokens.size(); + for (int i = 0; i < N; i += n_batch) { + int n_eval = (int) tokens.size() - i; + if (n_eval > n_batch) { + n_eval = n_batch; + } + if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) { + LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); + return false; + } + *n_past += n_eval; + } + return true; +} + +static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) { + std::vector tokens; + tokens.push_back(id); + return eval_tokens(ctx_llama, tokens, 1, n_past); +} + +static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){ + std::string str2 = str; + std::vector embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true); + return eval_tokens(ctx_llama, embd_inp, n_batch, n_past); +} + +static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) { + float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip)); + std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip)); + + auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed)); + slice_embed->embed = image_embed; + slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip); + llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past); + llava_image_embed_free(slice_embed); +} + +static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) { + std::string system_prompt; + int idx = 0; + int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip); + int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip); + if (has_minicpmv_projector == 2) { + system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"; + } + else if (has_minicpmv_projector == 3) { + system_prompt = "<|im_start|>user\n"; + } + LOG_TEE("%s: image token past: %d\n", __func__, n_past); + eval_string(ctx_llava->ctx_llama, (system_prompt+"").c_str(), params->n_batch, &n_past, false); + process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++); + eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); + if (num_image_embeds > 1) { + size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip); + eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); + for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) { + for (size_t j = 0; j < num_image_embeds_col; ++j) { + eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); + process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++); + eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); + if (j == num_image_embeds_col - 1) { + eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false); + } + } + } + eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); + } + LOG_TEE("%s: image token past: %d\n", __func__, n_past); +} + +static const char * sample(struct llama_sampling_context * ctx_sampling, + struct llama_context * ctx_llama, + int * n_past) { + const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL); + llama_sampling_accept(ctx_sampling, ctx_llama, id, true); + static std::string ret; + if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { + ret = ""; + } else { + ret = llama_token_to_piece(ctx_llama, id); + } + eval_id(ctx_llama, id, n_past); + return ret.c_str(); +} + +static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){ + auto ctx_clip = clip_init_context(params); + auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str()); + if (!embeds) { + std::cerr << "error: failed to load image " << fname << ". Terminating\n\n"; + return NULL; + } + + // process the prompt + if (params->prompt.empty() && params->interactive == false) { + LOG_TEE("prompt should be given or interactive mode should be on"); + return NULL; + } + + auto model = llava_init(params); + if (model == NULL) { + fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__); + return NULL; + } + const int64_t t_llava_init_start_us = ggml_time_us(); + auto ctx_llava = llava_init_context(params, model); + ctx_llava->ctx_clip = ctx_clip; + const int64_t t_llava_init_end_us = ggml_time_us(); + float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0; + LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms); + + const int64_t t_process_image_start_us = ggml_time_us(); + process_image(ctx_llava, embeds, params, n_past); + const int64_t t_process_image_end_us = ggml_time_us(); + float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0; + LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms); + + llava_image_embed_free(embeds); + return ctx_llava; +} + +static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){ + std::string user_prompt = prompt; + int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip); + if (!is_first) { + if (has_minicpmv_projector == 2) { + user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt; + } + else if (has_minicpmv_projector == 3) { + user_prompt = "<|im_start|>user\n" + prompt; + } + } + + eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); + if (has_minicpmv_projector == 2) { + eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false); + } + else if (has_minicpmv_projector == 3) { + eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false); + } + + // generate the response + + LOG_TEE("\n"); + + struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams); + return ctx_sampling; +} + +static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){ + + const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past); + return tmp; +} + +int main(int argc, char ** argv) { + ggml_time_init(); + + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + show_additional_info(argc, argv); + return 1; + } + +#ifndef LOG_DISABLE_LOGS + log_set_target(log_filename_generator("llava", "log")); + LOG_TEE("Log start\n"); + log_dump_cmdline(argc, argv); + llama_log_set(llama_log_callback_logTee, nullptr); +#endif // LOG_DISABLE_LOGS + + if (params.mmproj.empty() || (params.image.empty())) { + gpt_params_print_usage(argc, argv, params); + show_additional_info(argc, argv); + return 1; + } + + for (auto & image : params.image) { + int n_past = 0; + auto ctx_llava = minicpmv_init(¶ms, image, n_past); + + if (!params.prompt.empty()) { + LOG_TEE("%s\n", params.prompt.c_str()); + LOG_TEE(""); + auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true); + const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict; + std::string response = ""; + bool have_tmp = false; + for (int i = 0; i < max_tgt_len; i++) { + auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past); + response += tmp; + if (strcmp(tmp, "") == 0){ + if(!have_tmp)continue; + else break; + } + if (strstr(tmp, "###")) break; // Yi-VL behavior + have_tmp = true; + printf("%s", tmp); + if (strstr(response.c_str(), "")) break; // minicpm-v + + fflush(stdout); + } + llama_sampling_free(ctx_sampling); + }else { + while (true) { + LOG_TEE(""); + std::string prompt; + std::getline(std::cin, prompt); + LOG_TEE(""); + auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true); + const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict; + std::string response = ""; + for (int i = 0; i < max_tgt_len; i++) { + auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past); + response += tmp; + if (strcmp(tmp, "") == 0) break; + if (strstr(tmp, "###")) break; // Yi-VL behavior + printf("%s", tmp);// mistral llava-1.6 + if (strstr(response.c_str(), "")) break; // minicpm-v + fflush(stdout); + } + llama_sampling_free(ctx_sampling); + } + } + printf("\n"); + llama_print_timings(ctx_llava->ctx_llama); + + ctx_llava->model = NULL; + llava_free(ctx_llava); + } + + return 0; +} diff --git a/examples/llava/minicpmv-convert-image-encoder-to-gguf.py b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py new file mode 100644 index 000000000..ea773742a --- /dev/null +++ b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py @@ -0,0 +1,806 @@ +# coding=utf-8 +# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Siglip model. """ +# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes + + +import os +import math +import warnings + +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn.init import _calculate_fan_in_and_fan_out + +from transformers.activations import ACT2FN +from transformers.modeling_utils import PreTrainedModel +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import ( + logging, +) +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +class SiglipVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a + Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip + [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_channels (`int`, *optional*, defaults to 3): + Number of channels in the input images. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + Example: + ```python + >>> from transformers import SiglipVisionConfig, SiglipVisionModel + >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration + >>> configuration = SiglipVisionConfig() + >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration + >>> model = SiglipVisionModel(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "siglip_vision_model" + + def __init__( + self, + hidden_size=768, + intermediate_size=3072, + num_hidden_layers=12, + num_attention_heads=12, + num_channels=3, + image_size=224, + patch_size=16, + hidden_act="gelu_pytorch_tanh", + layer_norm_eps=1e-6, + attention_dropout=0.0, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.patch_size = patch_size + self.image_size = image_size + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + +_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" + +SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/siglip-base-patch16-224", + # See all SigLIP models at https://huggingface.co/models?filter=siglip +] + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +def _trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn( + "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2, + ) + + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + if tensor.dtype in [torch.float16, torch.bfloat16]: + # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu + og_dtype = tensor.dtype + tensor = tensor.to(torch.float32) + tensor.erfinv_() + tensor = tensor.to(og_dtype) + else: + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + if tensor.dtype == torch.float16: + # The `clamp_` op is not (yet?) defined in float16+cpu + tensor = tensor.to(torch.float32) + tensor.clamp_(min=a, max=b) + tensor = tensor.to(torch.float16) + else: + tensor.clamp_(min=a, max=b) + + +def trunc_normal_tf_( + tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 +): + """Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \\leq \text{mean} \\leq b`. + NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the + bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 + and the result is subsquently scaled and shifted by the mean and std args. + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + """ + with torch.no_grad(): + _trunc_normal_(tensor, 0, 1.0, a, b) + tensor.mul_(std).add_(mean) + + +def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + denom = fan_in + if mode == "fan_in": + denom = fan_in + elif mode == "fan_out": + denom = fan_out + elif mode == "fan_avg": + denom = (fan_in + fan_out) / 2 + + variance = scale / denom + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) + elif distribution == "normal": + with torch.no_grad(): + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + with torch.no_grad(): + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") + + +def default_flax_embed_init(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="normal") + +class SiglipVisionEmbeddings(nn.Module): + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.embed_dim, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + ) + + self.num_patches_per_side = self.image_size // self.patch_size + self.num_patches = self.num_patches_per_side**2 + self.num_positions = self.num_patches + self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) + +class SiglipAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip +class SiglipMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip +class SiglipEncoderLayer(nn.Module): + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.embed_dim = config.hidden_size + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.self_attn = ( + SiglipAttention(config) + ) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = SiglipMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + +class SiglipPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SiglipVisionConfig + base_model_prefix = "siglip" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + + if isinstance(module, SiglipVisionEmbeddings): + width = self.config.hidden_size + nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) + elif isinstance(module, nn.Embedding): + default_flax_embed_init(module.weight) + elif isinstance(module, SiglipAttention): + nn.init.normal_(module.q_proj.weight) + nn.init.normal_(module.k_proj.weight) + nn.init.normal_(module.v_proj.weight) + nn.init.normal_(module.out_proj.weight) + nn.init.zeros_(module.q_proj.bias) + nn.init.zeros_(module.k_proj.bias) + nn.init.zeros_(module.v_proj.bias) + nn.init.zeros_(module.out_proj.bias) + elif isinstance(module, SiglipMLP): + nn.init.normal_(module.fc1.weight) + nn.init.normal_(module.fc2.weight) + nn.init.normal_(module.fc1.bias, std=1e-6) + nn.init.normal_(module.fc2.bias, std=1e-6) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +SIGLIP_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + Parameters: + config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SIGLIP_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip +class SiglipEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`SiglipEncoderLayer`]. + Args: + config: SiglipConfig + """ + + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + +class SiglipVisionTransformer(SiglipPreTrainedModel): + config_class = SiglipVisionConfig + main_input_name = "pixel_values" + _supports_flash_attn_2 = True + + def __init__(self, config: SiglipVisionConfig): + super().__init__(config) + self.config = config + embed_dim = config.hidden_size + + self.embeddings = SiglipVisionEmbeddings(config) + self.encoder = SiglipEncoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.embeddings.patch_embedding + +import argparse +import json +import re + +import numpy as np +from gguf import * +from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig + +TEXT = "clip.text" +VISION = "clip.vision" + + +def add_key_str(raw_key: str, arch: str) -> str: + return raw_key.format(arch=arch) + + +def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool: + if name in ( + "logit_scale", + "text_model.embeddings.position_ids", + "vision_model.embeddings.position_ids", + ): + return True + + if has_minicpmv and name in ["visual_projection.weight"]: + return True + + if name.startswith("v") and not has_vision: + return True + + if name.startswith("t") and not has_text: + return True + + return False + + +def get_tensor_name(name: str) -> str: + if "projection" in name: + return name + if "mm_projector" in name: + name = name.replace("model.mm_projector", "mm") + name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) + name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) + return name + + return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") + + +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a significant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + + list(range(ord("¡"), ord("¬") + 1)) + + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +ap = argparse.ArgumentParser() +ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) +ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") +ap.add_argument("--text-only", action="store_true", required=False, + help="Save a text-only model. It can't be used to encode images") +ap.add_argument("--vision-only", action="store_true", required=False, + help="Save a vision-only model. It can't be used to encode texts") +ap.add_argument("--clip-model-is-vision", action="store_true", required=False, + help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") +ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, + help="The clip model is from openclip (for ViT-SO400M type))") +ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.") +ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") +ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) +# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 +# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 +default_image_mean = [0.48145466, 0.4578275, 0.40821073] +default_image_std = [0.26862954, 0.26130258, 0.27577711] +ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) +ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) +ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2) + +# with proper +args = ap.parse_args() + + +if args.text_only and args.vision_only: + print("--text-only and --image-only arguments cannot be specified at the same time.") + exit(1) + +if args.use_f32: + print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") + +# output in the same directory as the model if output_dir is None +dir_model = args.model_dir + +if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: + vocab = None + tokens = None +else: + with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: + vocab = json.load(f) + tokens = [key for key in vocab] + +# possible data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 +# +# map from ftype to string +ftype_str = ["f32", "f16"] + +ftype = 1 +if args.use_f32: + ftype = 0 + +# if args.clip_model_is_vision or args.clip_model_is_openclip: +# model = CLIPVisionModel.from_pretrained(dir_model) +# processor = None +# else: +# model = CLIPModel.from_pretrained(dir_model) +# processor = CLIPProcessor.from_pretrained(dir_model) + +minicpmv_version = args.minicpmv_version +emb_dim = 4096 +if minicpmv_version == 1: + emb_dim = 2304 +elif minicpmv_version == 2: + emb_dim = 4096 +elif minicpmv_version == 3: + emb_dim = 3584 + +default_vision_config = { + "hidden_size": 1152, + "image_size": 980, + "intermediate_size": 4304, + "model_type": "idefics2", + "num_attention_heads": 16, + "num_hidden_layers": 27, + "patch_size": 14, + } + +vision_config = Idefics2VisionConfig(**default_vision_config) +model = Idefics2VisionTransformer(vision_config) +if minicpmv_version == 3: + vision_config = SiglipVisionConfig(**default_vision_config) + model = SiglipVisionTransformer(vision_config) + +processor = None +# if model.attn_pool is not None: +# model.attn_pool = torch.nn.Identity() + +# model.blocks = model.blocks[:-1] +model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip"))) + +fname_middle = None +has_text_encoder = True +has_vision_encoder = True +has_minicpmv_projector = False + +if args.text_only: + fname_middle = "text-" + has_vision_encoder = False +elif args.minicpmv_projector is not None: + fname_middle = "mmproj-" + has_text_encoder = False + has_minicpmv_projector = True + minicpmv_version = 3 +elif args.vision_only: + fname_middle = "vision-" + has_text_encoder = False +else: + fname_middle = "" + +output_dir = args.output_dir if args.output_dir is not None else dir_model +os.makedirs(output_dir, exist_ok=True) +output_prefix = os.path.basename(output_dir).replace("ggml_", "") +fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") +fout = GGUFWriter(path=fname_out, arch="clip") + +fout.add_bool("clip.has_text_encoder", has_text_encoder) +fout.add_bool("clip.has_vision_encoder", has_vision_encoder) +fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector) +fout.add_file_type(ftype) +if args.text_only: + fout.add_description("text-only CLIP model") +elif args.vision_only and not has_minicpmv_projector: + fout.add_description("vision-only CLIP model") +elif has_minicpmv_projector: + fout.add_description("image encoder for MiniCPM-V") + # add projector type + fout.add_string("clip.projector_type", "resampler") + fout.add_int32("clip.minicpmv_version", minicpmv_version) +else: + fout.add_description("two-tower CLIP model") + +if has_vision_encoder: + # vision_model hparams + fout.add_uint32("clip.vision.image_size", 448) + fout.add_uint32("clip.vision.patch_size", 14) + fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152) + fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304) + fout.add_uint32("clip.vision.projection_dim", 0) + fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16) + fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) + block_count = 26 + fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count) + + if processor is not None: + image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean + image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std + else: + image_mean = args.image_mean if args.image_mean is not None else default_image_mean + image_std = args.image_std if args.image_std is not None else default_image_std + fout.add_array("clip.vision.image_mean", image_mean) + fout.add_array("clip.vision.image_std", image_std) + +use_gelu = True +fout.add_bool("clip.use_gelu", use_gelu) + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=np.float32) + omega /= embed_dim / 2. + omega = 1. / 10000 ** omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) + return emb + + +# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 +def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): + """ + grid_size: int of the grid height and width + return: + pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) + """ + if isinstance(grid_size, int): + grid_h_size, grid_w_size = grid_size, grid_size + else: + grid_h_size, grid_w_size = grid_size[0], grid_size[1] + + grid_h = np.arange(grid_h_size, dtype=np.float32) + grid_w = np.arange(grid_w_size, dtype=np.float32) + grid = np.meshgrid(grid_w, grid_h) # here w goes first + grid = np.stack(grid, axis=0) + + grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) + pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) + if cls_token: + pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) + return pos_embed + +def _replace_name_resampler(s, v): + if re.match("resampler.pos_embed", s): + return { + s: v, + re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), + } + if re.match("resampler.proj", s): + return { + re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), + re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), + } + if re.match("resampler.attn.in_proj_.*", s): + return { + re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0], + re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1], + re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2], + } + return {s: v} + +if has_minicpmv_projector: + projector = torch.load(args.minicpmv_projector) + new_state_dict = {} + for k, v in projector.items(): + kvs = _replace_name_resampler(k, v) + for nk, nv in kvs.items(): + new_state_dict[nk] = nv + projector = new_state_dict + ftype_cur = 0 + for name, data in projector.items(): + name = get_tensor_name(name) + data = data.squeeze().numpy() + + n_dims = len(data.shape) + if ftype == 1: + if name[-7:] == ".weight" and n_dims == 2: + print(" Converting to float16") + data = data.astype(np.float16) + ftype_cur = 1 + else: + print(" Converting to float32") + data = data.astype(np.float32) + ftype_cur = 0 + else: + if data.dtype != np.float32: + print(" Converting to float32") + data = data.astype(np.float32) + ftype_cur = 0 + + fout.add_tensor(name, data) + print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") + + print("Projector tensors added\n") + +def _replace_name(s, v): + s = "vision_model." + s + if re.match("vision_model.embeddings.position_embedding", s): + v = v.unsqueeze(0) + return {s: v} + + return {s: v} + +state_dict = model.state_dict() +new_state_dict = {} +for k, v in state_dict.items(): + kvs = _replace_name(k, v) + for nk, nv in kvs.items(): + new_state_dict[nk] = nv +state_dict = new_state_dict +for name, data in state_dict.items(): + if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector): + # we don't need this + print(f"skipping parameter: {name}") + continue + + name = get_tensor_name(name) + data = data.squeeze().numpy() + + n_dims = len(data.shape) + + # ftype == 0 -> float32, ftype == 1 -> float16 + ftype_cur = 0 + if n_dims == 4: + print(f"tensor {name} is always saved in f16") + data = data.astype(np.float16) + ftype_cur = 1 + elif ftype == 1: + if name[-7:] == ".weight" and n_dims == 2: + print(" Converting to float16") + data = data.astype(np.float16) + ftype_cur = 1 + else: + print(" Converting to float32") + data = data.astype(np.float32) + ftype_cur = 0 + else: + if data.dtype != np.float32: + print(" Converting to float32") + data = data.astype(np.float32) + ftype_cur = 0 + + print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") + fout.add_tensor(name, data) + + +fout.write_header_to_file() +fout.write_kv_data_to_file() +fout.write_tensors_to_file() +fout.close() + +print("Done. Output file: " + fname_out) diff --git a/examples/llava/minicpmv-surgery.py b/examples/llava/minicpmv-surgery.py new file mode 100644 index 000000000..748ff5c57 --- /dev/null +++ b/examples/llava/minicpmv-surgery.py @@ -0,0 +1,45 @@ +import argparse +import os +import torch +from transformers import AutoModel, AutoTokenizer + +ap = argparse.ArgumentParser() +ap.add_argument("-m", "--model", help="Path to MiniCPM-V model") +args = ap.parse_args() + +# find the model part that includes the the multimodal projector weights +model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True) +checkpoint = model.state_dict() + +# get a list of mm tensor names +mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")] + +# store these tensors in a new dictionary and torch.save them +projector = {name: checkpoint[name].float() for name in mm_tensors} +torch.save(projector, f"{args.model}/minicpmv.projector") + +clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")] +if len(clip_tensors) > 0: + clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors} + torch.save(clip, f"{args.model}/minicpmv.clip") + + # added tokens should be removed to be able to convert Mistral models + if os.path.exists(f"{args.model}/added_tokens.json"): + with open(f"{args.model}/added_tokens.json", "w") as f: + f.write("{}\n") + +config = model.llm.config +config.auto_map = { + "AutoConfig": "configuration_minicpm.MiniCPMConfig", + "AutoModel": "modeling_minicpm.MiniCPMModel", + "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM", + "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM", + "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification" +} +model.llm.save_pretrained(f"{args.model}/model") +tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) +tok.save_pretrained(f"{args.model}/model") + +print("Done!") +print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") +print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.") diff --git a/examples/llava/requirements.txt b/examples/llava/requirements.txt index fbfd0cdd7..cbcbf26c9 100644 --- a/examples/llava/requirements.txt +++ b/examples/llava/requirements.txt @@ -2,3 +2,4 @@ --extra-index-url https://download.pytorch.org/whl/cpu pillow~=10.2.0 torch~=2.2.1 +torchvision~=0.17.1 diff --git a/examples/lookahead/lookahead.cpp b/examples/lookahead/lookahead.cpp index fb20ad93f..81cf1629c 100644 --- a/examples/lookahead/lookahead.cpp +++ b/examples/lookahead/lookahead.cpp @@ -58,11 +58,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the target model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // Tokenize the prompt std::vector inp; diff --git a/examples/lookup/lookup-create.cpp b/examples/lookup/lookup-create.cpp index d713f6f21..5f04709f5 100644 --- a/examples/lookup/lookup-create.cpp +++ b/examples/lookup/lookup-create.cpp @@ -22,11 +22,11 @@ int main(int argc, char ** argv){ llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; GGML_ASSERT(model != nullptr); // tokenize the prompt diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp index 2fe67100e..400f3e0b0 100644 --- a/examples/lookup/lookup-stats.cpp +++ b/examples/lookup/lookup-stats.cpp @@ -26,11 +26,11 @@ int main(int argc, char ** argv){ llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // tokenize the prompt std::vector inp; diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index bb571bac4..d53a9828c 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -34,11 +34,11 @@ int main(int argc, char ** argv){ llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // tokenize the prompt std::vector inp; diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 61e960ea2..4a342ad03 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -207,7 +207,10 @@ int main(int argc, char ** argv) { // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + model = llama_init.model; + ctx = llama_init.context; if (sparams.cfg_scale > 1.f) { struct llama_context_params lparams = llama_context_params_from_gpt_params(params); ctx_guidance = llama_new_context_with_model(model, lparams); @@ -264,9 +267,9 @@ int main(int argc, char ** argv) { } } - const bool add_bos = llama_should_add_bos_token(model); + const bool add_bos = llama_add_bos_token(model); if (!llama_model_has_encoder(model)) { - GGML_ASSERT(llama_add_eos_token(model) != 1); + GGML_ASSERT(!llama_add_eos_token(model)); } LOG("add_bos: %d\n", add_bos); diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 7faeaec97..621a1c959 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -129,11 +129,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model = NULL; - llama_context * ctx = NULL; - // load the target model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; // load the prompts from an external file if there are any if (params.prompt.empty()) { diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index dbe445391..484dd5891 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -340,8 +340,8 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); @@ -480,8 +480,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); std::ofstream logits_stream; if (!params.logits_file.empty()) { @@ -1733,8 +1733,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { const int n_batch = params.n_batch; const int num_batches = (n_ctx + n_batch - 1)/n_batch; const int nv = 2*((n_vocab + 1)/2) + 4; - const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); - GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); + const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); + GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); std::vector kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); @@ -2018,11 +2018,11 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model; - llama_context * ctx; - // load the model and apply lora adapter, if any - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; diff --git a/examples/quantize/README.md b/examples/quantize/README.md index 553c2701b..5d1e11c67 100644 --- a/examples/quantize/README.md +++ b/examples/quantize/README.md @@ -34,7 +34,7 @@ Run the quantized model: ```bash # start inference on a gguf model -./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128 +./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -cnv -p "You are a helpful assistant" ``` When running the larger models, make sure you have enough disk space to store all the intermediate files. diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 8d7647258..7312309ae 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -91,7 +91,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp } // usage: -// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads] +// ./llama-quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads] // [[noreturn]] static void usage(const char * executable) { diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index eb89d16da..aab9d8105 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -148,11 +148,12 @@ int main(int argc, char ** argv) { llama_backend_init(); llama_numa_init(params.numa); - llama_model * model; - llama_context * ctx; - // load the model - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; @@ -252,6 +253,8 @@ int main(int argc, char ** argv) { chunks[i].tokens.clear(); } + struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); + // start loop, receive query and return top k similar chunks based on cosine similarity std::string query; while (true) { @@ -259,7 +262,6 @@ int main(int argc, char ** argv) { std::getline(std::cin, query); std::vector query_tokens = llama_tokenize(ctx, query, true); - struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); batch_add_seq(query_batch, query_tokens, 0); std::vector query_emb(n_embd, 0); @@ -292,6 +294,7 @@ int main(int argc, char ** argv) { } // clean up + llama_batch_free(query_batch); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); diff --git a/examples/rpc/README.md b/examples/rpc/README.md index e1da801f2..adedc8909 100644 --- a/examples/rpc/README.md +++ b/examples/rpc/README.md @@ -1,5 +1,9 @@ ## Overview +> [!IMPORTANT] +> This example and the RPC backend are currently in a proof-of-concept development stage. As such, the functionality is fragile and +> insecure. **Never run the RPC server on an open network or in a sensitive environment!** + The `rpc-server` allows running `ggml` backend on a remote host. The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them. This can be used for distributed LLM inference with `llama.cpp` in the following way: diff --git a/examples/rpc/rpc-server.cpp b/examples/rpc/rpc-server.cpp index 7c15d2aa4..6342e6488 100644 --- a/examples/rpc/rpc-server.cpp +++ b/examples/rpc/rpc-server.cpp @@ -16,7 +16,7 @@ #include struct rpc_server_params { - std::string host = "0.0.0.0"; + std::string host = "127.0.0.1"; int port = 50052; size_t backend_mem = 0; }; @@ -114,6 +114,17 @@ int main(int argc, char * argv[]) { fprintf(stderr, "Invalid parameters\n"); return 1; } + + if (params.host != "127.0.0.1") { + fprintf(stderr, "\n"); + fprintf(stderr, "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); + fprintf(stderr, "WARNING: Host ('%s') is != '127.0.0.1'\n", params.host.c_str()); + fprintf(stderr, " Never expose the RPC server to an open network!\n"); + fprintf(stderr, " This is an experimental feature and is not secure!\n"); + fprintf(stderr, "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); + fprintf(stderr, "\n"); + } + ggml_backend_t backend = create_backend(); if (!backend) { fprintf(stderr, "Failed to create backend\n"); diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index d8afdc141..3ea7c790d 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -28,10 +28,11 @@ int main(int argc, char ** argv) { std::string result2; // init - llama_model * model; - llama_context * ctx; + llama_init_result llama_init = llama_init_from_gpt_params(params); + + llama_model * model = llama_init.model; + llama_context * ctx = llama_init.context; - std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; diff --git a/examples/server/README.md b/examples/server/README.md index de83ee7d0..930ae15f6 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -207,41 +207,6 @@ model: -hff, --hf-file FILE Hugging Face model file (default: unused) -hft, --hf-token TOKEN Hugging Face access token (default: value from HF_TOKEN environment variable) -retrieval: - - --context-file FNAME file to load context from (repeat to specify multiple files) - --chunk-size N minimum length of embedded text chunks (default: 64) - --chunk-separator STRING - separator between chunks (default: ' - ') - -passkey: - - --junk N number of times to repeat the junk text (default: 250) - --pos N position of the passkey in the junk text (default: -1) - -imatrix: - - -o, --output FNAME output file (default: 'imatrix.dat') - --output-frequency N output the imatrix every N iterations (default: 10) - --save-frequency N save an imatrix copy every N iterations (default: 0) - --process-output collect data for the output tensor (default: false) - --no-ppl do not compute perplexity (default: true) - --chunk N start processing the input from chunk N (default: 0) - -bench: - - -pps is the prompt shared across parallel sequences (default: false) - -npp n0,n1,... number of prompt tokens - -ntg n0,n1,... number of text generation tokens - -npl n0,n1,... number of parallel prompts - -embedding: - - --embd-normalize normalisation for embendings (default: 2) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm) - --embd-output-format empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix - --embd-separator separator of embendings (default \n) for example "<#sep#>" - server: --host HOST ip address to listen (default: 127.0.0.1) @@ -267,7 +232,8 @@ server: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template -sps, --slot-prompt-similarity SIMILARITY how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled) - + --lora-init-without-apply + load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) logging: @@ -279,15 +245,6 @@ logging: --log-file FNAME Specify a log filename (without extension) --log-new Create a separate new log file on start. Each log file will have unique name: "..log" --log-append Don't truncate the old log file. - -cvector: - - -o, --output FNAME output file (default: 'control_vector.gguf') - --positive-file FNAME positive prompts file, one prompt per line (default: 'examples/cvector-generator/positive.txt') - --negative-file FNAME negative prompts file, one prompt per line (default: 'examples/cvector-generator/negative.txt') - --pca-batch N batch size used for PCA. Larger batch runs faster, but uses more memory (default: 100) - --pca-iter N number of iterations used for PCA (default: 1000) - --method {pca,mean} dimensionality reduction method to be used (default: pca) ``` @@ -411,16 +368,18 @@ node index.js ## API Endpoints -- **GET** `/health`: Returns the current state of the server: - - 503 -> `{"status": "loading model"}` if the model is still being loaded. - - 500 -> `{"status": "error"}` if the model failed to load. - - 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below. - - 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slots are currently available. - - 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slots are currently available. +### GET `/health`: Returns heath check result - If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set. +**Response format** -- **POST** `/completion`: Given a `prompt`, it returns the predicted completion. +- HTTP status code 503 + - Body: `{"error": {"code": 503, "message": "Loading model", "type": "unavailable_error"}}` + - Explanation: the model is still being loaded. +- HTTP status code 200 + - Body: `{"status": "ok" }` + - Explanation: the model is successfully loaded and the server is ready. + +### POST `/completion`: Given a `prompt`, it returns the predicted completion. *Options:* @@ -498,7 +457,7 @@ node index.js `samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values. -### Result JSON +**Response format** - Note: When using streaming mode (`stream`), only `content` and `stop` will be returned until end of completion. @@ -537,7 +496,7 @@ Notice that each `probs` is an array of length `n_probs`. - `tokens_evaluated`: Number of tokens evaluated in total from the prompt - `truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`) -- **POST** `/tokenize`: Tokenize a given text. +### POST `/tokenize`: Tokenize a given text *Options:* @@ -545,13 +504,15 @@ Notice that each `probs` is an array of length `n_probs`. `add_special`: Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false` -- **POST** `/detokenize`: Convert tokens to text. +### POST `/detokenize`: Convert tokens to text *Options:* `tokens`: Set the tokens to detokenize. -- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does. +### POST `/embedding`: Generate embedding of a given text + +The same as [the embedding example](../embedding) does. *Options:* @@ -559,7 +520,9 @@ Notice that each `probs` is an array of length `n_probs`. `image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA. -- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream. +### POST `/infill`: For code infilling. + +Takes a prefix and a suffix and returns the predicted completion as stream. *Options:* @@ -571,7 +534,7 @@ Notice that each `probs` is an array of length `n_probs`. - **GET** `/props`: Return current server settings. -### Result JSON +**Response format** ```json { @@ -589,7 +552,9 @@ Notice that each `probs` is an array of length `n_probs`. - `total_slots` - the total number of slots for process requests (defined by `--parallel` option) - `chat_template` - the model's original Jinja2 prompt template -- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used. +### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API + +Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used. *Options:* @@ -641,7 +606,7 @@ Notice that each `probs` is an array of length `n_probs`. }' ``` -- **POST** `/v1/embeddings`: OpenAI-compatible embeddings API. +### POST `/v1/embeddings`: OpenAI-compatible embeddings API *Options:* @@ -675,9 +640,15 @@ Notice that each `probs` is an array of length `n_probs`. }' ``` -- **GET** `/slots`: Returns the current slots processing state. Can be disabled with `--slots-endpoint-disable`. +### GET `/slots`: Returns the current slots processing state -### Result JSON +This endpoint can be disabled with `--no-slots` + +If query param `?fail_on_no_slot=1` is set, this endpoint will respond with status code 503 if there is no available slots. + +**Response format** + +Example: ```json [ @@ -738,7 +709,13 @@ Notice that each `probs` is an array of length `n_probs`. ] ``` -- **GET** `/metrics`: [Prometheus](https://prometheus.io/) compatible metrics exporter endpoint if `--metrics` is enabled: +Possible values for `slot[i].state` are: +- `0`: SLOT_STATE_IDLE +- `1`: SLOT_STATE_PROCESSING + +### GET `/metrics`: Prometheus compatible metrics exporter + +This endpoint is only accessible if `--metrics` is set. Available metrics: - `llamacpp:prompt_tokens_total`: Number of prompt tokens processed. @@ -750,13 +727,13 @@ Available metrics: - `llamacpp:requests_processing`: Number of requests processing. - `llamacpp:requests_deferred`: Number of requests deferred. -- **POST** `/slots/{id_slot}?action=save`: Save the prompt cache of the specified slot to a file. +### POST `/slots/{id_slot}?action=save`: Save the prompt cache of the specified slot to a file. *Options:* `filename`: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the `--slot-save-path` server parameter. -### Result JSON +**Response format** ```json { @@ -770,13 +747,13 @@ Available metrics: } ``` -- **POST** `/slots/{id_slot}?action=restore`: Restore the prompt cache of the specified slot from a file. +### POST `/slots/{id_slot}?action=restore`: Restore the prompt cache of the specified slot from a file. *Options:* `filename`: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the `--slot-save-path` server parameter. -### Result JSON +**Response format** ```json { @@ -790,9 +767,9 @@ Available metrics: } ``` -- **POST** `/slots/{id_slot}?action=erase`: Erase the prompt cache of the specified slot. +### POST `/slots/{id_slot}?action=erase`: Erase the prompt cache of the specified slot. -### Result JSON +**Response format** ```json { @@ -801,6 +778,46 @@ Available metrics: } ``` +### GET `/lora-adapters`: Get list of all LoRA adapters + +This endpoint returns the loaded LoRA adapters. You can add adapters using `--lora` when starting the server, for example: `--lora my_adapter_1.gguf --lora my_adapter_2.gguf ...` + +By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add `--lora-init-without-apply` + +If an adapter is disabled, the scale will be set to 0. + +**Response format** + +```json +[ + { + "id": 0, + "path": "my_adapter_1.gguf", + "scale": 0.0 + }, + { + "id": 1, + "path": "my_adapter_2.gguf", + "scale": 0.0 + } +] +``` + +### POST `/lora-adapters`: Set list of LoRA adapters + +To disable an adapter, either remove it from the list below, or set scale to 0. + +**Request format** + +To know the `id` of the adapter, use GET `/lora-adapters` + +```json +[ + {"id": 0, "scale": 0.2}, + {"id": 1, "scale": 0.8} +] +``` + ## More examples ### Change system prompt on runtime diff --git a/examples/server/server.cpp b/examples/server/server.cpp index d5f131d9b..ce711eadd 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -15,6 +15,8 @@ // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" +// mime type for sending response +#define MIMETYPE_JSON "application/json; charset=utf-8" // auto generated files (update with ./deps.sh) #include "colorthemes.css.hpp" @@ -67,7 +69,6 @@ enum slot_command { enum server_state { SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet SERVER_STATE_READY, // Server is ready and model is loaded - SERVER_STATE_ERROR // An error occurred, load_model failed }; enum server_task_type { @@ -78,6 +79,7 @@ enum server_task_type { SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE, + SERVER_TASK_TYPE_SET_LORA, }; struct server_task { @@ -622,6 +624,7 @@ struct server_response { struct server_context { llama_model * model = nullptr; llama_context * ctx = nullptr; + std::vector lora_adapters; gpt_params params; @@ -629,6 +632,7 @@ struct server_context { bool clean_kv_cache = true; bool add_bos_token = true; + bool has_eos_token = false; int32_t n_ctx; // total context for all clients / slots @@ -677,7 +681,11 @@ struct server_context { // dedicate one sequence to the system prompt params.n_parallel += 1; - std::tie(model, ctx) = llama_init_from_gpt_params(params); + llama_init_result llama_init = llama_init_from_gpt_params(params); + + model = llama_init.model; + ctx = llama_init.context; + lora_adapters = llama_init.lora_adapters; params.n_parallel -= 1; // but be sneaky about it if (model == nullptr) { LOG_ERROR("unable to load model", {{"model", params.model}}); @@ -686,8 +694,8 @@ struct server_context { n_ctx = llama_n_ctx(ctx); - add_bos_token = llama_should_add_bos_token(model); - GGML_ASSERT(llama_add_eos_token(model) != 1); + add_bos_token = llama_add_bos_token(model); + has_eos_token = !llama_add_eos_token(model); return true; } @@ -747,13 +755,13 @@ struct server_context { default_generation_settings_for_props = get_formated_generation(slots.front()); default_generation_settings_for_props["seed"] = -1; - // the update_slots() logic will always submit a maximum of n_batch tokens + // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) { const int32_t n_batch = llama_n_batch(ctx); // only a single seq_id per token is needed - batch = llama_batch_init(n_batch, 0, 1); + batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1); } metrics.init(); @@ -969,6 +977,8 @@ struct server_context { (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) || (prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) { slot.prompt = *prompt; + } else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) { + slot.prompt = prompt->at(0); } else { send_error(task, "\"prompt\" must be a string or an array of integers", ERROR_TYPE_INVALID_REQUEST); return false; @@ -1023,7 +1033,7 @@ struct server_context { { slot.sparams.logit_bias.clear(); - if (json_value(data, "ignore_eos", false)) { + if (json_value(data, "ignore_eos", false) && has_eos_token) { slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; } @@ -1128,28 +1138,19 @@ struct server_context { if (!system_prompt.empty()) { system_tokens = ::llama_tokenize(ctx, system_prompt, true); - llama_batch_clear(batch); - - for (int i = 0; i < (int)system_tokens.size(); ++i) { - llama_batch_add(batch, system_tokens[i], i, { 0 }, false); - } - const int32_t n_batch = llama_n_batch(ctx); + const int32_t n_tokens_prompt = system_tokens.size(); - for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { - const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i); - llama_batch batch_view = { - n_tokens, - batch.token + i, - nullptr, - batch.pos + i, - batch.n_seq_id + i, - batch.seq_id + i, - batch.logits + i, - 0, 0, 0, // unused - }; + for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) { + const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i); - if (llama_decode(ctx, batch_view) != 0) { + llama_batch_clear(batch); + + for (int32_t j = 0; j < n_tokens; ++j) { + llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false); + } + + if (llama_decode(ctx, batch) != 0) { LOG_ERROR("llama_decode() failed", {}); return; } @@ -1322,7 +1323,7 @@ struct server_context { return json { {"n_ctx", slot.n_ctx}, - {"n_predict", slot.n_predict}, + {"n_predict", slot.n_predict}, // Server configured n_predict {"model", params.model_alias}, {"seed", slot.sparams.seed}, {"temperature", slot.sparams.temp}, @@ -1344,7 +1345,7 @@ struct server_context { {"mirostat_eta", slot.sparams.mirostat_eta}, {"penalize_nl", slot.sparams.penalize_nl}, {"stop", slot.params.antiprompt}, - {"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict + {"max_tokens", slot.params.n_predict}, // User configured n_predict {"n_keep", slot.params.n_keep}, {"n_discard", slot.params.n_discard}, {"ignore_eos", ignore_eos}, @@ -1847,6 +1848,16 @@ struct server_context { }; queue_results.send(result); } break; + case SERVER_TASK_TYPE_SET_LORA: + { + llama_lora_adapters_apply(ctx, lora_adapters); + server_task_result result; + result.id = task.id; + result.stop = true; + result.error = false; + result.data = json{{ "success", true }}; + queue_results.send(result); + } break; } } @@ -2028,7 +2039,7 @@ struct server_context { slot.t_start_generation = 0; if (slot.infill) { - const bool add_bos = llama_should_add_bos_token(model); + const bool add_bos = llama_add_bos_token(model); bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); @@ -2546,19 +2557,19 @@ int main(int argc, char ** argv) { svr->set_default_headers({{"Server", "llama.cpp"}}); // CORS preflight - svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); + svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) { + // Access-Control-Allow-Origin is already set by middleware res.set_header("Access-Control-Allow-Credentials", "true"); res.set_header("Access-Control-Allow-Methods", "POST"); res.set_header("Access-Control-Allow-Headers", "*"); - return res.set_content("", "application/json; charset=utf-8"); + return res.set_content("", "text/html"); // blank response, no data }); svr->set_logger(log_server_request); auto res_error = [](httplib::Response & res, json error_data) { json final_response {{"error", error_data}}; - res.set_content(final_response.dump(), "application/json; charset=utf-8"); + res.set_content(final_response.dump(), MIMETYPE_JSON); res.status = json_value(error_data, "code", 500); }; @@ -2588,11 +2599,6 @@ int main(int argc, char ** argv) { svr->set_read_timeout (params.timeout_read); svr->set_write_timeout(params.timeout_write); - if (!svr->bind_to_port(params.hostname, params.port)) { - fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port); - return 1; - } - std::unordered_map log_data; log_data["hostname"] = params.hostname; @@ -2608,35 +2614,6 @@ int main(int argc, char ** argv) { // Necessary similarity of prompt for slot selection ctx_server.slot_prompt_similarity = params.slot_prompt_similarity; - // load the model - if (!ctx_server.load_model(params)) { - state.store(SERVER_STATE_ERROR); - return 1; - } else { - ctx_server.init(); - state.store(SERVER_STATE_READY); - } - - LOG_INFO("model loaded", {}); - - const auto model_meta = ctx_server.model_meta(); - - // if a custom chat template is not supplied, we will use the one that comes with the model (if any) - if (params.chat_template.empty()) { - if (!ctx_server.validate_model_chat_template()) { - LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); - params.chat_template = "chatml"; - } - } - - // print sample chat example to make it clear which template is used - { - LOG_INFO("chat template", { - {"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)}, - {"built_in", params.chat_template.empty()}, - }); - } - // // Middlewares // @@ -2680,8 +2657,6 @@ int main(int argc, char ** argv) { } // API key is invalid or not provided - // TODO: make another middleware for CORS related logic - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION)); LOG_WARNING("Unauthorized: Invalid API Key", {}); @@ -2689,8 +2664,21 @@ int main(int argc, char ** argv) { return false; }; + auto middleware_server_state = [&res_error, &state](const httplib::Request &, httplib::Response & res) { + server_state current_state = state.load(); + if (current_state == SERVER_STATE_LOADING_MODEL) { + res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); + return false; + } + return true; + }; + // register server middlewares - svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) { + svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) { + res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); + if (!middleware_server_state(req, res)) { + return httplib::Server::HandlerResponse::Handled; + } if (!middleware_validate_api_key(req, res)) { return httplib::Server::HandlerResponse::Handled; } @@ -2701,62 +2689,15 @@ int main(int argc, char ** argv) { // Route handlers (or controllers) // - const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) { - server_state current_state = state.load(); - switch (current_state) { - case SERVER_STATE_READY: - { - // request slots data using task queue - server_task task; - task.id = ctx_server.queue_tasks.get_new_id(); - task.type = SERVER_TASK_TYPE_METRICS; - task.id_target = -1; - - ctx_server.queue_results.add_waiting_task_id(task.id); - ctx_server.queue_tasks.post(task); - - // get the result - server_task_result result = ctx_server.queue_results.recv(task.id); - ctx_server.queue_results.remove_waiting_task_id(task.id); - - const int n_idle_slots = result.data.at("idle"); - const int n_processing_slots = result.data.at("processing"); - - json health = { - {"status", "ok"}, - {"slots_idle", n_idle_slots}, - {"slots_processing", n_processing_slots} - }; - - res.status = 200; // HTTP OK - if (params.endpoint_slots && req.has_param("include_slots")) { - health["slots"] = result.data.at("slots"); - } - - if (n_idle_slots == 0) { - health["status"] = "no slot available"; - if (req.has_param("fail_on_no_slot")) { - res.status = 503; // HTTP Service Unavailable - } - } - - res.set_content(health.dump(), "application/json"); - break; - } - case SERVER_STATE_LOADING_MODEL: - { - res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); - } break; - case SERVER_STATE_ERROR: - { - res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER)); - } break; - } + const auto handle_health = [&](const httplib::Request &, httplib::Response & res) { + // error and loading states are handled by middleware + json health = {{"status", "ok"}}; + res.set_content(health.dump(), "application/json"); }; - const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) { + const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) { if (!params.endpoint_slots) { - res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED)); + res_error(res, format_error_response("This server does not support slots endpoint. Start it without `--no-slots`", ERROR_TYPE_NOT_SUPPORTED)); return; } @@ -2774,13 +2715,22 @@ int main(int argc, char ** argv) { server_task_result result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); - res.set_content(result.data.at("slots").dump(), "application/json"); + // optionally return "fail_on_no_slot" error + const int n_idle_slots = result.data.at("idle"); + if (req.has_param("fail_on_no_slot")) { + if (n_idle_slots == 0) { + res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); + return; + } + } + + res.set_content(result.data.at("slots").dump(), MIMETYPE_JSON); res.status = 200; // HTTP OK }; const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) { if (!params.endpoint_metrics) { - res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED)); + res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); return; } @@ -2905,7 +2855,7 @@ int main(int argc, char ** argv) { if (result.error) { res_error(res, result.data); } else { - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); } }; @@ -2935,7 +2885,7 @@ int main(int argc, char ** argv) { if (result.error) { res_error(res, result.data); } else { - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); } }; @@ -2955,13 +2905,11 @@ int main(int argc, char ** argv) { if (result.error) { res_error(res, result.data); } else { - res.set_content(result.data.dump(), "application/json"); + res.set_content(result.data.dump(), MIMETYPE_JSON); } }; const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - std::string id_slot_str = req.path_params.at("id_slot"); int id_slot; @@ -2985,7 +2933,7 @@ int main(int argc, char ** argv) { } }; - const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) { + const auto handle_props = [&ctx_server](const httplib::Request &, httplib::Response & res) { std::string template_key = "tokenizer.chat_template", curr_tmpl; int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0); if (tlen > 0) { @@ -2994,7 +2942,6 @@ int main(int argc, char ** argv) { curr_tmpl = std::string(curr_tmpl_buf.data(), tlen); } } - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = { { "system_prompt", ctx_server.system_prompt.c_str() }, { "default_generation_settings", ctx_server.default_generation_settings_for_props }, @@ -3002,7 +2949,7 @@ int main(int argc, char ** argv) { { "chat_template", curr_tmpl.c_str() } }; - res.set_content(data.dump(), "application/json; charset=utf-8"); + res.set_content(data.dump(), MIMETYPE_JSON); }; const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { @@ -3011,8 +2958,6 @@ int main(int argc, char ** argv) { return; } - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - json data = json::parse(req.body); const int id_task = ctx_server.queue_tasks.get_new_id(); @@ -3023,7 +2968,7 @@ int main(int argc, char ** argv) { if (!json_value(data, "stream", false)) { server_task_result result = ctx_server.queue_results.recv(id_task); if (!result.error && result.stop) { - res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); + res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); } else { res_error(res, result.data); } @@ -3086,9 +3031,7 @@ int main(int argc, char ** argv) { } }; - const auto handle_models = [¶ms, &model_meta](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - + const auto handle_models = [¶ms, &ctx_server](const httplib::Request &, httplib::Response & res) { json models = { {"object", "list"}, {"data", { @@ -3097,12 +3040,12 @@ int main(int argc, char ** argv) { {"object", "model"}, {"created", std::time(0)}, {"owned_by", "llamacpp"}, - {"meta", model_meta} + {"meta", ctx_server.model_meta()} }, }} }; - res.set_content(models.dump(), "application/json; charset=utf-8"); + res.set_content(models.dump(), MIMETYPE_JSON); }; const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error](const httplib::Request & req, httplib::Response & res) { @@ -3110,8 +3053,6 @@ int main(int argc, char ** argv) { res_error(res, format_error_response("This server does not support chat completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); return; } - - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template); const int id_task = ctx_server.queue_tasks.get_new_id(); @@ -3126,7 +3067,7 @@ int main(int argc, char ** argv) { if (!result.error && result.stop) { json result_oai = format_final_response_oaicompat(data, result.data, completion_id); - res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); + res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); } else { res_error(res, result.data); } @@ -3188,8 +3129,6 @@ int main(int argc, char ** argv) { return; } - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - json data = json::parse(req.body); const int id_task = ctx_server.queue_tasks.get_new_id(); @@ -3200,7 +3139,7 @@ int main(int argc, char ** argv) { if (!json_value(data, "stream", false)) { server_task_result result = ctx_server.queue_results.recv(id_task); if (!result.error && result.stop) { - res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); + res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); } else { res_error(res, result.data); } @@ -3248,7 +3187,6 @@ int main(int argc, char ** argv) { }; const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); std::vector tokens; @@ -3257,11 +3195,10 @@ int main(int argc, char ** argv) { tokens = ctx_server.tokenize(body.at("content"), add_special); } const json data = format_tokenizer_response(tokens); - return res.set_content(data.dump(), "application/json; charset=utf-8"); + return res.set_content(data.dump(), MIMETYPE_JSON); }; const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); std::string content; @@ -3271,12 +3208,10 @@ int main(int argc, char ** argv) { } const json data = format_detokenized_response(content); - return res.set_content(data.dump(), "application/json; charset=utf-8"); + return res.set_content(data.dump(), MIMETYPE_JSON); }; const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) { - res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); - const json body = json::parse(req.body); bool is_openai = false; @@ -3322,7 +3257,53 @@ int main(int argc, char ** argv) { json root = is_openai ? format_embeddings_response_oaicompat(body, responses) : responses[0]; - return res.set_content(root.dump(), "application/json; charset=utf-8"); + return res.set_content(root.dump(), MIMETYPE_JSON); + }; + + const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { + json result = json::array(); + for (size_t i = 0; i < ctx_server.lora_adapters.size(); ++i) { + auto & la = ctx_server.lora_adapters[i]; + result.push_back({ + {"id", i}, + {"path", la.path}, + {"scale", la.scale}, + }); + } + res.set_content(result.dump(), MIMETYPE_JSON); + res.status = 200; // HTTP OK + }; + + const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) { + const std::vector body = json::parse(req.body); + int max_idx = ctx_server.lora_adapters.size(); + + // clear existing value + for (auto & la : ctx_server.lora_adapters) { + la.scale = 0.0f; + } + + // set value + for (auto entry : body) { + int id = entry.at("id"); + float scale = entry.at("scale"); + if (0 <= id && id < max_idx) { + ctx_server.lora_adapters[id].scale = scale; + } else { + throw std::runtime_error("invalid adapter id"); + } + } + + server_task task; + task.type = SERVER_TASK_TYPE_SET_LORA; + const int id_task = ctx_server.queue_tasks.post(task); + ctx_server.queue_results.add_waiting_task_id(id_task); + + server_task_result result = ctx_server.queue_results.recv(id_task); + ctx_server.queue_results.remove_waiting_task_id(id_task); + + res.set_content(result.data.dump(), MIMETYPE_JSON); + res.status = 200; // HTTP OK }; auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) { @@ -3363,7 +3344,6 @@ int main(int argc, char ** argv) { // register API routes svr->Get ("/health", handle_health); - svr->Get ("/slots", handle_slots); svr->Get ("/metrics", handle_metrics); svr->Get ("/props", handle_props); svr->Get ("/v1/models", handle_models); @@ -3378,6 +3358,11 @@ int main(int argc, char ** argv) { svr->Post("/v1/embeddings", handle_embeddings); svr->Post("/tokenize", handle_tokenize); svr->Post("/detokenize", handle_detokenize); + // LoRA adapters hotswap + svr->Get ("/lora-adapters", handle_lora_adapters_list); + svr->Post("/lora-adapters", handle_lora_adapters_apply); + // Save & load slots + svr->Get ("/slots", handle_slots); if (!params.slot_save_path.empty()) { // only enable slot endpoints if slot_save_path is set svr->Post("/slots/:id_slot", handle_slots_action); @@ -3393,35 +3378,75 @@ int main(int argc, char ** argv) { log_data["n_threads_http"] = std::to_string(params.n_threads_http); svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); }; - LOG_INFO("HTTP server listening", log_data); + // clean up function, to be called before exit + auto clean_up = [&svr]() { + svr->stop(); + llama_backend_free(); + }; - // run the HTTP server in a thread - see comment below - std::thread t([&]() { - if (!svr->listen_after_bind()) { - state.store(SERVER_STATE_ERROR); - return 1; + // bind HTTP listen port, run the HTTP server in a thread + if (!svr->bind_to_port(params.hostname, params.port)) { + LOG_ERROR("couldn't bind HTTP server socket", { + {"hostname", params.hostname}, + {"port", params.port}, + }); + clean_up(); + LOG_ERROR("exiting due to HTTP server error", {}); + return 1; + } + std::thread t([&]() { svr->listen_after_bind(); }); + svr->wait_until_ready(); + + LOG_INFO("HTTP server is listening", log_data); + + // load the model + LOG_INFO("loading model", log_data); + if (!ctx_server.load_model(params)) { + clean_up(); + t.join(); + LOG_ERROR("exiting due to model loading error", {}); + return 1; + } else { + ctx_server.init(); + state.store(SERVER_STATE_READY); + + LOG_INFO("model loaded", {}); + + // if a custom chat template is not supplied, we will use the one that comes with the model (if any) + if (params.chat_template.empty()) { + if (!ctx_server.validate_model_chat_template()) { + LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); + params.chat_template = "chatml"; + } } - return 0; - }); + // print sample chat example to make it clear which template is used + { + LOG_INFO("chat template", { + {"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)}, + {"built_in", params.chat_template.empty()}, + }); + } - ctx_server.queue_tasks.on_new_task(std::bind( - &server_context::process_single_task, &ctx_server, std::placeholders::_1)); - ctx_server.queue_tasks.on_finish_multitask(std::bind( - &server_context::on_finish_multitask, &ctx_server, std::placeholders::_1)); - ctx_server.queue_tasks.on_update_slots(std::bind( - &server_context::update_slots, &ctx_server)); - ctx_server.queue_results.on_multitask_update(std::bind( - &server_queue::update_multitask, - &ctx_server.queue_tasks, - std::placeholders::_1, - std::placeholders::_2, - std::placeholders::_3 - )); + ctx_server.queue_tasks.on_new_task(std::bind( + &server_context::process_single_task, &ctx_server, std::placeholders::_1)); + ctx_server.queue_tasks.on_finish_multitask(std::bind( + &server_context::on_finish_multitask, &ctx_server, std::placeholders::_1)); + ctx_server.queue_tasks.on_update_slots(std::bind( + &server_context::update_slots, &ctx_server)); + ctx_server.queue_results.on_multitask_update(std::bind( + &server_queue::update_multitask, + &ctx_server.queue_tasks, + std::placeholders::_1, + std::placeholders::_2, + std::placeholders::_3 + )); - shutdown_handler = [&](int) { - ctx_server.queue_tasks.terminate(); - }; + shutdown_handler = [&](int) { + ctx_server.queue_tasks.terminate(); + }; + ctx_server.queue_tasks.start_loop(); + } #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; @@ -3437,12 +3462,8 @@ int main(int argc, char ** argv) { SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif - ctx_server.queue_tasks.start_loop(); - - svr->stop(); + clean_up(); t.join(); - llama_backend_free(); - return 0; } diff --git a/examples/server/tests/features/lora.feature b/examples/server/tests/features/lora.feature new file mode 100644 index 000000000..7b85988ac --- /dev/null +++ b/examples/server/tests/features/lora.feature @@ -0,0 +1,36 @@ +@llama.cpp +@lora +Feature: llama.cpp server + + Background: Server startup + Given a server listening on localhost:8080 + And a model url https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/stories15M_MOE-F16.gguf + And a model file stories15M_MOE-F16.gguf + And a model alias stories15M_MOE + And a lora adapter file from https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf + And 42 as server seed + And 1024 as batch size + And 1024 as ubatch size + And 2048 KV cache size + And 64 max tokens to predict + And 0.0 temperature + Then the server is starting + Then the server is healthy + + Scenario: Completion LoRA disabled + Given switch off lora adapter 0 + Given a prompt: + """ + Look in thy glass + """ + And a completion request with no api error + Then 64 tokens are predicted matching little|girl|three|years|old + + Scenario: Completion LoRA enabled + Given switch on lora adapter 0 + Given a prompt: + """ + Look in thy glass + """ + And a completion request with no api error + Then 64 tokens are predicted matching eye|love|glass|sun diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index df0814cc9..1ba7b60b6 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -7,6 +7,7 @@ import subprocess import sys import threading import time +import requests from collections.abc import Sequence from contextlib import closing from re import RegexFlag @@ -70,6 +71,7 @@ def step_server_config(context, server_fqdn: str, server_port: str): context.user_api_key = None context.response_format = None context.temperature = None + context.lora_file = None context.tasks_result = [] context.concurrent_tasks = [] @@ -82,6 +84,12 @@ def step_download_hf_model(context, hf_file: str, hf_repo: str): context.model_hf_file = hf_file context.model_file = os.path.basename(hf_file) +@step('a lora adapter file from {lora_file_url}') +def step_download_lora_file(context, lora_file_url: str): + file_name = lora_file_url.split('/').pop() + context.lora_file = f'../../../{file_name}' + with open(context.lora_file, 'wb') as f: + f.write(requests.get(lora_file_url).content) @step('a model file {model_file}') def step_model_file(context, model_file: str): @@ -197,27 +205,20 @@ def step_start_server(context): async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str): match expecting_status: case 'healthy': - await wait_for_health_status(context, context.base_url, 200, 'ok', - timeout=30) + await wait_for_slots_status(context, context.base_url, 200, + timeout=30) case 'ready' | 'idle': - await wait_for_health_status(context, context.base_url, 200, 'ok', - timeout=30, - params={'fail_on_no_slot': 0, 'include_slots': 0}, - slots_idle=context.n_slots, - slots_processing=0, - expected_slots=[{'id': slot_id, 'state': 0} - for slot_id in - range(context.n_slots if context.n_slots else 1)]) + await wait_for_slots_status(context, context.base_url, 200, + timeout=30, + params={'fail_on_no_slot': 1}, + slots_idle=context.n_slots, + slots_processing=0) case 'busy': - await wait_for_health_status(context, context.base_url, 503, - 'no slot available', - params={'fail_on_no_slot': 0, 'include_slots': 0}, - slots_idle=0, - slots_processing=context.n_slots, - expected_slots=[{'id': slot_id, 'state': 1} - for slot_id in - range(context.n_slots if context.n_slots else 1)]) + await wait_for_slots_status(context, context.base_url, 503, + params={'fail_on_no_slot': 1}, + slots_idle=0, + slots_processing=context.n_slots) case _: assert False, "unknown status" @@ -849,6 +850,17 @@ async def step_erase_slot(context, slot_id): context.response = response +@step('switch {on_or_off} lora adapter {lora_id:d}') +@async_run_until_complete +async def toggle_lora_adapter(context, on_or_off: str, lora_id: int): + async with aiohttp.ClientSession() as session: + async with session.post(f'{context.base_url}/lora-adapters', + json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}], + headers={"Content-Type": "application/json"}) as response: + context.response = response + print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}]) + + @step('the server responds with status code {status_code:d}') def step_server_responds_with_status_code(context, status_code): assert context.response.status == status_code @@ -1168,17 +1180,15 @@ async def gather_tasks_results(context): return n_completions -async def wait_for_health_status(context, - base_url, - expected_http_status_code, - expected_health_status, - timeout=3, - params=None, - slots_idle=None, - slots_processing=None, - expected_slots=None): +async def wait_for_slots_status(context, + base_url, + expected_http_status_code, + timeout=3, + params=None, + slots_idle=None, + slots_processing=None): if context.debug: - print(f"Starting checking for health for expected_health_status={expected_health_status}") + print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}") interval = 0.5 counter = 0 if 'GITHUB_ACTIONS' in os.environ: @@ -1186,26 +1196,19 @@ async def wait_for_health_status(context, async with aiohttp.ClientSession() as session: while True: - async with await session.get(f'{base_url}/health', params=params) as health_response: - status_code = health_response.status - health = await health_response.json() + async with await session.get(f'{base_url}/slots', params=params) as slots_response: + status_code = slots_response.status + slots = await slots_response.json() if context.debug: - print(f"HEALTH - response for expected health status='{expected_health_status}' on " - f"'{base_url}/health'?{params} is {health}\n") - if (status_code == expected_http_status_code - and health['status'] == expected_health_status - and (slots_idle is None or health['slots_idle'] == slots_idle) - and (slots_processing is None or health['slots_processing'] == slots_processing)): - if expected_slots is not None: - assert_slots_status(health['slots'], expected_slots) - return - if (status_code == expected_http_status_code - and health['status'] == expected_health_status - and (slots_idle is None or health['slots_idle'] == slots_idle) - and (slots_processing is None or health['slots_processing'] == slots_processing)): - if expected_slots is not None: - assert_slots_status(health['slots'], expected_slots) + print(f"slots responses {slots}\n") + if status_code == 503 and status_code == expected_http_status_code: return + if status_code == 200 and status_code == expected_http_status_code: + n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots) + n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots) + if ((slots_idle is None or slots_idle == n_slots_idle) + and (slots_processing is None or slots_processing == n_slots_processing)): + return await asyncio.sleep(interval) counter += interval @@ -1219,7 +1222,7 @@ async def wait_for_health_status(context, if n_completions > 0: return - assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}' + assert False, f'slots check timeout exceeded {counter}s>={timeout}' def assert_embeddings(embeddings): @@ -1326,6 +1329,8 @@ def start_server_background(context): server_args.extend(['--grp-attn-w', context.n_ga_w]) if context.debug: server_args.append('--verbose') + if context.lora_file: + server_args.extend(['--lora', context.lora_file]) if 'SERVER_LOG_FORMAT_JSON' not in os.environ: server_args.extend(['--log-format', "text"]) diff --git a/examples/server/tests/requirements.txt b/examples/server/tests/requirements.txt index 2c741ea10..f2d7e5c57 100644 --- a/examples/server/tests/requirements.txt +++ b/examples/server/tests/requirements.txt @@ -4,3 +4,4 @@ huggingface_hub~=0.20.3 numpy~=1.26.4 openai~=1.30.3 prometheus-client~=0.20.0 +requests~=2.32.3 diff --git a/examples/simple/README.md b/examples/simple/README.md index 49e24501c..0ff342535 100644 --- a/examples/simple/README.md +++ b/examples/simple/README.md @@ -3,7 +3,7 @@ The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt. ```bash -./simple -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" +./llama-simple -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" ... diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 0939a1a6a..b051a18f1 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -66,7 +66,9 @@ int main(int argc, char ** argv) { llama_context * ctx_dft = NULL; // load the target model - std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); + llama_init_result llama_init_tgt = llama_init_from_gpt_params(params); + model_tgt = llama_init_tgt.model; + ctx_tgt = llama_init_tgt.context; // load the draft model params.model = params.model_draft; @@ -75,7 +77,9 @@ int main(int argc, char ** argv) { params.n_threads = params.n_threads_draft; } params.n_threads_batch = params.n_threads_batch_draft; - std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); + llama_init_result llama_init_dft = llama_init_from_gpt_params(params); + model_dft = llama_init_dft.model; + ctx_dft = llama_init_dft.context; const bool vocab_type_tgt = llama_vocab_type(model_tgt); LOG("vocab_type tgt: %d\n", vocab_type_tgt); diff --git a/examples/sycl/README.md b/examples/sycl/README.md index 0e3acd35b..8819d87f5 100644 --- a/examples/sycl/README.md +++ b/examples/sycl/README.md @@ -12,9 +12,9 @@ This example program provides the tools for llama.cpp for SYCL on Intel GPU. List all SYCL devices with ID, compute capability, max work group size, ect. -1. Build the llama.cpp for SYCL for all targets. +1. Build the llama.cpp for SYCL for the specified target *(using GGML_SYCL_TARGET)*. -2. Enable oneAPI running environment +2. Enable oneAPI running environment *(if GGML_SYCL_TARGET is set to INTEL -default-)* ``` source /opt/intel/oneapi/setvars.sh @@ -29,19 +29,13 @@ source /opt/intel/oneapi/setvars.sh Check the ID in startup log, like: ``` -found 4 SYCL devices: - Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3, - max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 - Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2, - max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280 - Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0, - max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280 - Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0, - max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 +found 2 SYCL devices: +| | | | |Max | |Max |Global | | +| | | | |compute|Max work|sub |mem | | +|ID| Device Type| Name|Version|units |group |group|size | Driver version| +|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------| +| 0| [level_zero:gpu:0]| Intel Arc A770 Graphics| 1.3| 512| 1024| 32| 16225M| 1.3.29138| +| 1| [level_zero:gpu:1]| Intel UHD Graphics 750| 1.3| 32| 512| 32| 62631M| 1.3.29138| ``` -|Attribute|Note| -|-|-| -|compute capability 1.3|Level-zero running time, recommended | -|compute capability 3.0|OpenCL running time, slower than level-zero in most cases| diff --git a/examples/sycl/win-run-llama2.bat b/examples/sycl/win-run-llama2.bat index f0385cdf0..c2918d6dc 100644 --- a/examples/sycl/win-run-llama2.bat +++ b/examples/sycl/win-run-llama2.bat @@ -6,4 +6,4 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:" @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force -.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0 +.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0 diff --git a/examples/tokenize/tokenize.cpp b/examples/tokenize/tokenize.cpp index 17f5e4961..c817be566 100644 --- a/examples/tokenize/tokenize.cpp +++ b/examples/tokenize/tokenize.cpp @@ -362,7 +362,7 @@ int main(int raw_argc, char ** raw_argv) { prompt = stdin_buffer.str(); } - const bool model_wants_add_bos = llama_should_add_bos_token(model); + const bool model_wants_add_bos = llama_add_bos_token(model); const bool add_bos = model_wants_add_bos && !no_bos; const bool parse_special = !no_parse_special; diff --git a/flake.lock b/flake.lock index c54af88ea..8e6c3e467 100644 --- a/flake.lock +++ b/flake.lock @@ -20,11 +20,11 @@ }, "nixpkgs": { "locked": { - "lastModified": 1722421184, - "narHash": "sha256-/DJBI6trCeVnasdjUo9pbnodCLZcFqnVZiLUfqLH4jA=", + "lastModified": 1723637854, + "narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "9f918d616c5321ad374ae6cb5ea89c9e04bf3e58", + "rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9", "type": "github" }, "original": { diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index c41e354b9..5a74d337b 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -129,13 +129,13 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF) option(GGML_CUDA_USE_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" OFF) -option(GGML_CURL "ggml: use libcurl to download model from an URL" OFF) option(GGML_HIPBLAS "ggml: use hipBLAS" OFF) option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF) option(GGML_VULKAN "ggml: use Vulkan" OFF) option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF) option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF) option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF) +option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF) option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF) option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF) option(GGML_KOMPUTE "ggml: use Kompute" OFF) diff --git a/ggml/include/ggml-metal.h b/ggml/include/ggml-metal.h index 6c3226c37..d483cf1ac 100644 --- a/ggml/include/ggml-metal.h +++ b/ggml/include/ggml-metal.h @@ -50,6 +50,8 @@ GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); +GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data); + GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); // helper to check if the device supports a specific family diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index a9e88e592..1d2a35402 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -244,6 +244,8 @@ #define GGML_EXIT_SUCCESS 0 #define GGML_EXIT_ABORTED 1 +#define GGML_ROPE_TYPE_NEOX 2 + #define GGUF_MAGIC "GGUF" #define GGUF_VERSION 3 @@ -1140,16 +1142,17 @@ extern "C" { // group normalize along ne0*ne1*n_groups // used in stable-diffusion - // TODO: eps is hardcoded to 1e-6 for now GGML_API struct ggml_tensor * ggml_group_norm( struct ggml_context * ctx, struct ggml_tensor * a, - int n_groups); + int n_groups, + float eps); GGML_API struct ggml_tensor * ggml_group_norm_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_groups); + int n_groups, + float eps); // a - x // b - dy @@ -1452,8 +1455,8 @@ extern "C" { struct ggml_tensor * b); // rotary position embedding - // if mode & 1 == 1, skip n_past elements (NOT SUPPORTED) - // if mode & 2 == 1, GPT-NeoX style + // if (mode & 1) - skip n_past elements (NOT SUPPORTED) + // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style // // b is an int32 vector with size a->ne[2], it contains the positions GGML_API struct ggml_tensor * ggml_rope( diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 0252499e3..3c8db3a21 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -602,6 +602,10 @@ if (GGML_VULKAN) add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG) endif() + if (GGML_VULKAN_PERF) + add_compile_definitions(GGML_VULKAN_PERF) + endif() + if (GGML_VULKAN_VALIDATE) add_compile_definitions(GGML_VULKAN_VALIDATE) endif() diff --git a/ggml/src/ggml-aarch64.c b/ggml/src/ggml-aarch64.c index d7a608997..7adaadc92 100644 --- a/ggml/src/ggml-aarch64.c +++ b/ggml/src/ggml-aarch64.c @@ -16,6 +16,8 @@ #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Woverlength-strings" +#elif defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data #endif #define UNUSED GGML_UNUSED diff --git a/ggml/src/ggml-backend.c b/ggml/src/ggml-backend.c index a8eafac4c..0ca944657 100644 --- a/ggml/src/ggml-backend.c +++ b/ggml/src/ggml-backend.c @@ -351,15 +351,10 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b } // an async copy would normally happen after all the queued operations on both backends are completed - // sync src, set_async dst - if (ggml_backend_buffer_is_host(src->buffer)) { - ggml_backend_synchronize(backend_src); - ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src)); - } else { - ggml_backend_synchronize(backend_src); - ggml_backend_tensor_copy(src, dst); - ggml_backend_synchronize(backend_dst); - } + // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy + ggml_backend_synchronize(backend_src); + ggml_backend_synchronize(backend_dst); + ggml_backend_tensor_copy(src, dst); } // events @@ -1028,10 +1023,6 @@ static bool ggml_is_view_op(enum ggml_op op) { #define GGML_SCHED_MAX_BACKENDS 16 #endif -#ifndef GGML_SCHED_MAX_SPLITS -#define GGML_SCHED_MAX_SPLITS 2048 -#endif - #ifndef GGML_SCHED_MAX_SPLIT_INPUTS #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC #endif @@ -1135,7 +1126,8 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, co } #if 0 -static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only +#define GGML_SCHED_MAX_SPLITS_DEBUG 4096 +static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) #define GET_CAUSE(node) causes[hash_id(node)] #else @@ -1559,7 +1551,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); GGML_ASSERT(sched->splits != NULL); } - GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS); split = &sched->splits[i_split]; split->backend_id = node_backend_id; split->i_start = i; @@ -1787,7 +1778,17 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s } else { ggml_backend_synchronize(split_backend); } - ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy); + // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events + // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface + if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) { + ggml_backend_synchronize(input_backend); + if (sched->events[split_backend_id][sched->cur_copy] != NULL) { + ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]); + } else { + ggml_backend_synchronize(split_backend); + } + ggml_backend_tensor_copy(input, input_cpy); + } } } @@ -1865,13 +1866,14 @@ ggml_backend_sched_t ggml_backend_sched_new( sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *)); - const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; + const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph + const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2; sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0])); sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0])); - sched->context_buffer_size = GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false); + sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false); sched->context_buffer = malloc(sched->context_buffer_size); const int initial_splits_capacity = 16; diff --git a/ggml/src/ggml-cann.cpp b/ggml/src/ggml-cann.cpp index 81783b7b1..06930ba2e 100644 --- a/ggml/src/ggml-cann.cpp +++ b/ggml/src/ggml-cann.cpp @@ -896,11 +896,10 @@ GGML_CALL static void ggml_backend_cann_buffer_init_tensor( * @param size Size of the data to be copied, in bytes. */ GGML_CALL static void ggml_backend_cann_buffer_set_tensor( - ggml_backend_buffer_t buffer, ggml_tensor* tensor, const void* data, + ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data, size_t offset, size_t size) { - // GGML_ASSERT(size == ggml_nbytes(tensor)); - ggml_backend_cann_buffer_context* ctx = - (ggml_backend_cann_buffer_context*)buffer->context; + ggml_backend_cann_buffer_context *ctx = + (ggml_backend_cann_buffer_context *)buffer->context; ggml_cann_set_device(ctx->device); // TODO: refer to cann(#6017), it use thread's default stream. @@ -908,22 +907,21 @@ GGML_CALL static void ggml_backend_cann_buffer_set_tensor( // Why aclrtSynchronizeDevice? if (!need_transform(tensor->type)) { - ACL_CHECK(aclrtMemcpy(tensor->data, size, (const char*)data + offset, - size, ACL_MEMCPY_HOST_TO_DEVICE)); + ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size, + ACL_MEMCPY_HOST_TO_DEVICE)); } else { - void* transform_buffer = malloc(size); - ggml_backend_cann_transform(tensor, (const char*)data + offset, - transform_buffer); + void *transform_buffer = malloc(size); + ggml_backend_cann_transform(tensor, data, transform_buffer); #ifndef NDEBUG - void* check_buffer = malloc(size); + void *check_buffer = malloc(size); ggml_backend_cann_transform_back(tensor, transform_buffer, check_buffer); - GGML_ASSERT(memcmp((const char*)data + offset, check_buffer, size) == - 0); + GGML_ASSERT(memcmp(data, check_buffer, size) == 0); free(check_buffer); #endif - ACL_CHECK(aclrtMemcpy(tensor->data, size, transform_buffer, size, + ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, + transform_buffer, size, ACL_MEMCPY_HOST_TO_DEVICE)); free(transform_buffer); } @@ -945,21 +943,20 @@ GGML_CALL static void ggml_backend_cann_buffer_set_tensor( GGML_CALL static void ggml_backend_cann_buffer_get_tensor( ggml_backend_buffer_t buffer, const ggml_tensor* tensor, void* data, size_t offset, size_t size) { - GGML_ASSERT(size == ggml_nbytes(tensor)); ggml_backend_cann_buffer_context* ctx = (ggml_backend_cann_buffer_context*)buffer->context; ggml_cann_set_device(ctx->device); if (!need_transform(tensor->type)) { - ACL_CHECK(aclrtMemcpy((char*)data + offset, size, tensor->data, size, + ACL_CHECK(aclrtMemcpy(data, size, (char*)tensor->data + offset, size, ACL_MEMCPY_DEVICE_TO_HOST)); } else { void* transform_buffer = malloc(size); - ACL_CHECK(aclrtMemcpy(transform_buffer, size, tensor->data, size, + ACL_CHECK(aclrtMemcpy(transform_buffer, size, + (char*)tensor->data + offset, size, ACL_MEMCPY_DEVICE_TO_HOST)); - ggml_backend_cann_transform_back(tensor, transform_buffer, - (char*)data + offset); + ggml_backend_cann_transform_back(tensor, transform_buffer, data); free(transform_buffer); } } @@ -1448,42 +1445,41 @@ ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) { * @param size Size of the data to copy in bytes. */ GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend, - ggml_tensor* tensor, - const void* data, + ggml_tensor *tensor, + const void *data, size_t offset, size_t size) { - ggml_backend_cann_context* cann_ctx = - (ggml_backend_cann_context*)backend->context; + ggml_backend_cann_context *cann_ctx = + (ggml_backend_cann_context *)backend->context; if (!need_transform(tensor->type)) { - ACL_CHECK(aclrtMemcpyAsync( - tensor->data, size, (const char*)data + offset, size, - ACL_MEMCPY_HOST_TO_DEVICE, cann_ctx->stream())); + ACL_CHECK(aclrtMemcpyAsync((char *)tensor->data + offset, size, data, + size, ACL_MEMCPY_HOST_TO_DEVICE, + cann_ctx->stream())); } else { - void* transform_buffer = malloc(size); - ggml_backend_cann_transform(tensor, (const char*)data + offset, - transform_buffer); + void *transform_buffer = malloc(size); + ggml_backend_cann_transform(tensor, data, transform_buffer); #ifndef NDEBUG - void* check_buffer = malloc(size); + void *check_buffer = malloc(size); ggml_backend_cann_transform_back(tensor, transform_buffer, check_buffer); - GGML_ASSERT(memcmp((const char*)data + offset, check_buffer, size)); + GGML_ASSERT(memcmp(data, check_buffer, size)); free(check_buffer); #endif - ACL_CHECK(aclrtMemcpyAsync(tensor->data, size, transform_buffer, size, - ACL_MEMCPY_HOST_TO_DEVICE, - cann_ctx->stream())); + ACL_CHECK(aclrtMemcpyAsync( + (char *)tensor->data + offset, size, transform_buffer, size, + ACL_MEMCPY_HOST_TO_DEVICE, cann_ctx->stream())); ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream())); free(transform_buffer); } } GGML_CALL static void ggml_backend_cann_get_tensor_async( - ggml_backend_t backend, const ggml_tensor* tensor, void* data, + ggml_backend_t backend, const ggml_tensor *tensor, void *data, size_t offset, size_t size) { - ggml_backend_cann_context* cann_ctx = - (ggml_backend_cann_context*)backend->context; + ggml_backend_cann_context *cann_ctx = + (ggml_backend_cann_context *)backend->context; ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; @@ -1491,17 +1487,16 @@ GGML_CALL static void ggml_backend_cann_get_tensor_async( "unsupported buffer type"); if (!need_transform(tensor->type)) { - ACL_CHECK(aclrtMemcpyAsync((char*)data + offset, size, tensor->data, + ACL_CHECK(aclrtMemcpyAsync(data, size, (char *)tensor->data + offset, size, ACL_MEMCPY_DEVICE_TO_HOST, cann_ctx->stream())); } else { - void* transform_buffer = malloc(size); - ACL_CHECK(aclrtMemcpyAsync(transform_buffer, size, tensor->data, size, - ACL_MEMCPY_DEVICE_TO_HOST, - cann_ctx->stream())); + void *transform_buffer = malloc(size); + ACL_CHECK(aclrtMemcpyAsync( + transform_buffer, size, (char *)tensor->data + offset, size, + ACL_MEMCPY_DEVICE_TO_HOST, cann_ctx->stream())); ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream())); - ggml_backend_cann_transform_back(tensor, transform_buffer, - (char*)data + offset); + ggml_backend_cann_transform_back(tensor, transform_buffer, data); free(transform_buffer); } } diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index 171439132..a4ec8418e 100644 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -464,9 +464,11 @@ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); - const float eps = 1e-6f; // TODO: make this a parameter int n_groups = dst->op_params[0]; + float eps; + memcpy(&eps, dst->op_params + 1, sizeof(float)); + uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; @@ -2879,7 +2881,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; // init cos/sin cache ggml_cann_pool_alloc sin_allocator( diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 68605fff6..682c30d45 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -1501,7 +1501,7 @@ static void ggml_cuda_op_mul_mat( } // If src0 is on a temporary compute buffers (partial offloading) there may be some padding that needs to be cleared: - if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) { + if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) { const int64_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00); const int64_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING); CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream)); @@ -2358,33 +2358,35 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, } GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { - GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst)); - ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; - if (!ggml_backend_buffer_is_cuda(src->buffer)) { + if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) { return false; } - if (!ggml_backend_buffer_is_cuda(dst->buffer)) { + if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) { return false; } - // device -> device + // device -> device copy ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context; ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context; + ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; + ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; + + if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) { +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: backend and buffer devices do not match\n", __func__); +#endif + return false; + } + if (backend_src != backend_dst) { - ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; - ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; - - GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device); - GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device); - // copy on src stream if (cuda_ctx_src->device == cuda_ctx_dst->device) { - CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream())); } else { #ifdef GGML_CUDA_NO_PEER_COPY return false; @@ -2393,7 +2395,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_ #endif } - // record event on src stream + // record event on src stream after the copy if (!cuda_ctx_src->copy_event) { ggml_cuda_set_device(cuda_ctx_src->device); CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming)); @@ -2405,7 +2407,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_ CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0)); } else { // src and dst are on the same backend - CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream())); } return true; } @@ -2742,11 +2744,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_MUL_MAT_ID: { struct ggml_tensor * a = op->src[0]; - if (op->op == GGML_OP_MUL_MAT) { - struct ggml_tensor * b = op->src[1]; - if (a->ne[3] != b->ne[3]) { - return false; - } + struct ggml_tensor * b = op->src[1]; + if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) { + return false; + } + if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) { + return false; } switch (a->type) { case GGML_TYPE_F32: @@ -2877,7 +2880,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons return true; case GGML_OP_FLASH_ATTN_EXT: #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) - return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128; + return (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) || op->src[0]->ne[0] == 128; #else if (op->src[0]->ne[0] == 128) { return true; diff --git a/ggml/src/ggml-cuda/norm.cu b/ggml/src/ggml-cuda/norm.cu index 30866d512..133e219f0 100644 --- a/ggml/src/ggml-cuda/norm.cu +++ b/ggml/src/ggml-cuda/norm.cu @@ -142,8 +142,7 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i } } -static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) { - static const float eps = 1e-6f; +static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) { if (group_size < 1024) { const dim3 block_dims(WARP_SIZE, 1, 1); group_norm_f32<<>>(x, dst, group_size, ne_elements, eps); @@ -196,8 +195,12 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) GGML_ASSERT( dst->type == GGML_TYPE_F32); int num_groups = dst->op_params[0]; + + float eps; + memcpy(&eps, dst->op_params + 1, sizeof(float)); + int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); - group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream); + group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], eps, group_size, ggml_nelements(src0), stream); } void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-cuda/rope.cu b/ggml/src/ggml-cuda/rope.cu index 99ec1dd98..88f586d68 100644 --- a/ggml/src/ggml-cuda/rope.cu +++ b/ggml/src/ggml-cuda/rope.cu @@ -226,7 +226,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const int32_t * pos = (const int32_t *) src1_d; diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index 48b813131..995f1934b 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -210,7 +210,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_COUNT }; -struct ggml_metal_context { +struct ggml_backend_metal_context { int n_cb; id device; @@ -224,6 +224,10 @@ struct ggml_metal_context { bool support_simdgroup_mm; bool should_capture_next_compute; + + // abort ggml_metal_graph_compute if callback returns true + ggml_abort_callback abort_callback; + void * abort_callback_data; }; // MSL code @@ -289,7 +293,7 @@ static void * ggml_metal_host_malloc(size_t n) { return data; } -static struct ggml_metal_context * ggml_metal_init(int n_cb) { +static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: allocating\n", __func__); #if TARGET_OS_OSX && !GGML_METAL_NDEBUG @@ -306,7 +310,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]); // Configure context - struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); + struct ggml_backend_metal_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_context)); ctx->device = device; ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); ctx->queue = [ctx->device newCommandQueue]; @@ -668,7 +672,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { return ctx; } -static void ggml_metal_free(struct ggml_metal_context * ctx) { +static void ggml_metal_free(struct ggml_backend_metal_context * ctx) { GGML_METAL_LOG_INFO("%s: deallocating\n", __func__); for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) { @@ -734,7 +738,7 @@ static id ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs return nil; } -static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) { +static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx, const struct ggml_tensor * op) { for (size_t i = 0, n = 3; i < n; ++i) { if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) { return false; @@ -845,7 +849,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const } static enum ggml_status ggml_metal_graph_compute( - struct ggml_metal_context * ctx, + struct ggml_backend_metal_context * ctx, struct ggml_cgraph * gf) { @autoreleasepool { @@ -878,8 +882,11 @@ static enum ggml_status ggml_metal_graph_compute( id command_buffer = [ctx->queue commandBufferWithUnretainedReferences]; command_buffer_builder[cb_idx] = command_buffer; - // enqueue the command buffers in order to specify their execution order - [command_buffer enqueue]; + // always enqueue the first two command buffers + // enqueue all of the command buffers if we don't need to abort + if (cb_idx < 2 || ctx->abort_callback == NULL) { + [command_buffer enqueue]; + } } const id *command_buffers = command_buffer_builder; @@ -2229,10 +2236,8 @@ static enum ggml_status ggml_metal_graph_compute( GGML_ASSERT(ne00 % 4 == 0); GGML_ASSERT(ggml_is_contiguous(src0)); - //float eps; - //memcpy(&eps, dst->op_params, sizeof(float)); - - const float eps = 1e-6f; // TODO: temporarily hardcoded + float eps; + memcpy(&eps, dst->op_params + 1, sizeof(float)); const int32_t n_groups = ((int32_t *) dst->op_params)[0]; @@ -2308,7 +2313,7 @@ static enum ggml_status ggml_metal_graph_compute( memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; id pipeline = nil; @@ -2829,7 +2834,9 @@ static enum ggml_status ggml_metal_graph_compute( [encoder endEncoding]; - [command_buffer commit]; + if (cb_idx < 2 || ctx->abort_callback == NULL) { + [command_buffer commit]; + } }); // Wait for completion and check status of each command buffer @@ -2849,6 +2856,23 @@ static enum ggml_status ggml_metal_graph_compute( return GGML_STATUS_FAILED; } + + id next_buffer = (i + 1 < n_cb ? command_buffers[i + 1] : nil); + if (!next_buffer) { + continue; + } + + bool next_queued = ([next_buffer status] != MTLCommandBufferStatusNotEnqueued); + if (next_queued) { + continue; + } + + if (ctx->abort_callback && ctx->abort_callback(ctx->abort_callback_data)) { + GGML_METAL_LOG_INFO("%s: command buffer %d aborted", __func__, i); + return GGML_STATUS_ABORTED; + } + + [next_buffer commit]; } if (should_capture) { @@ -3152,7 +3176,7 @@ GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) { } GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) { - struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; ggml_metal_free(ctx); free(backend); } @@ -3164,13 +3188,13 @@ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffe } GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { - struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; + struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context; return ggml_metal_graph_compute(metal_ctx, cgraph); } GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { - struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; + struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context; return ggml_metal_supports_op(metal_ctx, op); } @@ -3215,9 +3239,9 @@ static ggml_guid_t ggml_backend_metal_guid(void) { } ggml_backend_t ggml_backend_metal_init(void) { - struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); - + struct ggml_backend_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); if (ctx == NULL) { + GGML_METAL_LOG_ERROR("%s: error: failed to allocate context\n", __func__); return NULL; } @@ -3239,15 +3263,24 @@ bool ggml_backend_is_metal(ggml_backend_t backend) { void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { GGML_ASSERT(ggml_backend_is_metal(backend)); - struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); } +void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data) { + GGML_ASSERT(ggml_backend_is_metal(backend)); + + struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; + + ctx->abort_callback = abort_callback; + ctx->abort_callback_data = user_data; +} + bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) { GGML_ASSERT(ggml_backend_is_metal(backend)); - struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)]; } @@ -3255,7 +3288,7 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) { void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) { GGML_ASSERT(ggml_backend_is_metal(backend)); - struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; ctx->should_capture_next_compute = true; } diff --git a/ggml/src/ggml-rpc.cpp b/ggml/src/ggml-rpc.cpp index b01ad2674..8f9d0a460 100644 --- a/ggml/src/ggml-rpc.cpp +++ b/ggml/src/ggml-rpc.cpp @@ -82,17 +82,18 @@ static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of // RPC commands enum rpc_cmd { - ALLOC_BUFFER = 0, - GET_ALIGNMENT, - GET_MAX_SIZE, - BUFFER_GET_BASE, - FREE_BUFFER, - BUFFER_CLEAR, - SET_TENSOR, - GET_TENSOR, - COPY_TENSOR, - GRAPH_COMPUTE, - GET_DEVICE_MEMORY, + RPC_CMD_ALLOC_BUFFER = 0, + RPC_CMD_GET_ALIGNMENT, + RPC_CMD_GET_MAX_SIZE, + RPC_CMD_BUFFER_GET_BASE, + RPC_CMD_FREE_BUFFER, + RPC_CMD_BUFFER_CLEAR, + RPC_CMD_SET_TENSOR, + RPC_CMD_GET_TENSOR, + RPC_CMD_COPY_TENSOR, + RPC_CMD_GRAPH_COMPUTE, + RPC_CMD_GET_DEVICE_MEMORY, + RPC_CMD_COUNT, }; // RPC data structures @@ -197,6 +198,10 @@ static std::shared_ptr create_server_socket(const char * host, int por fprintf(stderr, "Failed to set SO_REUSEADDR\n"); return nullptr; } + if (inet_addr(host) == INADDR_NONE) { + fprintf(stderr, "Invalid host address: %s\n", host); + return nullptr; + } struct sockaddr_in serv_addr; serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = inet_addr(host); @@ -326,7 +331,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t uint64_t remote_ptr = ctx->remote_ptr; memcpy(input.data(), &remote_ptr, sizeof(remote_ptr)); std::vector output; - bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output); + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, input, output); GGML_ASSERT(status); GGML_ASSERT(output.empty()); delete ctx; @@ -342,7 +347,7 @@ GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t b uint64_t remote_ptr = ctx->remote_ptr; memcpy(input.data(), &remote_ptr, sizeof(remote_ptr)); std::vector output; - bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output); + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == sizeof(uint64_t)); // output serialization format: | base_ptr (8 bytes) | @@ -401,7 +406,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t b memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset)); memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size); std::vector output; - bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output); + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input, output); GGML_ASSERT(status); } @@ -415,7 +420,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t b memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset)); memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size)); std::vector output; - bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output); + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == size); // output serialization format: | data (size bytes) | @@ -440,7 +445,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t b memcpy(input.data(), &rpc_src, sizeof(rpc_src)); memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst)); std::vector output; - bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output); + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, input, output); GGML_ASSERT(status); // output serialization format: | result (1 byte) | GGML_ASSERT(output.size() == 1); @@ -455,7 +460,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr)); memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value)); std::vector output; - bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output); + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, input, output); GGML_ASSERT(status); } @@ -484,7 +489,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer memcpy(input.data(), &size, sizeof(size)); std::vector output; auto sock = get_socket(buft_ctx->endpoint); - bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output); + bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | @@ -507,7 +512,7 @@ static size_t get_alignment(const std::shared_ptr & sock) { // input serialization format: | 0 bytes | std::vector input; std::vector output; - bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output); + bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == sizeof(uint64_t)); // output serialization format: | alignment (8 bytes) | @@ -525,7 +530,7 @@ static size_t get_max_size(const std::shared_ptr & sock) { // input serialization format: | 0 bytes | std::vector input; std::vector output; - bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output); + bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == sizeof(uint64_t)); // output serialization format: | max_size (8 bytes) | @@ -618,7 +623,7 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t serialize_graph(cgraph, input); std::vector output; auto sock = get_socket(rpc_ctx->endpoint); - bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output); + bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 1); return (enum ggml_status)output[0]; @@ -632,7 +637,7 @@ GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const } GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { - if (buft->iface.get_name != ggml_backend_rpc_buffer_type_name) { + if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) { return false; } ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; @@ -674,6 +679,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const } auto sock = get_socket(endpoint); if (sock == nullptr) { + fprintf(stderr, "Failed to connect to %s\n", endpoint); return nullptr; } size_t alignment = get_alignment(sock); @@ -715,7 +721,7 @@ static void get_device_memory(const std::shared_ptr & sock, size_t * f // input serialization format: | 0 bytes | std::vector input; std::vector output; - bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output); + bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); // output serialization format: | free (8 bytes) | total (8 bytes) | @@ -879,6 +885,14 @@ ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rp if (result->buffer && buffers.find(result->buffer) == buffers.end()) { return nullptr; } + + // require that the tensor data does not go beyond the buffer end + uint64_t tensor_size = (uint64_t) ggml_nbytes(result); + uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer); + uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer); + GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow + GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size); + result->op = (ggml_op) tensor->op; for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { result->op_params[i] = tensor->op_params[i]; @@ -898,7 +912,7 @@ bool rpc_server::set_tensor(const std::vector & input) { const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); uint64_t offset; memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); - size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset); + const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset); struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead(), @@ -913,6 +927,17 @@ bool rpc_server::set_tensor(const std::vector & input) { return false; } GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size); + + // sanitize tensor->data + { + const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer); + const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer); + + if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) { + GGML_ABORT("[%s] tensor->data out of bounds\n", __func__); + } + } + const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset); ggml_backend_tensor_set(tensor, data, offset, size); ggml_free(ctx); @@ -943,6 +968,17 @@ bool rpc_server::get_tensor(const std::vector & input, std::vectorbuffer, tensor->data, offset, size); + + // sanitize tensor->data + { + const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer); + const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer); + + if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) { + GGML_ABORT("[%s] tensor->data out of bounds\n", __func__); + } + } + // output serialization format: | data (size bytes) | output.resize(size, 0); ggml_backend_tensor_get(tensor, output.data(), offset, size); @@ -1064,59 +1100,69 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre if (!recv_data(sockfd, &cmd, 1)) { break; } + if (cmd >= RPC_CMD_COUNT) { + // fail fast if the command is invalid + fprintf(stderr, "Unknown command: %d\n", cmd); + break; + } std::vector input; std::vector output; uint64_t input_size; if (!recv_data(sockfd, &input_size, sizeof(input_size))) { break; } - input.resize(input_size); + try { + input.resize(input_size); + } catch (const std::bad_alloc & e) { + fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", input_size); + break; + } if (!recv_data(sockfd, input.data(), input_size)) { break; } bool ok = true; switch (cmd) { - case ALLOC_BUFFER: { + case RPC_CMD_ALLOC_BUFFER: { ok = server.alloc_buffer(input, output); break; } - case GET_ALIGNMENT: { + case RPC_CMD_GET_ALIGNMENT: { server.get_alignment(output); break; } - case GET_MAX_SIZE: { + case RPC_CMD_GET_MAX_SIZE: { server.get_max_size(output); break; } - case BUFFER_GET_BASE: { + case RPC_CMD_BUFFER_GET_BASE: { ok = server.buffer_get_base(input, output); break; } - case FREE_BUFFER: { + case RPC_CMD_FREE_BUFFER: { ok = server.free_buffer(input); break; } - case BUFFER_CLEAR: { + case RPC_CMD_BUFFER_CLEAR: { ok = server.buffer_clear(input); break; } - case SET_TENSOR: { + case RPC_CMD_SET_TENSOR: { ok = server.set_tensor(input); break; } - case GET_TENSOR: { + case RPC_CMD_GET_TENSOR: { ok = server.get_tensor(input, output); break; } - case COPY_TENSOR: { + case RPC_CMD_COPY_TENSOR: { ok = server.copy_tensor(input, output); break; } - case GRAPH_COMPUTE: { + case RPC_CMD_GRAPH_COMPUTE: { ok = server.graph_compute(input, output); break; } - case GET_DEVICE_MEMORY: { + case RPC_CMD_GET_DEVICE_MEMORY: { // output serialization format: | free (8 bytes) | total (8 bytes) | output.resize(2*sizeof(uint64_t), 0); memcpy(output.data(), &free_mem, sizeof(free_mem)); @@ -1169,8 +1215,10 @@ void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free return; } printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem); + fflush(stdout); rpc_serve_client(backend, client_socket->fd, free_mem, total_mem); printf("Client connection closed\n"); + fflush(stdout); } #ifdef _WIN32 WSACleanup(); diff --git a/ggml/src/ggml-sycl/dpct/helper.hpp b/ggml/src/ggml-sycl/dpct/helper.hpp index ef4609e32..fe4a8f744 100644 --- a/ggml/src/ggml-sycl/dpct/helper.hpp +++ b/ggml/src/ggml-sycl/dpct/helper.hpp @@ -874,7 +874,7 @@ namespace dpct inline std::string get_preferred_gpu_platform_name() { std::string result; - std::string filter = "level-zero"; + std::string filter = ""; char* env = getenv("ONEAPI_DEVICE_SELECTOR"); if (env) { if (std::strstr(env, "level_zero")) { @@ -892,11 +892,24 @@ namespace dpct else { throw std::runtime_error("invalid device filter: " + std::string(env)); } + } else { + auto default_device = sycl::device(sycl::default_selector_v); + auto default_platform_name = default_device.get_platform().get_info(); + + if (std::strstr(default_platform_name.c_str(), "Level-Zero") || default_device.is_cpu()) { + filter = "level-zero"; + } + else if (std::strstr(default_platform_name.c_str(), "CUDA")) { + filter = "cuda"; + } + else if (std::strstr(default_platform_name.c_str(), "HIP")) { + filter = "hip"; + } } - auto plaform_list = sycl::platform::get_platforms(); + auto platform_list = sycl::platform::get_platforms(); - for (const auto& platform : plaform_list) { + for (const auto& platform : platform_list) { auto devices = platform.get_devices(); auto gpu_dev = std::find_if(devices.begin(), devices.end(), [](const sycl::device& d) { return d.is_gpu(); diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp index cccf87d06..b3159b9d1 100644 --- a/ggml/src/ggml-sycl/norm.cpp +++ b/ggml/src/ggml-sycl/norm.cpp @@ -225,9 +225,8 @@ static void norm_f32_sycl(const float* x, float* dst, const int ncols, } static void group_norm_f32_sycl(const float* x, float* dst, - const int num_groups, const int group_size, + const int num_groups, const float eps, const int group_size, const int ne_elements, queue_ptr stream, int device) { - static const float eps = 1e-6f; if (group_size < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { @@ -343,8 +342,12 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* GGML_ASSERT(dst->type == GGML_TYPE_F32); int num_groups = dst->op_params[0]; + + float eps; + memcpy(&eps, dst->op_params + 1, sizeof(float)); + int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); - group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device); + group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device); (void)src1; (void)dst; diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp index c7545bcc1..1f06f78fa 100644 --- a/ggml/src/ggml-sycl/rope.cpp +++ b/ggml/src/ggml-sycl/rope.cpp @@ -226,7 +226,7 @@ void ggml_sycl_op_rope( memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const int32_t * pos = (const int32_t *) src1_dd; diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index d7fea78d0..7a0ec706f 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -1,6 +1,6 @@ #include "ggml-vulkan.h" #include -#ifdef GGML_VULKAN_RUN_TESTS +#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_PERF) #include #endif @@ -17,6 +17,7 @@ #include #include #include +#include #include #include @@ -34,9 +35,7 @@ #define VK_VENDOR_ID_INTEL 0x8086 #define VK_VENDOR_ID_NVIDIA 0x10de -#define VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN 0 -#define VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI 1 -#define VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE 2 +#define VK_DEVICE_DESCRIPTOR_POOL_SIZE 32 #define GGML_VK_MAX_NODES 8192 @@ -74,6 +73,8 @@ struct vk_queue { std::vector cmd_buffers; vk::PipelineStageFlags stage_flags; + + bool transfer_only; }; struct vk_pipeline_struct { @@ -133,6 +134,9 @@ static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = { #ifdef GGML_VULKAN_MEMORY_DEBUG class vk_memory_logger; #endif +#ifdef GGML_VULKAN_PERF +class vk_perf_logger; +#endif static void ggml_vk_destroy_buffer(vk_buffer& buf); struct vk_device_struct { @@ -148,7 +152,6 @@ struct vk_device_struct { vk_queue compute_queue; vk_queue transfer_queue; bool single_queue; - uint32_t descriptor_set_mode; uint32_t subgroup_size; bool uma; @@ -186,6 +189,7 @@ struct vk_device_struct { vk_pipeline pipeline_sqr_f32; vk_pipeline pipeline_clamp_f32; vk_pipeline pipeline_pad_f32; + vk_pipeline pipeline_repeat_f32; vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16; vk_pipeline pipeline_norm_f32; vk_pipeline pipeline_group_norm_f32; @@ -205,7 +209,8 @@ struct vk_device_struct { vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16; vk_pipeline pipeline_timestep_embedding_f32; - std::vector pipelines; + std::unordered_map pipelines; + std::unordered_map pipeline_descriptor_set_requirements; std::vector> pinned_memory; @@ -217,6 +222,9 @@ struct vk_device_struct { #ifdef GGML_VULKAN_MEMORY_DEBUG std::unique_ptr memory_logger; #endif +#ifdef GGML_VULKAN_PERF + std::unique_ptr perf_logger; +#endif ~vk_device_struct() { VK_LOG_DEBUG("destroy device " << name); @@ -231,11 +239,11 @@ struct vk_device_struct { } for (auto& pipeline : pipelines) { - if (pipeline.expired()) { + if (pipeline.second.expired()) { continue; } - vk_pipeline pl = pipeline.lock(); + vk_pipeline pl = pipeline.second.lock(); ggml_vk_destroy_pipeline(device, pl); } pipelines.clear(); @@ -268,6 +276,10 @@ struct vk_subbuffer { vk_buffer buffer; uint64_t offset; uint64_t size; + + operator vk::DescriptorBufferInfo() const { + return { buffer->buffer, offset, size }; + } }; struct vk_semaphore { @@ -475,6 +487,48 @@ private: #define VK_LOG_MEMORY(msg) ((void) 0) #endif // GGML_VULKAN_MEMORY_DEBUG +#if defined(GGML_VULKAN_PERF) + +class vk_perf_logger { +public: + void print_timings() { + std::cerr << "----------------\nVulkan Timings:" << std::endl; + for (const auto& t : timings) { + uint64_t total = 0; + for (const auto& time : t.second) { + total += time; + } + std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " ms" << std::endl; + } + + timings.clear(); + } + + void log_timing(const ggml_tensor * node, uint64_t time) { + if (node->op == GGML_OP_UNARY) { + timings[ggml_unary_op_name(ggml_get_unary_op(node))].push_back(time); + return; + } + if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) { + const uint64_t m = node->src[0]->ne[1]; + const uint64_t n = node->src[1]->ne[1]; + const uint64_t k = node->src[1]->ne[0]; + std::string name = ggml_op_name(node->op); + if (n == 1) { + name += "_VEC m=" + std::to_string(m) + " k=" + std::to_string(k); + } else { + name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k); + } + timings[name].push_back(time); + return; + } + timings[ggml_op_name(node->op)].push_back(time); + } +private: + std::map> timings; +}; +#endif // GGML_VULKAN_PERF + struct ggml_backend_vk_context { std::string name; @@ -485,9 +539,6 @@ struct ggml_backend_vk_context { size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k; vk_buffer prealloc_x, prealloc_y, prealloc_split_k; vk::Fence fence; - vk_buffer staging; - size_t staging_size; - size_t staging_offset; vk_buffer buffer_pool[MAX_VK_BUFFERS]; @@ -591,35 +642,9 @@ static void ggml_vk_create_pipeline(vk_device& device, vk_pipeline& pipeline, co descriptor_set_layout_create_info.setPNext(&dslbfci); pipeline->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info); - // Check if device supports multiple descriptors per pool - if (device->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN) { - const uint32_t alloc_count = 2; - - // Try allocating multiple sets from one pool - // This fails on AMD for some reason, so add a fall back to allocating one pool per set - vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count); - vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, alloc_count, descriptor_pool_size); - vk::DescriptorPool pool = device->device.createDescriptorPool(descriptor_pool_create_info); - - std::vector layouts(alloc_count); - for (uint32_t i = 0; i < alloc_count; i++) { - layouts[i] = pipeline->dsl; - } - try { - vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pool, alloc_count, layouts.data()); - std::vector sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info); - } catch(vk::OutOfPoolMemoryError const&) { - device->descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE; - } - - device->device.destroyDescriptorPool(pool); - } - - if (device->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) { - vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count); - vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 128, descriptor_pool_size); - pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info)); - } + vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE); + vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size); + pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info)); pipeline->descriptor_set_idx = 0; @@ -653,7 +678,7 @@ static void ggml_vk_create_pipeline(vk_device& device, vk_pipeline& pipeline, co pipeline->layout); pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value; - device->pipelines.push_back(pipeline); + device->pipelines.insert({ pipeline->name, pipeline }); } static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) { @@ -674,34 +699,49 @@ static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) device.destroyPipeline(pipeline->pipeline); } -static void ggml_pipeline_allocate_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) { - VK_LOG_DEBUG("ggml_pipeline_allocate_descriptor_sets(" << pipeline->name << ", " << n << ")"); - if (pipeline->descriptor_sets.size() >= pipeline->descriptor_set_idx + n) { - // Enough descriptors are available - return; - } +static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) { + VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")"); + device->pipeline_descriptor_set_requirements[pipeline->name] += n; +} +static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) { std::lock_guard guard(device->mutex); - if (device->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) { - const uint32_t alloc_count = pipeline->descriptor_set_idx + n - pipeline->descriptor_sets.size(); + for (auto& pair : device->pipeline_descriptor_set_requirements) { + vk_pipeline pipeline = device->pipelines.at(pair.first).lock(); + const uint64_t n = pair.second; - std::vector layouts(alloc_count); - for (uint32_t i = 0; i < alloc_count; i++) { - layouts[i] = pipeline->dsl; + VK_LOG_DEBUG("ggml_pipeline_allocate_descriptor_sets(" << pipeline->name << ", " << n << ")"); + + if (pipeline->descriptor_sets.size() >= pipeline->descriptor_set_idx + n) { + // Enough descriptors are available + continue; } - vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[0], alloc_count, layouts.data()); - std::vector sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info); - pipeline->descriptor_sets.insert(pipeline->descriptor_sets.end(), sets.begin(), sets.end()); - } else { - for (uint32_t i = pipeline->descriptor_sets.size(); i < pipeline->descriptor_set_idx + n; i++) { - vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count); - vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 1, descriptor_pool_size); - pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info)); - vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[i], 1, &pipeline->dsl); + uint32_t to_alloc = pipeline->descriptor_set_idx + n - pipeline->descriptor_sets.size(); + uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - pipeline->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE; + uint32_t pool_idx = pipeline->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE; + + while (to_alloc > 0) { + const uint32_t alloc_count = std::min(pool_remaining, to_alloc); + to_alloc -= alloc_count; + pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE; + + if (pool_idx >= pipeline->descriptor_pools.size()) { + vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE); + vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size); + pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info)); + } + + std::vector layouts(alloc_count); + for (uint32_t i = 0; i < alloc_count; i++) { + layouts[i] = pipeline->dsl; + } + vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[pool_idx], alloc_count, layouts.data()); std::vector sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info); - pipeline->descriptor_sets.push_back(sets[0]); + pipeline->descriptor_sets.insert(pipeline->descriptor_sets.end(), sets.begin(), sets.end()); + + pool_idx++; } } } @@ -862,11 +902,12 @@ static uint32_t ggml_vk_find_queue_family_index(std::vector guard(device->mutex); q.queue_family_index = queue_family_index; + q.transfer_only = transfer_only; vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index); q.pool = device->device.createCommandPool(command_pool_create_info_compute); @@ -1063,13 +1104,17 @@ static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) { static void ggml_vk_sync_buffers(vk_context& ctx) { VK_LOG_DEBUG("ggml_vk_sync_buffers()"); - const std::vector mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } }; + + const bool transfer_queue = ctx->q->transfer_only; ctx->s->buffer.pipelineBarrier( ctx->q->stage_flags, ctx->q->stage_flags, {}, - mem_barriers, + { { + { !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) }, + { !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) } + } }, {}, {} ); @@ -1659,6 +1704,8 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); @@ -1698,6 +1745,9 @@ static vk_device ggml_vk_get_device(size_t idx) { #ifdef GGML_VULKAN_MEMORY_DEBUG device->memory_logger = std::unique_ptr(new vk_memory_logger()); #endif +#ifdef GGML_VULKAN_PERF + device->perf_logger = std::unique_ptr(new vk_perf_logger()); +#endif size_t dev_num = vk_instance.device_indices[idx]; @@ -1828,17 +1878,15 @@ static vk_device ggml_vk_get_device(size_t idx) { device_create_info.setPNext(&device_features2); device->device = device->physical_device.createDevice(device_create_info); - device->descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN; - // Queues - ggml_vk_create_queue(device, device->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }); + ggml_vk_create_queue(device, device->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }, false); // Shaders ggml_vk_load_shaders(device); if (!device->single_queue) { const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0; - ggml_vk_create_queue(device, device->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }); + ggml_vk_create_queue(device, device->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }, true); } else { // TODO: Use pointer or reference to avoid copy device->transfer_queue = device->compute_queue; @@ -2108,9 +2156,9 @@ void ggml_vk_instance_init() { } static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { - GGML_ASSERT(idx < vk_instance.device_indices.size()); VK_LOG_DEBUG("ggml_vk_init(" << ctx->name << ", " << idx << ")"); ggml_vk_instance_init(); + GGML_ASSERT(idx < vk_instance.device_indices.size()); ctx->name = GGML_VK_NAME + std::to_string(idx); @@ -2125,9 +2173,6 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) { ctx->fence = ctx->device->device.createFence({}); - ctx->staging_size = 0; - ctx->staging_offset = 0; - #ifdef GGML_VULKAN_CHECK_RESULTS const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS"); vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks)); @@ -2420,28 +2465,23 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo return s; } -static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline, std::vector&& buffers, size_t push_constant_size, const void* push_constants, std::array elements) { + + +static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array elements) { const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]); const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]); const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]); VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {"; - for (auto& buffer : buffers) { - std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.size << "), "; + for (auto& buffer : descriptor_buffer_infos) { + std::cerr << "(" << buffer << ", " << buffer.offset << ", " << buffer.size << "), "; } std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))"); - std::vector descriptor_buffer_infos; - std::vector write_descriptor_sets; GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size()); - GGML_ASSERT(buffers.size() == pipeline->parameter_count); - vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++]; - for (uint32_t i = 0; i < pipeline->parameter_count; i++) { - descriptor_buffer_infos.push_back({buffers[i].buffer->buffer, buffers[i].offset, buffers[i].size}); - } - for (uint32_t i = 0; i < pipeline->parameter_count; i++) { - write_descriptor_sets.push_back({descriptor_set, i, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &descriptor_buffer_infos[i]}); - } + GGML_ASSERT(descriptor_buffer_infos.size() == pipeline->parameter_count); - ctx->device->device.updateDescriptorSets(write_descriptor_sets, {}); + vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++]; + vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() }; + ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {}); subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants); subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline); @@ -2565,23 +2605,15 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont return; } - // Staging buffer required - vk_buffer staging = ctx->staging; - size_t staging_offset = ctx->staging_offset; - const size_t copy_size = ts*ne/bs; - if (ctx->staging->size < ctx->staging_offset + copy_size) { - if (sync_staging) { - // Create temporary larger buffer - ggml_vk_ensure_sync_staging_buffer(ctx->device, copy_size); - - staging = ctx->device->sync_staging; - staging_offset = 0; - } else { - GGML_ABORT("fatal error"); - } + if (!sync_staging) { + GGML_ABORT("Asynchronous write to non-pinned memory not supported"); } - VkBufferCopy buf_copy{ staging_offset, offset, copy_size }; + // Staging buffer required + vk_buffer& staging = ctx->device->sync_staging; + const uint64_t copy_size = ts*ne/bs; + ggml_vk_ensure_sync_staging_buffer(ctx->device, copy_size); + VkBufferCopy buf_copy{ 0, offset, copy_size }; ggml_vk_sync_buffers(subctx); vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy); @@ -2590,14 +2622,14 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont for (uint64_t i2 = 0; i2 < ne2; i2++) { // Find longest contiguous slice if (ne1*nb1 == dstnb2) { - deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys); + deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { if (ne0*nb0/bs == dstnb1) { - deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys); + deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys); } else { const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1; - const uint64_t d_off = staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1; + const uint64_t d_off = i3*dstnb3 + i2*dstnb2 + i1*dstnb1; for (uint64_t i0 = 0; i0 < ne0; i0++) { deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys); } @@ -2608,7 +2640,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont } } -static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")"); // Buffer is already mapped if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { @@ -2643,21 +2675,18 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz } VK_LOG_DEBUG("STAGING"); - // Staging buffer required - const size_t copy_size = width*height; - if (staging_buffer == nullptr || staging_buffer->size < staging_offset + copy_size) { - if (sync_staging) { - ggml_vk_ensure_sync_staging_buffer(dst->device, copy_size); - - staging_buffer = dst->device->sync_staging; - staging_offset = 0; - } else { - GGML_ABORT("fatal error"); - } + if (!sync_staging) { + GGML_ABORT("Asynchronous write to non-pinned memory not supported"); } + // Staging buffer required + const size_t copy_size = width*height; + ggml_vk_ensure_sync_staging_buffer(dst->device, copy_size); + + vk_buffer& staging_buffer = dst->device->sync_staging; + VkBufferCopy buf_copy = { - staging_offset, + 0, offset, copy_size}; @@ -2665,17 +2694,17 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz vkCmdCopyBuffer(subctx->s->buffer, staging_buffer->buffer, dst->buffer, 1, &buf_copy); if (width == spitch) { - deferred_memcpy((uint8_t *)staging_buffer->ptr + staging_offset, src, width * height, &subctx->in_memcpys); + deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys); } else { for (size_t i = 0; i < height; i++) { - deferred_memcpy((uint8_t *)staging_buffer->ptr + staging_offset + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys); + deferred_memcpy((uint8_t *)staging_buffer->ptr + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys); } } } -static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")"); - return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, staging_buffer, staging_offset, sync_staging); + return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, sync_staging); } static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) { @@ -2690,7 +2719,7 @@ static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * } else { vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue); ggml_vk_ctx_begin(dst->device, subctx); - ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, nullptr, 0, true); + ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, true); ggml_vk_ctx_end(subctx); for (auto& cpy : subctx->in_memcpys) { @@ -2708,7 +2737,7 @@ static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1); } -static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { +static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) { VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")"); GGML_ASSERT(width > 0); GGML_ASSERT(height > 0); @@ -2745,18 +2774,15 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size } VK_LOG_DEBUG("STAGING"); + if (!sync_staging) { + GGML_ABORT("Asynchronous read from non-pinned memory not supported"); + } + // Fall back to staging buffer const size_t copy_size = dpitch * height; - if (staging_buffer == nullptr || staging_buffer->size < staging_offset + copy_size) { - if (sync_staging) { - // Create temporary larger buffer - ggml_vk_ensure_sync_staging_buffer(src->device, copy_size); + ggml_vk_ensure_sync_staging_buffer(src->device, copy_size); - staging_buffer = src->device->sync_staging; - } else { - GGML_ABORT("fatal error"); - } - } + vk_buffer& staging_buffer = src->device->sync_staging; ggml_vk_sync_buffers(subctx); subctx->s->buffer.copyBuffer(src->buffer, staging_buffer->buffer, slices); @@ -2764,8 +2790,8 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys); } -static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, vk_buffer staging_buffer, size_t staging_offset, bool sync_staging = false) { - return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, staging_buffer, staging_offset, sync_staging); +static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) { + return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, sync_staging); } static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) { @@ -2777,7 +2803,7 @@ static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_ } else { vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue); ggml_vk_ctx_begin(src->device, subctx); - ggml_vk_buffer_read_async(subctx, src, offset, dst, size, nullptr, 0, true); + ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true); ggml_vk_ctx_end(subctx); ggml_vk_submit(subctx, src->device->fence); @@ -2978,10 +3004,11 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, { ne, 1, 1 }); } -static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; - std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); + std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; + std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT @@ -3055,6 +3082,56 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t d_sz = sizeof(float) * d_ne; + vk_pipeline to_fp16_vk_0 = nullptr; + vk_pipeline to_fp16_vk_1 = nullptr; + + if (x_non_contig) { + to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16); + } else { + to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); + } + if (y_non_contig) { + to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16); + } else { + to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); + } + GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT + GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT + + if (dryrun) { + const uint64_t x_sz_upd = x_sz * ne02 * ne03; + const uint64_t y_sz_upd = y_sz * ne12 * ne13; + const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * 4 : 0; + if ( + (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || + (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size) || + (split_k > 1 && split_k_size > ctx->device->max_memory_allocation_size)) { + GGML_ABORT("Requested preallocation size is too large"); + } + if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { + ctx->prealloc_size_x = x_sz_upd; + } + if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { + ctx->prealloc_size_y = y_sz_upd; + } + if (split_k > 1 && ctx->prealloc_size_split_k < split_k_size) { + ctx->prealloc_size_split_k = split_k_size; + } + + // Request descriptor sets + ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); + if (qx_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); + } + if (qy_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); + } + if (split_k > 1) { + ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1); + } + return; + } + vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset + dst->view_offs; GGML_ASSERT(d_D != nullptr); @@ -3090,40 +3167,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub GGML_ASSERT(qy_sz == y_sz); } - vk_pipeline to_fp16_vk_0 = nullptr; - vk_pipeline to_fp16_vk_1 = nullptr; - - if (x_non_contig) { - to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16); - } else { - to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); - } - if (y_non_contig) { - to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16); - } else { - to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); - } - GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT - GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT - - // Allocate descriptor sets - ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, 1); - if (qx_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_0, 1); - } - if (qy_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_1, 1); - } - if (split_k > 1) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1); - } - if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } else if (qx_needs_dequant) { const std::vector pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) }; ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { { d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); + ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); @@ -3151,10 +3200,11 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub ); // NOLINT } -static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; - std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); + std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; + std::cerr << "), " << (dryrun ? "dryrun" : "") << "),)"); GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT @@ -3218,6 +3268,47 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne; const uint64_t d_sz = sizeof(float) * d_ne; + vk_pipeline to_fp16_vk_0 = nullptr; + vk_pipeline to_fp16_vk_1 = nullptr; + if (x_non_contig) { + to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type); + } + if (y_non_contig) { + to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type); + } else { + to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); + } + vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type); + GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT + GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT + GGML_ASSERT(dmmv != nullptr); + + if (dryrun) { + const uint64_t x_sz_upd = x_sz * ne02 * ne03; + const uint64_t y_sz_upd = y_sz * ne12 * ne13; + if ( + (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || + (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { + GGML_ABORT("Requested preallocation size is too large"); + } + if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { + ctx->prealloc_size_x = x_sz_upd; + } + if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { + ctx->prealloc_size_y = y_sz_upd; + } + + // Request descriptor sets + if (qx_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); + } + if (qy_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); + } + ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1); + return; + } + vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset + dst->view_offs; GGML_ASSERT(d_D != nullptr); @@ -3250,30 +3341,6 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& GGML_ASSERT(qy_sz == y_sz); } - vk_pipeline to_fp16_vk_0 = nullptr; - vk_pipeline to_fp16_vk_1 = nullptr; - if (x_non_contig) { - to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type); - } - if (y_non_contig) { - to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type); - } else { - to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); - } - vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type); - GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT - GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT - GGML_ASSERT(dmmv != nullptr); - - // Allocate descriptor sets - if (qx_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_0, 1); - } - if (qy_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13); - } - ggml_pipeline_allocate_descriptor_sets(ctx->device, dmmv, ne12 * ne13); - if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); @@ -3312,14 +3379,15 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, - { { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne22 * ne23} }, + { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); } -static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; - std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); + std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; + std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT @@ -3360,6 +3428,12 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type); const uint64_t d_sz = sizeof(float) * d_ne; + if (dryrun) { + // Request descriptor sets + ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, 1); + return; + } + vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset + dst->view_offs; GGML_ASSERT(d_D != nullptr); @@ -3372,9 +3446,6 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c GGML_ASSERT(d_Qx != nullptr); } - // Allocate descriptor sets - ggml_pipeline_allocate_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, 1); - const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset; @@ -3384,13 +3455,14 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c // compute const std::array pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); + ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } -static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; - std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); + std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; + std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); @@ -3435,6 +3507,12 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con const uint64_t qy_sz = ggml_nbytes(src1); const uint64_t d_sz = sizeof(float) * d_ne; + if (dryrun) { + // Request descriptor sets + ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1); + return; + } + vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset + dst->view_offs; GGML_ASSERT(d_D != nullptr); @@ -3447,9 +3525,6 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con GGML_ASSERT(d_Qx != nullptr); } - // Allocate descriptor sets - ggml_pipeline_allocate_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1); - const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset; @@ -3459,23 +3534,24 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con // compute const std::array pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); + ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, + { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } -static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")"); if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1) { - ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst); + ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst, dryrun); } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1) { - ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst); + ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst, dryrun); } else if (dst->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { - ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst); + ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun); } else { - ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst); + ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun); } } -static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { +static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; @@ -3565,6 +3641,48 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& const uint64_t ids_sz = nbi2; const uint64_t d_sz = sizeof(float) * d_ne; + vk_pipeline to_fp16_vk_0 = nullptr; + vk_pipeline to_fp16_vk_1 = nullptr; + + if (x_non_contig) { + to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16); + } else { + to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); + } + if (y_non_contig) { + to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16); + } else { + to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); + } + GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT + GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT + + if (dryrun) { + const uint64_t x_sz_upd = x_sz * ne02 * ne03; + const uint64_t y_sz_upd = y_sz * ne12 * ne13; + if ( + (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || + (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { + GGML_ABORT("Requested preallocation size is too large"); + } + if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { + ctx->prealloc_size_x = x_sz_upd; + } + if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { + ctx->prealloc_size_y = y_sz_upd; + } + + // Request descriptor sets + ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); + if (qx_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); + } + if (qy_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); + } + return; + } + vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset + dst->view_offs; GGML_ASSERT(d_D != nullptr); @@ -3604,37 +3722,13 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& GGML_ASSERT(qy_sz == y_sz); } - vk_pipeline to_fp16_vk_0 = nullptr; - vk_pipeline to_fp16_vk_1 = nullptr; - - if (x_non_contig) { - to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16); - } else { - to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type); - } - if (y_non_contig) { - to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16); - } else { - to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); - } - GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT - GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT - - // Allocate descriptor sets - ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, 1); - if (qx_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_0, 1); - } - if (qy_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_1, 1); - } - if (x_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); } else if (qx_needs_dequant) { const std::vector pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) }; ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { { d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); + ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, + { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); @@ -3662,11 +3756,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& ); // NOLINT } -static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) { +static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3]; - std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)"); + std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; + std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ids->type == GGML_TYPE_I32); @@ -3740,6 +3835,47 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte const uint64_t ids_sz = nbi2; const uint64_t d_sz = sizeof(float) * d_ne; + vk_pipeline to_fp16_vk_0 = nullptr; + vk_pipeline to_fp16_vk_1 = nullptr; + if (x_non_contig) { + to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type); + } + if (y_non_contig) { + to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type); + } else { + to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); + } + vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type); + GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT + GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT + GGML_ASSERT(dmmv != nullptr); + + if (dryrun) { + const uint64_t x_sz_upd = x_sz * ne02 * ne03; + const uint64_t y_sz_upd = y_sz * ne12 * ne13; + if ( + (qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) || + (qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) { + GGML_ABORT("Requested preallocation size is too large"); + } + if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) { + ctx->prealloc_size_x = x_sz_upd; + } + if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) { + ctx->prealloc_size_y = y_sz_upd; + } + + // Request descriptor sets + if (qx_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1); + } + if (qy_needs_dequant) { + ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1); + } + ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1); + return; + } + vk_buffer d_D = extra->buffer_gpu.lock(); const uint64_t d_buf_offset = extra->offset + dst->view_offs; GGML_ASSERT(d_D != nullptr); @@ -3777,30 +3913,6 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte GGML_ASSERT(qy_sz == y_sz); } - vk_pipeline to_fp16_vk_0 = nullptr; - vk_pipeline to_fp16_vk_1 = nullptr; - if (x_non_contig) { - to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type); - } - if (y_non_contig) { - to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type); - } else { - to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); - } - vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type); - GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT - GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT - GGML_ASSERT(dmmv != nullptr); - - // Allocate descriptor sets - if (qx_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_0, 1); - } - if (qy_needs_dequant) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13); - } - ggml_pipeline_allocate_descriptor_sets(ctx->device, dmmv, ne12 * ne13); - if (x_non_contig) { GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment)); ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }); @@ -3834,89 +3946,20 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, - { { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne22 * ne23}, { d_ids, ids_buf_offset, ids_sz } }, + { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, + vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } }, sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z }); } -static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")"); if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) { - ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst); + ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); } else { - ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst); + ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); } } -static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - VK_LOG_DEBUG("ggml_vk_op_repeat(" << src0 << ", " << src1 << ", " << dst << ")"); - const uint64_t ne0 = dst->ne[0]; - const uint64_t ne1 = dst->ne[1]; - const uint64_t ne2 = dst->ne[2]; - const uint64_t ne3 = dst->ne[3]; - - const uint64_t ne00 = src0->ne[0]; - const uint64_t ne01 = src0->ne[1]; - const uint64_t ne02 = src0->ne[2]; - const uint64_t ne03 = src0->ne[3]; - - const uint64_t nb0 = dst->nb[0]; - const uint64_t nb1 = dst->nb[1]; - const uint64_t nb2 = dst->nb[2]; - const uint64_t nb3 = dst->nb[3]; - - const uint64_t nb00 = src0->nb[0]; - const uint64_t nb01 = src0->nb[1]; - const uint64_t nb02 = src0->nb[2]; - const uint64_t nb03 = src0->nb[3]; - - // guaranteed to be an integer due to the check in ggml_can_repeat - const uint64_t nr0 = ne0/ne00; - const uint64_t nr1 = ne1/ne01; - const uint64_t nr2 = ne2/ne02; - const uint64_t nr3 = ne3/ne03; - - // TODO: support for transposed / permuted tensors - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(nb00 == sizeof(float)); - - ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; - ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; - - const vk_buffer src_buf = extra_src0->buffer_gpu.lock(); - const uint64_t src_offset = extra_src0->offset + src0->view_offs; - vk_buffer dst_buf = extra->buffer_gpu.lock(); - const uint64_t dst_offset = extra->offset + dst->view_offs; - - std::vector copies; - - for (uint64_t i3 = 0; i3 < nr3; i3++) { - for (uint64_t k3 = 0; k3 < ne03; k3++) { - for (uint64_t i2 = 0; i2 < nr2; i2++) { - for (uint64_t k2 = 0; k2 < ne02; k2++) { - for (uint64_t i1 = 0; i1 < nr1; i1++) { - for (uint64_t k1 = 0; k1 < ne01; k1++) { - for (uint64_t i0 = 0; i0 < nr0; i0++) { - copies.push_back({ - src_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, - dst_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, - ne00*nb0, - }); - } - } - } - } - } - } - } - - ggml_vk_sync_buffers(subctx); - subctx->s->buffer.copyBuffer(src_buf->buffer, dst_buf->buffer, copies); - - GGML_UNUSED(ctx); - GGML_UNUSED(src1); -} - - static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { switch (op) { case GGML_OP_GET_ROWS: @@ -3982,6 +4025,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_pad_f32; } return nullptr; + case GGML_OP_REPEAT: + if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) { + return ctx->device->pipeline_repeat_f32; + } + return nullptr; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: @@ -4050,7 +4098,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const case GGML_OP_ROPE: { const int mode = ((const int32_t *) dst->op_params)[2]; - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; if (is_neox) { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { @@ -4104,15 +4152,6 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const GGML_UNUSED(src2); } -static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) { - switch(op) { - case GGML_OP_REPEAT: - return ggml_vk_op_repeat; - default: - return nullptr; - } -} - static bool ggml_vk_op_supports_incontiguous(ggml_op op) { switch (op) { case GGML_OP_CPY: @@ -4126,6 +4165,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { case GGML_OP_SQR: case GGML_OP_CLAMP: case GGML_OP_PAD: + case GGML_OP_REPEAT: return true; default: return false; @@ -4133,7 +4173,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { } template -static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { +static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; @@ -4141,7 +4181,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co if (src2 != nullptr) { std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3]; } - std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")"); + std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; + std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")"); GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT GGML_ASSERT(dst->extra != nullptr); @@ -4173,20 +4214,18 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co const uint64_t ned = ned0 * ned1; vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op); - ggml_vk_func_t op_func; if (pipeline == nullptr) { - op_func = ggml_vk_op_get_func(op); - if (op_func == nullptr) { - std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type); - if (src1 != nullptr) { - std::cerr << " and " << ggml_type_name(src1->type); - } - std::cerr << " to " << ggml_type_name(dst->type) << std::endl; - GGML_ABORT("fatal error"); + std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type); + if (src1 != nullptr) { + std::cerr << " and " << ggml_type_name(src1->type); } + std::cerr << " to " << ggml_type_name(dst->type) << std::endl; + GGML_ABORT("fatal error"); + } - op_func(ctx, subctx, src0, src1, dst); + if (dryrun) { + ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1); return; } @@ -4275,188 +4314,141 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co std::array elements; // Single call if dimension 2 is contiguous - if (op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, 1); + GGML_ASSERT(op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))); - switch (op) { - case GGML_OP_NORM: - case GGML_OP_RMS_NORM: - case GGML_OP_SOFT_MAX: - case GGML_OP_SUM_ROWS: - { - const uint32_t nr = ggml_nrows(src0); - if (nr > 262144) { - elements = { 512, 512, CEIL_DIV(nr, 262144) }; - } else if (nr > 512) { - elements = { 512, CEIL_DIV(nr, 512), 1 }; - } else { - elements = { nr, 1, 1 }; - } - } break; - case GGML_OP_GROUP_NORM: - { - const uint32_t num_groups = dst->op_params[0]; - elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 }; - } break; - case GGML_OP_DIAG_MASK_INF: - case GGML_OP_ROPE: - elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; - break; - case GGML_OP_GET_ROWS: - elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; - break; - case GGML_OP_ARGSORT: - elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; - break; - case GGML_OP_IM2COL: - { - const bool is_2D = dst->op_params[6] == 1; - - const uint32_t IC = src1->ne[is_2D ? 2 : 1]; - - const uint32_t KH = is_2D ? src0->ne[1] : 1; - const uint32_t KW = src0->ne[0]; - - const uint32_t OH = is_2D ? dst->ne[2] : 1; - const uint32_t OW = dst->ne[1]; - - const uint32_t batch = src1->ne[3]; - - elements = { OW * KW * KH, OH, batch * IC }; - } break; - case GGML_OP_TIMESTEP_EMBEDDING: - { - const uint32_t dim = dst->op_params[0]; - uint32_t half_ceil = (dim + 1) / 2; - elements = { half_ceil, (uint32_t)src0->ne[0], 1 }; - } break; - case GGML_OP_ADD: - case GGML_OP_DIV: - case GGML_OP_MUL: - case GGML_OP_SCALE: - case GGML_OP_SQR: - case GGML_OP_CLAMP: - case GGML_OP_PAD: - case GGML_OP_CPY: - case GGML_OP_CONCAT: - case GGML_OP_UPSCALE: - case GGML_OP_UNARY: - { - const uint32_t ne = ggml_nelements(dst); - if (ne > 262144) { - elements = { 512, 512, CEIL_DIV(ne, 262144) }; - } else if (ne > 512) { - elements = { 512, CEIL_DIV(ne, 512), 1 }; - } else { - elements = { ne, 1, 1 }; - } - } break; - default: - elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; - break; - } - - if (!op_supports_incontiguous) { - if (x_sz != VK_WHOLE_SIZE) { - x_sz *= ne02 * ne03; - } - if (use_src1 && y_sz != VK_WHOLE_SIZE) { - y_sz *= ne12 * ne13; - } - if (use_src2 && z_sz != VK_WHOLE_SIZE) { - z_sz *= ne22 * ne23; - } - if (d_sz != VK_WHOLE_SIZE) { - d_sz *= ned2 * ned3; - } - } - - if (op == GGML_OP_SOFT_MAX) { - // Empty src1 is possible in soft_max, but the shader needs a buffer - vk_subbuffer subbuf_y; - if (use_src1) { - subbuf_y = { d_Y, y_buf_offset, y_sz }; + switch (op) { + case GGML_OP_NORM: + case GGML_OP_RMS_NORM: + case GGML_OP_SOFT_MAX: + case GGML_OP_SUM_ROWS: + { + const uint32_t nr = ggml_nrows(src0); + if (nr > 262144) { + elements = { 512, 512, CEIL_DIV(nr, 262144) }; + } else if (nr > 512) { + elements = { 512, CEIL_DIV(nr, 512), 1 }; } else { - subbuf_y = { d_X, 0, x_sz }; + elements = { nr, 1, 1 }; } + } break; + case GGML_OP_GROUP_NORM: + { + const uint32_t num_groups = dst->op_params[0]; + elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 }; + } break; + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_ROPE: + elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; + break; + case GGML_OP_GET_ROWS: + elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; + break; + case GGML_OP_ARGSORT: + elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; + break; + case GGML_OP_IM2COL: + { + const bool is_2D = dst->op_params[6] == 1; - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); - } else if (op == GGML_OP_ROPE) { - // Empty src2 is possible in rope, but the shader needs a buffer - vk_subbuffer subbuf_z; - if (use_src2) { - subbuf_z = { d_Z, z_buf_offset, z_sz }; + const uint32_t IC = src1->ne[is_2D ? 2 : 1]; + + const uint32_t KH = is_2D ? src0->ne[1] : 1; + const uint32_t KW = src0->ne[0]; + + const uint32_t OH = is_2D ? dst->ne[2] : 1; + const uint32_t OW = dst->ne[1]; + + const uint32_t batch = src1->ne[3]; + + elements = { OW * KW * KH, OH, batch * IC }; + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + const uint32_t dim = dst->op_params[0]; + uint32_t half_ceil = (dim + 1) / 2; + elements = { half_ceil, (uint32_t)src0->ne[0], 1 }; + } break; + case GGML_OP_ADD: + case GGML_OP_DIV: + case GGML_OP_MUL: + case GGML_OP_SCALE: + case GGML_OP_SQR: + case GGML_OP_CLAMP: + case GGML_OP_PAD: + case GGML_OP_REPEAT: + case GGML_OP_CPY: + case GGML_OP_CONCAT: + case GGML_OP_UPSCALE: + case GGML_OP_UNARY: + { + const uint32_t ne = ggml_nelements(dst); + if (ne > 262144) { + elements = { 512, 512, CEIL_DIV(ne, 262144) }; + } else if (ne > 512) { + elements = { 512, CEIL_DIV(ne, 512), 1 }; } else { - subbuf_z = { d_X, 0, x_sz }; + elements = { ne, 1, 1 }; } + } break; + default: + elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; + break; + } - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); - } else if (op == GGML_OP_IM2COL) { - // im2col uses only src1 and dst buffers - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); - } else if (use_src2) { - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); - } else if (use_src1) { - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + if (!op_supports_incontiguous) { + if (x_sz != VK_WHOLE_SIZE) { + x_sz *= ne02 * ne03; + } + if (use_src1 && y_sz != VK_WHOLE_SIZE) { + y_sz *= ne12 * ne13; + } + if (use_src2 && z_sz != VK_WHOLE_SIZE) { + z_sz *= ne22 * ne23; + } + if (d_sz != VK_WHOLE_SIZE) { + d_sz *= ned2 * ned3; + } + } + + if (op == GGML_OP_SOFT_MAX) { + // Empty src1 is possible in soft_max, but the shader needs a buffer + vk_subbuffer subbuf_y; + if (use_src1) { + subbuf_y = { d_Y, y_buf_offset, y_sz }; } else { - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + subbuf_y = { d_X, 0, x_sz }; } + + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (op == GGML_OP_ROPE) { + // Empty src2 is possible in rope, but the shader needs a buffer + vk_subbuffer subbuf_z; + if (use_src2) { + subbuf_z = { d_Z, z_buf_offset, z_sz }; + } else { + subbuf_z = { d_X, 0, x_sz }; + } + + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (op == GGML_OP_IM2COL) { + // im2col uses only src1 and dst buffers + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (use_src2) { + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + } else if (use_src1) { + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else { - GGML_ASSERT(op != GGML_OP_SOFT_MAX); - GGML_ASSERT(op != GGML_OP_ARGSORT); - GGML_ASSERT(!use_src2); - - ggml_pipeline_allocate_descriptor_sets(ctx->device, pipeline, ne02 * ne03); - - switch (op) { - case GGML_OP_NORM: - case GGML_OP_GROUP_NORM: - case GGML_OP_RMS_NORM: - elements = { (uint32_t)ne01, 1, 1 }; - break; - case GGML_OP_DIAG_MASK_INF: - case GGML_OP_ROPE: - elements = { (uint32_t)ne01, (uint32_t)ne00, 1 }; - break; - case GGML_OP_GET_ROWS: - elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; - break; - default: - elements = { (uint32_t)ne0, 1, 1 }; - break; - } - - for (uint64_t i03 = 0; i03 < ne03; i03++) { - for (uint64_t i02 = 0; i02 < ne02; i02++) { - const uint32_t it_idx0 = (i03 * ne02 + i02); - const uint32_t it_idx1 = use_src1 ? ((i03 % ne13) * ne12 + (i02 % ne12)) : 0; - const uint32_t x_offset = x_sz * it_idx0; - const uint32_t y_offset = y_sz * it_idx1; - const uint32_t d_offset = d_sz * it_idx0; - - if (use_src1) { - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_Y, y_buf_offset + y_offset, y_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements); - } else { - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements); - } - } - } + ggml_vk_sync_buffers(subctx); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } } -static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {}); -} - -static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4468,10 +4460,10 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, - }); + }, dryrun); } -static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4483,10 +4475,10 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, - }); + }, dryrun); } -static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4498,10 +4490,10 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, - }); + }, dryrun); } -static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4513,10 +4505,10 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, 0, - }); + }, dryrun); } -static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { int * op_params = (int *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); @@ -4530,10 +4522,10 @@ static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, co (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, op_params[0], - }); + }, dryrun); } -static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const float sf0 = (float)dst->ne[0] / src0->ne[0]; @@ -4546,10 +4538,10 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3], sf0, sf1, sf2, sf3, - }); + }, dryrun); } -static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4560,10 +4552,10 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, con (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, op_params[0], 0.0f - }); + }, dryrun); } -static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4573,10 +4565,10 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, - }); + }, dryrun); } -static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4587,10 +4579,10 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, con (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, op_params[0], op_params[1], - }); + }, dryrun); } -static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4600,10 +4592,23 @@ static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, 0, 0.0f, 0.0f, - }); + }, dryrun); } -static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { + const uint32_t src0_type_size = ggml_type_size(src0->type); + const uint32_t dst_type_size = ggml_type_size(dst->type); + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, { + (uint32_t)ggml_nelements(dst), + (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, + (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, + 0, + 0.0f, 0.0f, + }, dryrun); +} + +static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); @@ -4615,40 +4620,41 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, d_offset, 0.0f, 0.0f, - }); + }, dryrun); } -static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun); } -static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { - int * op_params = (int *)dst->op_params; +static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { + const int * int_op_params = (const int *)dst->op_params; + const float * float_op_params = (const float *)dst->op_params; - uint32_t num_groups = op_params[0]; - uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); - static const float eps = 1e-6f; + const uint32_t num_groups = int_op_params[0]; + const float eps = float_op_params[1]; + const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun); } -static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun); } -static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); +static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun); } -static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { int32_t * op_params = (int32_t *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun); } -static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { float * op_params = (float *)dst->op_params; float scale = op_params[0]; @@ -4670,10 +4676,10 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, scale, max_bias, m0, m1, n_head_log2, - }); + }, dryrun); } -static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) { const int n_dims = ((int32_t *) dst->op_params)[1]; // const int mode = ((int32_t *) dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -4694,10 +4700,10 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, cons (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale, src2 != nullptr, - }); + }, dryrun); } -static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { int32_t * op_params = (int32_t *)dst->op_params; uint32_t ncols = src0->ne[0]; @@ -4713,14 +4719,14 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, c ncols, ncols_pad, op_params[0], - }); + }, dryrun); } -static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }); +static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }, dryrun); } -static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { const int32_t s0 = dst->op_params[0]; const int32_t s1 = dst->op_params[1]; const int32_t p0 = dst->op_params[2]; @@ -4751,22 +4757,22 @@ static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, co pelements, IC * KH * KW, s0, s1, p0, p1, d0, d1, - }); + }, dryrun); } -static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t dim = dst->op_params[0]; const uint32_t max_period = dst->op_params[1]; const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type); ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, { nb1, dim, max_period, - }); + }, dryrun); } -static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) { +static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const float * op_params = (const float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun); } #ifdef GGML_VULKAN_RUN_TESTS @@ -4912,9 +4918,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t } } - ggml_pipeline_allocate_descriptor_sets(ctx->device, p, num_it); + ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it); if (split_k > 1) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it); + ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it); if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) { // Resize buffer @@ -5161,7 +5167,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ ggml_vk_quantize_data(x, qx, ne, quant); ggml_vk_dequantize_data(qx, x_ref, ne, quant); - ggml_pipeline_allocate_descriptor_sets(ctx->device, p, 1); + ggml_pipeline_request_descriptor_sets(ctx->device, p, 1); ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz); @@ -5282,9 +5288,9 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, y[i] = (i % k == i / k) ? 1.0f : 0.0f; } - ggml_pipeline_allocate_descriptor_sets(ctx->device, p, num_it); + ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it); if (split_k > 1) { - ggml_pipeline_allocate_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it); + ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it); if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) { // Resize buffer @@ -5412,135 +5418,6 @@ static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) return extra; } -static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggml_tensor * node){ - VK_LOG_DEBUG("ggml_vk_preallocate_buffers_graph(" << node << ")"); - ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; - - if (extra == nullptr) { - return; - } - - ggml_tensor * src0 = node->src[0]; - ggml_tensor * src1 = node->src[1]; - - const bool use_src0 = src0 != nullptr; - const int64_t ne00 = use_src0 ? src0->ne[0] : 0; - const int64_t ne01 = use_src0 ? src0->ne[1] : 0; - const int64_t ne02 = use_src0 ? src0->ne[2] : 0; - const int64_t ne03 = use_src0 ? src0->ne[3] : 0; - const bool use_src1 = src1 != nullptr && node->op != GGML_OP_CPY && node->op != GGML_OP_CONT && node->op != GGML_OP_DUP; - const int64_t ne10 = use_src1 ? src1->ne[0] : 0; - const int64_t ne11 = use_src1 ? src1->ne[1] : 0; - const int64_t ne12 = use_src1 ? src1->ne[2] : 0; - const int64_t ne13 = use_src1 ? src1->ne[3] : 0; - const int64_t ne20 = node->ne[0]; - const int64_t ne21 = node->ne[1]; - const int64_t ne22 = node->ne[2]; - const int64_t ne23 = node->ne[3]; - - const ggml_type src0_type = (use_src0 && src0->type == GGML_TYPE_F32) ? src0->type : GGML_TYPE_F16; - const ggml_type src1_type = (use_src1 && src1->type == GGML_TYPE_F32) ? src1->type : GGML_TYPE_F16; - - const bool x_non_contig = use_src0 && !ggml_vk_dim01_contiguous(src0); - const bool y_non_contig = use_src1 && !ggml_vk_dim01_contiguous(src1); - - const bool y_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32 && !y_non_contig; - - bool mmp = (use_src0 && use_src1 && (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID)) ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type) != nullptr : false; - - const bool qx_needs_dequant = use_src0 && (!mmp || x_non_contig); - const bool qy_needs_dequant = use_src1 && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig); - - int split_k; - if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) { - split_k = ggml_vk_guess_split_k(ne01, ne11, ne10); - } else { - split_k = 1; - } - const uint32_t x_ne = ne00 * ne01; - const uint32_t y_ne = ne10 * ne11; - const uint32_t d_ne = ne20 * ne21; - - const uint64_t x_sz = (use_src0 && qx_needs_dequant) ? ggml_vk_align_size(sizeof(src0_type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0; - const uint64_t y_sz = (use_src1 && qy_needs_dequant) ? ggml_vk_align_size(sizeof(src1_type) * y_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0; - uint64_t d_sz = ggml_vk_align_size(ggml_type_size(node->type) * d_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ne22 * ne23; - const uint64_t split_k_size = split_k > 1 ? d_sz * 4 : 0; - - if (extra->buffer_gpu.expired()) { - // Workaround for CPU backend BLAS matmul calls - extra->buffer_gpu = ggml_vk_create_buffer_temp(ctx, d_sz); - } - - switch (node->op) { - case GGML_OP_REPEAT: - case GGML_OP_GET_ROWS: - case GGML_OP_RESHAPE: - case GGML_OP_VIEW: - case GGML_OP_PERMUTE: - case GGML_OP_TRANSPOSE: - case GGML_OP_ADD: - case GGML_OP_SCALE: - case GGML_OP_SQR: - case GGML_OP_CLAMP: - case GGML_OP_PAD: - case GGML_OP_CPY: - case GGML_OP_CONT: - case GGML_OP_DUP: - case GGML_OP_MUL: - case GGML_OP_DIV: - case GGML_OP_CONCAT: - case GGML_OP_UPSCALE: - case GGML_OP_NORM: - case GGML_OP_GROUP_NORM: - case GGML_OP_RMS_NORM: - case GGML_OP_DIAG_MASK_INF: - case GGML_OP_SOFT_MAX: - case GGML_OP_ROPE: - case GGML_OP_ARGSORT: - case GGML_OP_SUM_ROWS: - case GGML_OP_IM2COL: - case GGML_OP_TIMESTEP_EMBEDDING: - case GGML_OP_LEAKY_RELU: - break; - case GGML_OP_UNARY: - switch (ggml_get_unary_op(node)) { - case GGML_UNARY_OP_SILU: - case GGML_UNARY_OP_GELU: - case GGML_UNARY_OP_GELU_QUICK: - case GGML_UNARY_OP_RELU: - case GGML_UNARY_OP_TANH: - break; - default: - return; - } - break; - case GGML_OP_MUL_MAT: - case GGML_OP_MUL_MAT_ID: - if ( - x_sz > ctx->device->max_memory_allocation_size || - y_sz > ctx->device->max_memory_allocation_size || - d_sz > ctx->device->max_memory_allocation_size || - split_k_size > ctx->device->max_memory_allocation_size) { - GGML_ABORT("Requested preallocation size is too large"); - } - if (ctx->prealloc_size_x < x_sz) { - ctx->prealloc_size_x = x_sz; - } - if (ctx->prealloc_size_y < y_sz) { - ctx->prealloc_size_y = y_sz; - } - if (ctx->prealloc_size_split_k < split_k_size) { - ctx->prealloc_size_split_k = split_k_size; - } - if (ctx->staging_size < x_sz + y_sz) { - ctx->staging_size = x_sz + y_sz; - } - break; - default: - return; - } -} - static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { #if defined(GGML_VULKAN_RUN_TESTS) ctx->staging = ggml_vk_create_buffer_check(ctx->device, 100ul * 1024ul * 1024ul, @@ -5705,19 +5582,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) { } ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_split_k); } - if (ctx->staging == nullptr || (ctx->staging_size > 0 && ctx->staging->size < ctx->staging_size)) { - VK_LOG_MEMORY("ggml_vk_preallocate_buffers(staging_size: " << ctx->staging_size << ")"); - // Resize buffer - if (ctx->staging != nullptr) { - ggml_vk_destroy_buffer(ctx->staging); - } - ctx->staging = ggml_vk_create_buffer_check(ctx->device, ctx->staging_size, - vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached, - vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); - } } -static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, bool last_node){ +static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, bool last_node, bool dryrun){ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; if (ggml_is_empty(node) || extra == nullptr) { @@ -5726,7 +5593,6 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")"); ctx->semaphore_idx = 0; - ctx->staging_offset = 0; const ggml_tensor * src0 = node->src[0]; const ggml_tensor * src1 = node->src[1]; @@ -5788,75 +5654,77 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod vk_context compute_ctx; - if (ctx->compute_ctx.expired()) { - compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); - ctx->compute_ctx = compute_ctx; - ggml_vk_ctx_begin(ctx->device, compute_ctx); - } else { - compute_ctx = ctx->compute_ctx.lock(); + if (!dryrun) { + if (ctx->compute_ctx.expired()) { + compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + ctx->compute_ctx = compute_ctx; + ggml_vk_ctx_begin(ctx->device, compute_ctx); + } else { + compute_ctx = ctx->compute_ctx.lock(); + } } switch (node->op) { case GGML_OP_REPEAT: - ggml_vk_repeat(ctx, compute_ctx, src0, node); + ggml_vk_repeat(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_GET_ROWS: - ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node); + ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_ADD: - ggml_vk_add(ctx, compute_ctx, src0, src1, node); + ggml_vk_add(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_MUL: - ggml_vk_mul(ctx, compute_ctx, src0, src1, node); + ggml_vk_mul(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_DIV: - ggml_vk_div(ctx, compute_ctx, src0, src1, node); + ggml_vk_div(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_CONCAT: - ggml_vk_concat(ctx, compute_ctx, src0, src1, node); + ggml_vk_concat(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_UPSCALE: - ggml_vk_upscale(ctx, compute_ctx, src0, node); + ggml_vk_upscale(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SCALE: - ggml_vk_scale(ctx, compute_ctx, src0, node); + ggml_vk_scale(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SQR: - ggml_vk_sqr(ctx, compute_ctx, src0, node); + ggml_vk_sqr(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_CLAMP: - ggml_vk_clamp(ctx, compute_ctx, src0, node); + ggml_vk_clamp(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_PAD: - ggml_vk_pad(ctx, compute_ctx, src0, node); + ggml_vk_pad(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_CPY: case GGML_OP_CONT: case GGML_OP_DUP: - ggml_vk_cpy(ctx, compute_ctx, src0, node); + ggml_vk_cpy(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_NORM: - ggml_vk_norm(ctx, compute_ctx, src0, node); + ggml_vk_norm(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_GROUP_NORM: - ggml_vk_group_norm(ctx, compute_ctx, src0, node); + ggml_vk_group_norm(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_RMS_NORM: - ggml_vk_rms_norm(ctx, compute_ctx, src0, node); + ggml_vk_rms_norm(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_UNARY: @@ -5866,59 +5734,63 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_TANH: - ggml_vk_unary(ctx, compute_ctx, src0, node); + ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun); break; default: return; } break; case GGML_OP_DIAG_MASK_INF: - ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node); + ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SOFT_MAX: - ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node); + ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_ROPE: - ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node); + ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, dryrun); break; case GGML_OP_ARGSORT: - ggml_vk_argsort(ctx, compute_ctx, src0, node); + ggml_vk_argsort(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_SUM_ROWS: - ggml_vk_sum_rows(ctx, compute_ctx, src0, node); + ggml_vk_sum_rows(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_IM2COL: - ggml_vk_im2col(ctx, compute_ctx, src0, src1, node); + ggml_vk_im2col(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_TIMESTEP_EMBEDDING: - ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node); + ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_LEAKY_RELU: - ggml_vk_leaky_relu(ctx, compute_ctx, src0, node); + ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun); break; case GGML_OP_MUL_MAT: - ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node); + ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node, dryrun); break; case GGML_OP_MUL_MAT_ID: - ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node); + ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node, dryrun); break; default: return; } + if (dryrun) { + return; + } + ctx->tensor_ctxs[node_idx] = compute_ctx; -#ifdef GGML_VULKAN_CHECK_RESULTS +#if defined(GGML_VULKAN_CHECK_RESULTS) || defined(GGML_VULKAN_PERF) // Force context reset on each node so that each tensor ends up in its own context // and can be run and compared to its CPU equivalent separately last_node = true; @@ -6002,6 +5874,10 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock(); +#ifdef GGML_VULKAN_PERF + std::chrono::steady_clock::time_point start; +#endif // GGML_VULKAN_PERF + // Only run if ctx hasn't been submitted yet if (!subctx->seqs.empty()) { // Do staging buffer copies @@ -6009,11 +5885,21 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * memcpy(cpy.dst, cpy.src, cpy.n); } +#ifdef GGML_VULKAN_PERF + start = std::chrono::steady_clock::now(); +#endif // GGML_VULKAN_PERF + ggml_vk_submit(subctx, ctx->fence); } if (tensor_idx == subctx->exit_tensor_idx) { VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences"); + +#ifdef GGML_VULKAN_PERF + auto duration = std::chrono::duration_cast(std::chrono::steady_clock::now() - start); + ctx->device->perf_logger->log_timing(tensor, duration.count()); +#endif // GGML_VULKAN_PERF + ctx->device->device.resetFences({ ctx->fence }); // Do staging buffer copies @@ -6035,12 +5921,14 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { } ctx->gc.temp_buffers.clear(); - for (auto& pipeline : ctx->device->pipelines) { - if (pipeline.expired()) { + for (auto& dsr : ctx->device->pipeline_descriptor_set_requirements) { + vk_pipeline_ref plr = ctx->device->pipelines[dsr.first]; + + if (plr.expired()) { continue; } - vk_pipeline pl = pipeline.lock(); + vk_pipeline pl = plr.lock(); ggml_pipeline_cleanup(pl); } @@ -6064,10 +5952,9 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { ctx->device->device.resetEvent(event); } - ctx->staging_offset = 0; - ctx->tensor_ctxs.clear(); ctx->gc.contexts.clear(); + ctx->device->pipeline_descriptor_set_requirements.clear(); } // Clean up on backend free @@ -6078,7 +5965,6 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) { ggml_vk_destroy_buffer(ctx->prealloc_x); ggml_vk_destroy_buffer(ctx->prealloc_y); ggml_vk_destroy_buffer(ctx->prealloc_split_k); - ggml_vk_destroy_buffer(ctx->staging); for (auto& buffer : ctx->buffer_pool) { ggml_vk_destroy_buffer(buffer); @@ -6087,7 +5973,6 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) { ctx->prealloc_size_x = 0; ctx->prealloc_size_y = 0; ctx->prealloc_size_split_k = 0; - ctx->staging_size = 0; for (auto& event : ctx->gc.events) { ctx->device->device.destroyEvent(event); @@ -6416,7 +6301,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g vk_buffer buf = extra->buffer_gpu.lock(); - ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); + ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size); } GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { @@ -6439,7 +6324,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c vk_buffer buf = extra->buffer_gpu.lock(); - ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size, ctx->staging, ctx->staging_offset); + ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size); } GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { @@ -6505,9 +6390,10 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_vk_preallocate_buffers_graph(ctx, cgraph->nodes[i]); + ggml_vk_build_graph(ctx, cgraph->nodes[i], i, 0, true); } ggml_vk_preallocate_buffers(ctx); + ggml_pipeline_allocate_descriptor_sets(ctx->device); int last_node = cgraph->n_nodes - 1; @@ -6520,7 +6406,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen ctx->tensor_ctxs.resize(cgraph->n_nodes); for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_vk_build_graph(ctx, cgraph->nodes[i], i, i == last_node); + ggml_vk_build_graph(ctx, cgraph->nodes[i], i, i == last_node, false); } for (int i = 0; i < cgraph->n_nodes; i++) { @@ -6546,6 +6432,10 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen GGML_ASSERT(ok); } +#ifdef GGML_VULKAN_PERF + ctx->device->perf_logger->print_timings(); +#endif + ggml_vk_graph_cleanup(ctx); return GGML_STATUS_SUCCESS; @@ -6637,10 +6527,7 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const return false; } break; case GGML_OP_REPEAT: - { - ggml_type src0_type = op->src[0]->type; - return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; - } break; + return ggml_type_size(op->type) == sizeof(float) && ggml_type_size(op->src[0]->type) == sizeof(float); case GGML_OP_ROPE: return ggml_is_contiguous(op->src[0]); case GGML_OP_NONE: @@ -7104,12 +6991,14 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) { tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); } else if (tensor->op == GGML_OP_PAD) { tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]); + } else if (tensor->op == GGML_OP_REPEAT) { + tensor_clone = ggml_repeat(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_ADD) { tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone); } else if (tensor->op == GGML_OP_NORM) { tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_GROUP_NORM) { - tensor_clone = ggml_group_norm(ggml_ctx, src0_clone, *(int *)tensor->op_params); + tensor_clone = ggml_group_norm(ggml_ctx, src0_clone, *(int *)tensor->op_params, ((float *)tensor->op_params)[1]); } else if (tensor->op == GGML_OP_RMS_NORM) { tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 910981e4a..88e4fb732 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -56,6 +56,9 @@ int ggml_sve_cnt_b = 0; // disable POSIX deprecation warnings // these functions are never going away, anyway #pragma warning(disable: 4996) + +// unreachable code because of multiple instances of code after GGML_ABORT +#pragma warning(disable: 4702) #endif #if defined(_WIN32) @@ -3721,7 +3724,8 @@ static struct ggml_tensor * ggml_new_tensor_impl( struct ggml_tensor * view_src, size_t view_offs) { - assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); + GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT); + GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); // find the base tensor and absolute offset if (view_src != NULL && view_src->view_src != NULL) { @@ -5374,6 +5378,7 @@ static struct ggml_tensor * ggml_group_norm_impl( struct ggml_context * ctx, struct ggml_tensor * a, int n_groups, + float eps, bool inplace) { bool is_node = false; @@ -5384,7 +5389,8 @@ static struct ggml_tensor * ggml_group_norm_impl( struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - result->op_params[0] = n_groups; + ggml_set_op_params_i32(result, 0, n_groups); + ggml_set_op_params_f32(result, 1, eps); result->op = GGML_OP_GROUP_NORM; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -5396,15 +5402,17 @@ static struct ggml_tensor * ggml_group_norm_impl( struct ggml_tensor * ggml_group_norm( struct ggml_context * ctx, struct ggml_tensor * a, - int n_groups) { - return ggml_group_norm_impl(ctx, a, n_groups, false); + int n_groups, + float eps) { + return ggml_group_norm_impl(ctx, a, n_groups, eps, false); } struct ggml_tensor * ggml_group_norm_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_groups) { - return ggml_group_norm_impl(ctx, a, n_groups, true); + int n_groups, + float eps) { + return ggml_group_norm_impl(ctx, a, n_groups, eps, true); } // ggml_mul_mat @@ -12095,10 +12103,11 @@ static void ggml_compute_forward_group_norm_f32( GGML_TENSOR_UNARY_OP_LOCALS - const float eps = 1e-6f; // TODO: make this a parameter - // TODO: optimize + float eps; + memcpy(&eps, dst->op_params + 1, sizeof(float)); + int n_channels = src0->ne[2]; int n_groups = dst->op_params[0]; int n_channels_per_group = (n_channels + n_groups - 1) / n_groups; @@ -14085,7 +14094,7 @@ static void ggml_compute_forward_rope_f32( float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const float * freq_factors = NULL; if (src2 != NULL) { @@ -14210,7 +14219,7 @@ static void ggml_compute_forward_rope_f16( float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); - const bool is_neox = mode & 2; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const float * freq_factors = NULL; if (src2 != NULL) { @@ -21120,7 +21129,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p (int64_t) info->ne[2] * (int64_t) info->ne[3]; - if (ne % ggml_blck_size(info->type) != 0) { + if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) { fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n", __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type)); fclose(file); diff --git a/ggml/src/kompute-shaders/op_rope_f16.comp b/ggml/src/kompute-shaders/op_rope_f16.comp index 1a4058b3f..0ecfb2eab 100644 --- a/ggml/src/kompute-shaders/op_rope_f16.comp +++ b/ggml/src/kompute-shaders/op_rope_f16.comp @@ -11,7 +11,7 @@ void main() { const uint i2 = gl_WorkGroupID.y; const uint i1 = gl_WorkGroupID.x; - const bool is_neox = (pcs.mode & 2) != 0; + const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0; float corr_dims[2]; rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims); diff --git a/ggml/src/kompute-shaders/op_rope_f32.comp b/ggml/src/kompute-shaders/op_rope_f32.comp index 65e03827a..cec0fd9a5 100644 --- a/ggml/src/kompute-shaders/op_rope_f32.comp +++ b/ggml/src/kompute-shaders/op_rope_f32.comp @@ -11,7 +11,7 @@ void main() { const uint i2 = gl_WorkGroupID.y; const uint i1 = gl_WorkGroupID.x; - const bool is_neox = (pcs.mode & 2) != 0; + const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0; float corr_dims[2]; rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims); diff --git a/ggml/src/kompute-shaders/rope_common.comp b/ggml/src/kompute-shaders/rope_common.comp index 7b9394cb2..df4702896 100644 --- a/ggml/src/kompute-shaders/rope_common.comp +++ b/ggml/src/kompute-shaders/rope_common.comp @@ -1,5 +1,7 @@ #include "common.comp" +#define GGML_ROPE_TYPE_NEOX 2 + // TODO: use a local size of 32 or more (Metal uses 1024) layout(local_size_x = 1) in; diff --git a/ggml/src/vulkan-shaders/CMakeLists.txt b/ggml/src/vulkan-shaders/CMakeLists.txt index 41551e009..10075db33 100644 --- a/ggml/src/vulkan-shaders/CMakeLists.txt +++ b/ggml/src/vulkan-shaders/CMakeLists.txt @@ -1,5 +1,7 @@ +find_package (Threads REQUIRED) set(TARGET vulkan-shaders-gen) add_executable(${TARGET} vulkan-shaders-gen.cpp) install(TARGETS ${TARGET} RUNTIME) target_compile_features(${TARGET} PRIVATE cxx_std_11) +target_link_libraries(vulkan-shaders-gen PUBLIC Threads::Threads) diff --git a/ggml/src/vulkan-shaders/concat.comp b/ggml/src/vulkan-shaders/concat.comp index 08ab5514b..c23b6eb1b 100644 --- a/ggml/src/vulkan-shaders/concat.comp +++ b/ggml/src/vulkan-shaders/concat.comp @@ -30,6 +30,10 @@ void main() { #ifndef OPTIMIZATION_ERROR_WORKAROUND data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : data_b[src1_idx]); #else - data_d[p.d_offset + dst_idx] = is_src0 ? data_a[src0_idx] : data_b[src1_idx]; + if (is_src0) { + data_d[p.d_offset + dst_idx] = data_a[src0_idx]; + } else { + data_d[p.d_offset + dst_idx] = data_b[src1_idx]; + } #endif } diff --git a/ggml/src/vulkan-shaders/mul_mat_vec.comp b/ggml/src/vulkan-shaders/mul_mat_vec.comp index 46a6369bc..d3ccba7fc 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec.comp @@ -39,8 +39,7 @@ void main() { vec2 v = dequantize(ib, iqs, a_offset / QUANT_K); // matrix multiplication - tmp[tid] += FLOAT_TYPE(v.x) * FLOAT_TYPE(data_b[b_offset + iybs + iqs]) + - FLOAT_TYPE(v.y) * FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]); + tmp[tid] = fma(FLOAT_TYPE(v.x), FLOAT_TYPE(data_b[b_offset + iybs + iqs]), fma(FLOAT_TYPE(v.y), FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]), tmp[tid])); } // sum up partial sums and write back result diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_nc.comp b/ggml/src/vulkan-shaders/mul_mat_vec_nc.comp index cb3f3c0df..1cc4996d3 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_nc.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_nc.comp @@ -53,7 +53,7 @@ void main() { const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]); - tmp[tid] += xi * FLOAT_TYPE(data_b[iy]); + tmp[tid] = fma(xi, FLOAT_TYPE(data_b[iy]), tmp[tid]); } // sum up partial sums and write back result diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_p021.comp b/ggml/src/vulkan-shaders/mul_mat_vec_p021.comp index 4b1871caa..9b443807d 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_p021.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_p021.comp @@ -52,7 +52,7 @@ void main() { // y is not transposed but permuted const uint iy = channel*nrows_y + row_y; - tmp[tid] += xi * FLOAT_TYPE(data_b[iy]); + tmp[tid] = fma(xi, FLOAT_TYPE(data_b[iy]), tmp[tid]); } // dst is not transposed and not permuted diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_q2_k.comp b/ggml/src/vulkan-shaders/mul_mat_vec_q2_k.comp index 4cd97799d..ec8eadcd5 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_q2_k.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -39,24 +39,25 @@ void main() { FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3) - + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3); - sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF) - + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF); + sum1 = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +112]), FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3), sum1)))))))); + sum2 = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +112]), FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF), sum2)))))))); } - tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; + const uint tmp_idx = 16 * ix + tid; + tmp[tmp_idx] = fma(dall, sum1, fma(-dmin, sum2, tmp[tmp_idx])); } // sum up partial sums and write back result diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_q3_k.comp b/ggml/src/vulkan-shaders/mul_mat_vec_q3_k.comp index a6e430ea0..3ca4ad85a 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_q3_k.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_q3_k.comp @@ -40,16 +40,17 @@ void main() { FLOAT_TYPE sum = FLOAT_TYPE(0.0); for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { - sum += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[0] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[2] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[4] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[6] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[1] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[3] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[5] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)) - + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[7] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)); + sum = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[0] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[2] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[4] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[6] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[1] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[3] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[5] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[7] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); } - tmp[16 * ix + tid] += d * sum; + const uint tmp_idx = 16 * ix + tid; + tmp[tmp_idx] = fma(d, sum, tmp[tmp_idx]); } // sum up partial sums and write back result diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_q4_k.comp b/ggml/src/vulkan-shaders/mul_mat_vec_q4_k.comp index 75569363c..d91e00e10 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_q4_k.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_q4_k.comp @@ -67,17 +67,17 @@ void main() { const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] >> 4); const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] >> 4); - const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx]) * q4_0 + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1 + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * q4_2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * q4_3); - const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_4 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_5 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * q4_7); - const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx]) * q4_8 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_9 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * q4_10 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * q4_11); - const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_12 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_13 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * q4_14 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * q4_15); - const FLOAT_TYPE smin = FLOAT_TYPE( - FLOAT_TYPE(data_b[b_offset + y1_idx ]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx ]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7 - + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7 - + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * sc7 - + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * sc7 - ); - tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin); + const FLOAT_TYPE sx = fma(FLOAT_TYPE(data_b[b_offset + y1_idx]), q4_0, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), q4_1, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 2]), q4_2, FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * q4_3))); + const FLOAT_TYPE sy = fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), q4_4, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), q4_5, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 34]), q4_6, FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * q4_7))); + const FLOAT_TYPE sz = fma(FLOAT_TYPE(data_b[b_offset + y2_idx]), q4_8, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), q4_9, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 2]), q4_10, FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * q4_11))); + const FLOAT_TYPE sw = fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), q4_12, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 33]), q4_13, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 34]), q4_14, FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * q4_15))); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), sc2, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), sc3, fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), sc6, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), sc7, + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), sc2, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), sc3, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), sc6, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 33]), sc7, + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 2]), sc2, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 34]), sc3, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 2]), sc6, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 34]), sc7, + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 3]), sc2, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 35]), sc3, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 3]), sc6, FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * sc7))))))))))))))); + const uint tmp_idx = 16 * ix + tid; + tmp[tmp_idx] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, tmp[tmp_idx])); #else const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf); const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf); @@ -88,16 +88,19 @@ void main() { const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4); const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4); - const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx ]) * q4_0 + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1); - const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_3); - const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx ]) * q4_4 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_5); - const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_7); - const FLOAT_TYPE smin = FLOAT_TYPE( - FLOAT_TYPE(data_b[b_offset + y1_idx]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7 - + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7 - ); + const FLOAT_TYPE sx = fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), q4_0, FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1); + const FLOAT_TYPE sy = fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), q4_2, FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_3); + const FLOAT_TYPE sz = fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), q4_4, FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_5); + const FLOAT_TYPE sw = fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), q4_6, FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_7); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), sc2, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), sc3, fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), sc6, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), sc7, + + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), sc2, fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), sc3, fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), sc6, FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7))))))); - tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin); + tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin); + const uint tmp_idx = 16 * ix + tid; + tmp[tmp_idx] = fma(dall, (fma(sx, FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f), fma(sy, FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f), + fma(sz, FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)), fma(sw, FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))))))), fma(-dmin, smin, tmp[tmp_idx])); #endif } diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_q5_k.comp b/ggml/src/vulkan-shaders/mul_mat_vec_q5_k.comp index 9be3645bd..2306785af 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_q5_k.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_q5_k.comp @@ -66,35 +66,33 @@ void main() { const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4); const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4); - const FLOAT_TYPE sx = FLOAT_TYPE( - FLOAT_TYPE(data_b[b_offset + y1_idx ]) * (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) * (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0)) - ); - const FLOAT_TYPE sy = FLOAT_TYPE( - FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) * (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0)) - ); - const FLOAT_TYPE sz = FLOAT_TYPE( - FLOAT_TYPE(data_b[b_offset + y2_idx ]) * (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) * (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0)) - ); - const FLOAT_TYPE sw = FLOAT_TYPE( - FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) * (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0)) - + FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0)) - ); - const FLOAT_TYPE smin = FLOAT_TYPE( - (FLOAT_TYPE(data_b[b_offset + y1_idx]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17])) * sc2 + (FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49])) * sc3 - + (FLOAT_TYPE(data_b[b_offset + y2_idx]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17])) * sc6 + (FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7 - ); - tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin); + const FLOAT_TYPE sx = + fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 16]), (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0)), + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0))))); + const FLOAT_TYPE sy = + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 48]), (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0)), + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0))))); + const FLOAT_TYPE sz = + fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 16]), (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0)), + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0))))); + const FLOAT_TYPE sw = + fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 33]), (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 48]), (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0)), + FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0))))); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]), sc2, + fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]), sc3, + fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]), sc6, + (FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7))); + const uint tmp_idx = 16 * ix + tid; + tmp[tmp_idx] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, tmp[tmp_idx])); } // sum up partial sums and write back result diff --git a/ggml/src/vulkan-shaders/mul_mat_vec_q6_k.comp b/ggml/src/vulkan-shaders/mul_mat_vec_q6_k.comp index d610cf030..95c286eeb 100644 --- a/ggml/src/vulkan-shaders/mul_mat_vec_q6_k.comp +++ b/ggml/src/vulkan-shaders/mul_mat_vec_q6_k.comp @@ -44,22 +44,22 @@ void main() { const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); #if K_QUANTS_PER_ITERATION == 1 - FLOAT_TYPE sum = FLOAT_TYPE(data_b[b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32); - tmp[16 * ix + tid] += sum; + const uint tmp_idx = 16 * ix + tid; + tmp[tmp_idx] = fma(FLOAT_TYPE(data_b[b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32), tmp[tmp_idx])))))))); #else FLOAT_TYPE sum = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 4; ++l) { - sum += FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32) - + FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32); + sum = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32), + fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32), sum)))); } tmp[16 * ix + tid] += sum; #endif diff --git a/ggml/src/vulkan-shaders/mul_mm.comp b/ggml/src/vulkan-shaders/mul_mm.comp index 5fe9d5241..fffdd1818 100644 --- a/ggml/src/vulkan-shaders/mul_mm.comp +++ b/ggml/src/vulkan-shaders/mul_mm.comp @@ -326,10 +326,10 @@ void main() { mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4)); } const float d = loadd.x * sc; - const float m = loadd.y * mbyte; + const float m = -loadd.y * mbyte; - buf_a[buf_idx ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) - m); - buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m); + buf_a[buf_idx ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF), m)); + buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF), m)); #elif defined(DATA_A_Q5_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; @@ -357,10 +357,10 @@ void main() { mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4)); } const float d = loadd.x * sc; - const float m = loadd.y * mbyte; + const float m = -loadd.y * mbyte; - buf_a[buf_idx ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0)) - m); - buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m); + buf_a[buf_idx ] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0), m)); + buf_a[buf_idx + 1] = FLOAT_TYPE(fma(d, float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0), m)); #elif defined(DATA_A_Q6_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; @@ -463,7 +463,8 @@ void main() { [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { [[unroll]] for (uint cc = 0; cc < TN; cc++) { [[unroll]] for (uint cr = 0; cr < TM; cr++) { - sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]); + const uint sums_idx = (wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr; + sums[sums_idx] = fma(float(cache_a[wsir * TM + cr]), float(cache_b[wsic * TN + cc]), sums[sums_idx]); } } } diff --git a/ggml/src/vulkan-shaders/repeat.comp b/ggml/src/vulkan-shaders/repeat.comp new file mode 100644 index 000000000..a86af87e7 --- /dev/null +++ b/ggml/src/vulkan-shaders/repeat.comp @@ -0,0 +1,24 @@ +#version 450 + +#include "types.comp" +#include "generic_unary_head.comp" + +uint src0_idx_mod(uint idx) { + const uint i13 = idx / (p.ne12*p.ne11*p.ne10); + const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10; + const uint i12 = (idx - i13_offset) / (p.ne11*p.ne10); + const uint i12_offset = i12*p.ne11*p.ne10; + const uint i11 = (idx - i13_offset - i12_offset) / p.ne10; + const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10; + return (i13 % p.ne03)*p.nb03 + (i12 % p.ne02)*p.nb02 + (i11 % p.ne01)*p.nb01 + (i10 % p.ne00)*p.nb00; +} + +void main() { + const uint idx = get_idx(); + + if (idx >= p.ne) { + return; + } + + data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx_mod(idx)]); +} diff --git a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp index f6f4f116a..53ceb13d3 100644 --- a/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp @@ -22,6 +22,7 @@ #ifdef _WIN32 #include #include // For _mkdir on Windows + #include // For std::replace on w64devkit #else #include #include @@ -379,6 +380,10 @@ void process_shaders(std::vector>& tasks) { string_to_spv("div_f32", "div.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); + tasks.push_back(std::async(std::launch::async, [] { + string_to_spv("repeat_f32", "repeat.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); + })); + tasks.push_back(std::async(std::launch::async, [] { string_to_spv("scale_f32", "scale.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); diff --git a/gguf-py/examples/writer.py b/gguf-py/examples/writer.py index f39eed1af..731873a7d 100755 --- a/gguf-py/examples/writer.py +++ b/gguf-py/examples/writer.py @@ -15,7 +15,6 @@ def writer_example() -> None: # Example usage with a file gguf_writer = GGUFWriter("example.gguf", "llama") - gguf_writer.add_architecture() gguf_writer.add_block_count(12) gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 59ffd92ea..5541972ce 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -217,7 +217,10 @@ class MODEL_ARCH(IntEnum): CHATGLM = auto() BITNET = auto() T5 = auto() + T5ENCODER = auto() JAIS = auto() + NEMOTRON = auto() + EXAONE = auto() class MODEL_TENSOR(IntEnum): @@ -344,7 +347,10 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.CHATGLM: "chatglm", MODEL_ARCH.BITNET: "bitnet", MODEL_ARCH.T5: "t5", + MODEL_ARCH.T5ENCODER: "t5encoder", MODEL_ARCH.JAIS: "jais", + MODEL_ARCH.NEMOTRON: "nemotron", + MODEL_ARCH.EXAONE: "exaone", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -1036,6 +1042,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ENC_FFN_UP, MODEL_TENSOR.ENC_OUTPUT_NORM, ], + MODEL_ARCH.T5ENCODER: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ENC_ATTN_NORM, + MODEL_TENSOR.ENC_ATTN_Q, + MODEL_TENSOR.ENC_ATTN_K, + MODEL_TENSOR.ENC_ATTN_V, + MODEL_TENSOR.ENC_ATTN_OUT, + MODEL_TENSOR.ENC_ATTN_REL_B, + MODEL_TENSOR.ENC_FFN_NORM, + MODEL_TENSOR.ENC_FFN_GATE, + MODEL_TENSOR.ENC_FFN_DOWN, + MODEL_TENSOR.ENC_FFN_UP, + MODEL_TENSOR.ENC_OUTPUT_NORM, + ], MODEL_ARCH.JAIS: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -1048,6 +1069,37 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_GATE, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.NEMOTRON: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], + MODEL_ARCH.EXAONE: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], # TODO } @@ -1088,6 +1140,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_ARCH.CHATGLM: [ MODEL_TENSOR.ROPE_FREQS, ], + MODEL_ARCH.NEMOTRON: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], } # @@ -1146,6 +1202,9 @@ class GGMLQuantizationType(IntEnum): F64 = 28 IQ1_M = 29 BF16 = 30 + Q4_0_4_4 = 31 + Q4_0_4_8 = 32 + Q4_0_8_8 = 33 # TODO: add GGMLFileType from ggml_ftype in ggml.h @@ -1158,7 +1217,7 @@ class LlamaFileType(IntEnum): MOSTLY_F16 = 1 # except 1d tensors MOSTLY_Q4_0 = 2 # except 1d tensors MOSTLY_Q4_1 = 3 # except 1d tensors - MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16 + # MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16 # MOSTLY_Q4_2 = 5 # support has been removed # MOSTLY_Q4_3 = 6 # support has been removed MOSTLY_Q8_0 = 7 # except 1d tensors @@ -1187,6 +1246,9 @@ class LlamaFileType(IntEnum): MOSTLY_IQ4_XS = 30 # except 1d tensors MOSTLY_IQ1_M = 31 # except 1d tensors MOSTLY_BF16 = 32 # except 1d tensors + MOSTLY_Q4_0_4_4 = 33 # except 1d tensors + MOSTLY_Q4_0_4_8 = 34 # except 1d tensors + MOSTLY_Q4_0_8_8 = 35 # except 1d tensors GUESSED = 1024 # not specified in the model file @@ -1260,6 +1322,9 @@ GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = { GGMLQuantizationType.F64: (1, 8), GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32), GGMLQuantizationType.BF16: (1, 2), + GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16), + GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16), + GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16), } diff --git a/gguf-py/gguf/lazy.py b/gguf-py/gguf/lazy.py index ac98d9a92..8d4fece2d 100644 --- a/gguf-py/gguf/lazy.py +++ b/gguf-py/gguf/lazy.py @@ -191,6 +191,8 @@ class LazyBase(ABC, metaclass=LazyMeta): class LazyNumpyTensor(LazyBase): _tensor_type = np.ndarray + shape: tuple[int, ...] # Makes the type checker happy in quants.py + @classmethod def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]: # The initial idea was to use np.nan as the fill value, diff --git a/gguf-py/gguf/metadata.py b/gguf-py/gguf/metadata.py index ea4d02705..db318542a 100644 --- a/gguf-py/gguf/metadata.py +++ b/gguf-py/gguf/metadata.py @@ -174,7 +174,7 @@ class Metadata: org_component, model_full_name_component = None, model_id # Check if we erroneously matched against './' or '../' etc... - if org_component is not None and org_component[0] == '.': + if org_component is not None and len(org_component) > 0 and org_component[0] == '.': org_component = None name_parts: list[str] = model_full_name_component.split('-') diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py index f4361d751..ff589b852 100644 --- a/gguf-py/gguf/quants.py +++ b/gguf-py/gguf/quants.py @@ -1,40 +1,32 @@ from __future__ import annotations -from typing import Callable, Sequence +from abc import ABC, abstractmethod +from typing import Any, Callable, Sequence +from math import log2, ceil from numpy.typing import DTypeLike -from .constants import GGML_QUANT_SIZES, GGMLQuantizationType +from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K from .lazy import LazyNumpyTensor import numpy as np -def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType): +def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]: block_size, type_size = GGML_QUANT_SIZES[quant_type] if shape[-1] % block_size != 0: raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})") return (*shape[:-1], shape[-1] // block_size * type_size) -def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType): +def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]: block_size, type_size = GGML_QUANT_SIZES[quant_type] if shape[-1] % type_size != 0: raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})") return (*shape[:-1], shape[-1] // type_size * block_size) -# same as ggml_compute_fp32_to_bf16 in ggml-impl.h -def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: - n = n.astype(np.float32, copy=False).view(np.uint32) - # force nan to quiet - n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n) - # round to nearest even - n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16 - return n.astype(np.uint16) - - # This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time -def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: +def _apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: rows = arr.reshape((-1, arr.shape[-1])) osize = 1 for dim in oshape: @@ -46,27 +38,6 @@ def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np. return out.reshape(oshape) -def __quantize_bf16_array(n: np.ndarray) -> np.ndarray: - return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.uint16, oshape=n.shape) - - -__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.uint16) - - -def quantize_bf16(n: np.ndarray): - if type(n) is LazyNumpyTensor: - return __quantize_bf16_lazy(n) - else: - return __quantize_bf16_array(n) - - -__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0] - - -def can_quantize_to_q8_0(n: np.ndarray) -> bool: - return n.shape[-1] % __q8_block_size == 0 - - # round away from zero # ref: https://stackoverflow.com/a/59143326/22827863 def np_roundf(n: np.ndarray) -> np.ndarray: @@ -76,46 +47,1142 @@ def np_roundf(n: np.ndarray) -> np.ndarray: return np.sign(n) * b -def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]: - return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size) +class QuantError(Exception): ... -# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c -def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray: - shape = n.shape - assert shape[-1] % __q8_block_size == 0 - - n_blocks = n.size // __q8_block_size - - blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False) - - d = abs(blocks).max(axis=1, keepdims=True) / 127 - with np.errstate(divide="ignore"): - id = np.where(d == 0, 0, 1 / d) - qs = np_roundf(blocks * id) - - # (n_blocks, 2) - d = d.astype(np.float16).view(np.uint8) - # (n_blocks, block_size) - qs = qs.astype(np.int8).view(np.uint8) - - assert d.shape[1] + qs.shape[1] == __q8_type_size - - return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape)) +_type_traits: dict[GGMLQuantizationType, type[__Quant]] = {} -def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray: - return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape)) - - -__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn( - __quantize_q8_0_array, - meta_noop=(np.uint8, __quantize_q8_0_shape_change), -) - - -def quantize_q8_0(data: np.ndarray): - if type(data) is LazyNumpyTensor: - return __quantize_q8_0_lazy(data) +def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: + if qtype == GGMLQuantizationType.F32: + return data.astype(np.float32, copy=False) + elif qtype == GGMLQuantizationType.F16: + return data.astype(np.float16, copy=False) + elif (q := _type_traits.get(qtype)) is not None: + return q.quantize(data) else: - return __quantize_q8_0_array(data) + raise NotImplementedError(f"Quantization for {qtype.name} is not yet implemented") + + +def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: + if qtype == GGMLQuantizationType.F32: + return data.view(np.float32) + elif qtype == GGMLQuantizationType.F16: + return data.view(np.float16).astype(np.float32) + elif (q := _type_traits.get(qtype)) is not None: + return q.dequantize(data) + else: + raise NotImplementedError(f"Dequantization for {qtype.name} is not yet implemented") + + +class __Quant(ABC): + qtype: GGMLQuantizationType + block_size: int + type_size: int + + grid: np.ndarray[Any, np.dtype[np.float32]] | None = None + grid_shape: tuple[int, int] = (0, 0) + grid_map: tuple[int | float, ...] = () + grid_hex: bytes | None = None + + def __init__(self): + return TypeError("Quant conversion classes can't have instances") + + def __init_subclass__(cls, qtype: GGMLQuantizationType) -> None: + cls.qtype = qtype + cls.block_size, cls.type_size = GGML_QUANT_SIZES[qtype] + cls.__quantize_lazy = LazyNumpyTensor._wrap_fn( + cls.__quantize_array, + meta_noop=(np.uint8, cls.__shape_to_bytes) + ) + cls.__dequantize_lazy = LazyNumpyTensor._wrap_fn( + cls.__dequantize_array, + meta_noop=(np.float32, cls.__shape_from_bytes) + ) + assert qtype not in _type_traits + _type_traits[qtype] = cls + + @classmethod + def init_grid(cls): + if cls.grid is not None or cls.grid_hex is None: + return + + bits_per_elem = ceil(log2(len(cls.grid_map))) + assert bits_per_elem != 0, cls.qtype.name + elems_per_byte = 8 // bits_per_elem + + grid = np.frombuffer(cls.grid_hex, dtype=np.uint8) + # decode hexadecimal chars from grid + grid = grid.reshape((-1, 2)) + grid = (np.where(grid > 0x40, grid + 9, grid) & 0x0F) << np.array([4, 0], dtype=np.uint8).reshape((1, 2)) + grid = grid[..., 0] | grid[..., 1] + # unpack the grid values + grid = grid.reshape((-1, 1)) >> np.array([i for i in range(0, 8, 8 // elems_per_byte)], dtype=np.uint8).reshape((1, elems_per_byte)) + grid = (grid & ((1 << bits_per_elem) - 1)).reshape((-1, 1)) + grid_map = np.array(cls.grid_map, dtype=np.float32).reshape((1, -1)) + grid = np.take_along_axis(grid_map, grid, axis=-1) + cls.grid = grid.reshape((1, 1, *cls.grid_shape)) + + @classmethod + @abstractmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + raise NotImplementedError + + @classmethod + @abstractmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + raise NotImplementedError + + @classmethod + def quantize_rows(cls, rows: np.ndarray) -> np.ndarray: + rows = rows.astype(np.float32, copy=False) + shape = rows.shape + n_blocks = rows.size // cls.block_size + blocks = rows.reshape((n_blocks, cls.block_size)) + blocks = cls.quantize_blocks(blocks) + assert blocks.dtype == np.uint8 + assert blocks.shape[-1] == cls.type_size + return blocks.reshape(cls.__shape_to_bytes(shape)) + + @classmethod + def dequantize_rows(cls, rows: np.ndarray) -> np.ndarray: + rows = rows.view(np.uint8) + shape = rows.shape + n_blocks = rows.size // cls.type_size + blocks = rows.reshape((n_blocks, cls.type_size)) + blocks = cls.dequantize_blocks(blocks) + assert blocks.dtype == np.float32 + assert blocks.shape[-1] == cls.block_size + return blocks.reshape(cls.__shape_from_bytes(shape)) + + @classmethod + def __shape_to_bytes(cls, shape: Sequence[int]): + return quant_shape_to_byte_shape(shape, cls.qtype) + + @classmethod + def __shape_from_bytes(cls, shape: Sequence[int]): + return quant_shape_from_byte_shape(shape, cls.qtype) + + @classmethod + def __quantize_array(cls, array: np.ndarray) -> np.ndarray: + return _apply_over_grouped_rows(cls.quantize_rows, arr=array, otype=np.uint8, oshape=cls.__shape_to_bytes(array.shape)) + + @classmethod + def __dequantize_array(cls, array: np.ndarray) -> np.ndarray: + cls.init_grid() + return _apply_over_grouped_rows(cls.dequantize_rows, arr=array, otype=np.float32, oshape=cls.__shape_from_bytes(array.shape)) + + @classmethod + def __quantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any: + pass + + @classmethod + def __dequantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any: + pass + + @classmethod + def can_quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> bool: + return tensor.shape[-1] % cls.block_size == 0 + + @classmethod + def quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray: + if not cls.can_quantize(tensor): + raise QuantError(f"Can't quantize tensor with shape {tensor.shape} to {cls.qtype.name}") + if isinstance(tensor, LazyNumpyTensor): + return cls.__quantize_lazy(tensor) + else: + return cls.__quantize_array(tensor) + + @classmethod + def dequantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray: + if isinstance(tensor, LazyNumpyTensor): + return cls.__dequantize_lazy(tensor) + else: + return cls.__dequantize_array(tensor) + + +class BF16(__Quant, qtype=GGMLQuantizationType.BF16): + @classmethod + # same as ggml_compute_fp32_to_bf16 in ggml-impl.h + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n = blocks.view(np.uint32) + # force nan to quiet + n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n) + # round to nearest even + n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16 + return n.astype(np.uint16).view(np.uint8) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32) + + +class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + imax = abs(blocks).argmax(axis=-1, keepdims=True) + max = np.take_along_axis(blocks, imax, axis=-1) + + d = max / -8 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + # FIXME: Q4_0's reference rounding is cursed and depends on FMA + qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15) + + qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) + qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) + + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([d, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, qs = np.hsplit(blocks, [2]) + + d = d.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8) + + return (d * qs.astype(np.float32)) + + +class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + max = blocks.max(axis=-1, keepdims=True) + min = blocks.min(axis=-1, keepdims=True) + + d = (max - min) / 15 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15) + + qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) + qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) + + d = d.astype(np.float16).view(np.uint8) + m = min.astype(np.float16).view(np.uint8) + + return np.concatenate([d, m, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + m, qs = np.hsplit(rest, [2]) + + d = d.view(np.float16).astype(np.float32) + m = m.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32) + + return (d * qs) + m + + +class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + imax = abs(blocks).argmax(axis=-1, keepdims=True) + max = np.take_along_axis(blocks, imax, axis=-1) + + d = max / -16 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + # FIXME: Q5_0's reference rounding is cursed and depends on FMA + q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31) + + qs = q.reshape((n_blocks, 2, cls.block_size // 2)) + qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) + + qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) + + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([d, qh, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qh, qs = np.hsplit(rest, [4]) + + d = d.view(np.float16).astype(np.float32) + qh = qh.view(np.uint32) + + qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) + ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qh = (qh & np.uint32(0x01)).astype(np.uint8) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) + + qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16) + + return (d * qs.astype(np.float32)) + + +class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + max = blocks.max(axis=-1, keepdims=True) + min = blocks.min(axis=-1, keepdims=True) + + d = (max - min) / 31 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31) + + qs = q.reshape((n_blocks, 2, cls.block_size // 2)) + qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) + + qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) + + d = d.astype(np.float16).view(np.uint8) + m = min.astype(np.float16).view(np.uint8) + + return np.concatenate([d, m, qh, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + m, rest = np.hsplit(rest, [2]) + qh, qs = np.hsplit(rest, [4]) + + d = d.view(np.float16).astype(np.float32) + m = m.view(np.float16).astype(np.float32) + qh = qh.view(np.uint32) + + qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) + ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qh = (qh & np.uint32(0x01)).astype(np.uint8) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) + + qs = (ql | (qh << np.uint8(4))).astype(np.float32) + + return (d * qs) + m + + +class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0): + @classmethod + # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + + d = abs(blocks).max(axis=1, keepdims=True) / 127 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np_roundf(blocks * id) + + # (n_blocks, 2) + d = d.astype(np.float16).view(np.uint8) + # (n_blocks, block_size) + qs = qs.astype(np.int8).view(np.uint8) + + return np.concatenate([d, qs], axis=1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + d, x = np.split(blocks, [2], axis=1) + d = d.view(np.float16).astype(np.float32) + x = x.view(np.int8).astype(np.float32) + + return (x * d) + + +class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + scales, rest = np.hsplit(blocks, [QK_K // 16]) + qs, rest = np.hsplit(rest, [QK_K // 4]) + d, dmin = np.hsplit(rest, [2]) + + d = d.view(np.float16).astype(np.float32) + dmin = dmin.view(np.float16).astype(np.float32) + + # (n_blocks, 16, 1) + dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) + ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) + + shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + + qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3) + + qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32) + + qs = dl * qs - ml + + return qs.reshape((n_blocks, -1)) + + +class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + hmask, rest = np.hsplit(blocks, [QK_K // 8]) + qs, rest = np.hsplit(rest, [QK_K // 4]) + scales, d = np.hsplit(rest, [12]) + + d = d.view(np.float16).astype(np.float32) + + # The scales are packed at 6-bit each in this pattern: + # 0: IIIIAAAA + # 1: JJJJBBBB + # 2: KKKKCCCC + # 3: LLLLDDDD + # 4: MMMMEEEE + # 5: NNNNFFFF + # 6: OOOOGGGG + # 7: PPPPHHHH + # 8: MMIIEEAA + # 9: NNJJFFBB + # 10: OOKKGGCC + # 11: PPLLHHDD + lscales, hscales = np.hsplit(scales, [8]) + lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1)) + lscales = lscales.reshape((n_blocks, 16)) + hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1)) + hscales = hscales.reshape((n_blocks, 16)) + scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4)) + scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32) + + dl = (d * scales).reshape((n_blocks, 16, 1)) + + ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) + ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3) + qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1)) + qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1 + q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32) + + return (dl * q).reshape((n_blocks, QK_K)) + + +class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K): + K_SCALE_SIZE = 12 + + @staticmethod + def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]: + n_blocks = scales.shape[0] + scales = scales.view(np.uint8) + ### Unpacking the following: ### + # 0 EEAAAAAA + # 1 FFBBBBBB + # 2 GGCCCCCC + # 3 HHDDDDDD + # 4 eeaaaaaa + # 5 ffbbbbbb + # 6 ggcccccc + # 7 hhdddddd + # 8 eeeeEEEE + # 9 ffffFFFF + # 10 ggggGGGG + # 11 hhhhHHHH + scales = scales.reshape((n_blocks, 3, 4)) + d, m, m_d = np.split(scales, 3, axis=-2) + + sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1) + min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1) + + return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + dmin, rest = np.hsplit(rest, [2]) + scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE]) + + d = d.view(np.float16).astype(np.float32) + dmin = dmin.view(np.float16).astype(np.float32) + + sc, m = Q4_K.get_scale_min(scales) + + d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) + dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) + + qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32) + + return (d * qs - dm).reshape((n_blocks, QK_K)) + + +class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + dmin, rest = np.hsplit(rest, [2]) + scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE]) + qh, qs = np.hsplit(rest, [QK_K // 8]) + + d = d.view(np.float16).astype(np.float32) + dmin = dmin.view(np.float16).astype(np.float32) + + sc, m = Q4_K.get_scale_min(scales) + + d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) + dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) + + ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) + qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32)) + q = (ql | (qh << np.uint8(4))).astype(np.float32) + + return (d * q - dm).reshape((n_blocks, QK_K)) + + +class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + ql, rest = np.hsplit(blocks, [QK_K // 2]) + qh, rest = np.hsplit(rest, [QK_K // 4]) + scales, d = np.hsplit(rest, [QK_K // 16]) + + scales = scales.view(np.int8).astype(np.float32) + d = d.view(np.float16).astype(np.float32) + d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) + + ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) + qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32)) + q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32) + q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32) + + return (d * q).reshape((n_blocks, QK_K)) + + +class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS): + ksigns: bytes = ( + b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f" + b"\x90\x11\x12\x93\x14\x95\x96\x17\x18\x99\x9a\x1b\x9c\x1d\x1e\x9f" + b"\xa0\x21\x22\xa3\x24\xa5\xa6\x27\x28\xa9\xaa\x2b\xac\x2d\x2e\xaf" + b"\x30\xb1\xb2\x33\xb4\x35\x36\xb7\xb8\x39\x3a\xbb\x3c\xbd\xbe\x3f" + b"\xc0\x41\x42\xc3\x44\xc5\xc6\x47\x48\xc9\xca\x4b\xcc\x4d\x4e\xcf" + b"\x50\xd1\xd2\x53\xd4\x55\x56\xd7\xd8\x59\x5a\xdb\x5c\xdd\xde\x5f" + b"\x60\xe1\xe2\x63\xe4\x65\x66\xe7\xe8\x69\x6a\xeb\x6c\xed\xee\x6f" + b"\xf0\x71\x72\xf3\x74\xf5\xf6\x77\x78\xf9\xfa\x7b\xfc\x7d\x7e\xff" + ) + + # iq2xxs_grid, but with each byte of the original packed in 2 bits, + # by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2. + grid_shape = (256, 8) + grid_map = (0x08, 0x19, 0x2b) + grid_hex = ( + b"00000200050008000a00110014002000220028002a0041004400500058006100" + b"6400800082008a00a20001010401100115014001840198010002020222028202" + b"010404041004210424044004420448046004810484049004a404000502050805" + b"200546056905800591050906100640068406a406000805080808140828084108" + b"440850085208880804094009020a140a01100410101021104010601084109010" + b"951000110811201150115a118011241245120014081420142514491480141815" + b"6215001616160118041810184018811800190519a019511a002002200a204420" + b"6120802082202921482100220222012404241024402456240025412564259026" + b"082820289428442a014004401040184021402440404048405640604081408440" + b"9040004120416141804185410142104248425642684200440844204480449944" + b"124524450046014804481048404845480049584961498249454a904a00500850" + b"1150195020508050885004514251a4519152905492540a550156545600581158" + b"195864584059085a046010604060686000615561186260620064056410651265" + b"84654268008002800a8041808280048118814081118201840484108415844084" + b"608400854685948509864086608602880489118a0490109024904090a1901691" + b"8091459200942294449451958198209902a050a085a009a100a218a450a804a9" + ) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, qs = np.hsplit(blocks, [2]) + + d = d.view(np.float16).astype(np.float32) + + qs = qs.view(np.uint32).reshape(n_blocks, -1, 2) + + db = d * (np.float32(0.5) + (qs[..., 1] >> 28).astype(np.float32)) * np.float32(0.25) + db = db.reshape((n_blocks, -1, 1, 1)) + + # get the sign indices and unpack the bits + signs = qs[..., 1].reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4)) + ksigns = np.frombuffer(cls.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128)) + signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1)) + signs = np.take_along_axis(ksigns, signs, axis=-1) + signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8)) + signs = signs & np.uint8(0x01) + signs = np.where(signs == 0, np.float32(1), np.float32(-1)) + signs = signs.reshape((n_blocks, -1, 4, 8)) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, qs[..., 0].copy().view(np.uint8).reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 4, 8)) + + return (db * grid * signs).reshape((n_blocks, -1)) + + +class IQ2_XS(__Quant, qtype=GGMLQuantizationType.IQ2_XS): + # iq2xs_grid, but with each byte of the original packed in 2 bits, + # by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2. + grid_shape = (512, 8) + grid_map = (0x08, 0x19, 0x2b) + grid_hex = ( + b"00000200050008000a0011001400160019002000220025002800410044004600" + b"49005000520055005800610064008000820085008800910094009900a0000101" + b"04010601090110011201150118011a0121012401400142014501480151015401" + b"6001680181018401900100020202050208021102140220024102440250025502" + b"80028a0201040404060409041004120415041804210424044004420445044804" + b"5104540456046004810484049004000502050505080511051405200541054405" + b"500561058005010604061006260640064206840600080208050808080a081108" + b"14082008250841084408500858088008a008aa08010904091009400981098909" + b"000a200a280a960aa00a01100410061009101010121015101810211024104010" + b"4210451048105110541060106a10811084109010001102110511081111111411" + b"2011411144115011801194119611011204120612101240126012001402140514" + b"0814111414142014411444144914501464148014011504151015401500161416" + b"49160118041810181218401854188618001905196619511aa91a002002200520" + b"08200a201120142020204120442050208020a020012104211021402148216521" + b"002222228022a82201240424102429244024002541255225992501261a26a626" + b"002808280a28202855288828a22868299029082a202a822a882a8a2a01400440" + b"0640094010401240154018402140244040404240454048404a40514054406040" + b"6540814084409040004102410541084111411441204141414441504180418541" + b"a241014204421042124229424042004402440544084411441444194420444144" + b"4444504480449444014504451045244540459a4500460a464446504601480448" + b"1048404845485448624800491149444950496949044a00500250055008501150" + b"145020502850415044505050805001510451105115514051425100524452aa52" + b"0154045410542154405460548154a154005508558055885521566856a1560058" + b"14584158505899581a5940594259855a0160046010604060546062608660a960" + b"006124624a62926200641664106540654565a46501686a682569066a546a626a" + b"00800280058008801180148020802a8041804480508080808280a880aa800181" + b"0481068110814081518159810082208280828282a082a8820184048410841284" + b"158440846084898400854485a58518866a860088088825885a8880888288a888" + b"0689228a808a888a968aa88a0190049010904090569084900091229164915692" + b"89920094059444945094589429959095929541965198a6984999159a609a00a0" + b"02a008a00aa020a02aa0a0a051a159a1a6a100a202a208a22aa280a2a0a240a4" + b"95a465a698a60aa820a822a828a8a0a8a8a804a984a986a928aa2aaa91aaaaaa" + ) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qs, scales = np.hsplit(rest, [2 * QK_K // 8]) + + d = d.view(np.float16).astype(np.float32) + qs = qs.view(np.uint16) + + scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) + scales = (scales & 0x0F).reshape((n_blocks, -1)) + db = d * (np.float32(0.5) + scales) * np.float32(0.25) + db = db.reshape((n_blocks, -1, 1, 1)) + + # get the sign indices and unpack the bits + signs = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape(1, 1, 128) + signs = np.take_along_axis(signs, (qs >> 9).reshape((n_blocks, -1, 1)), axis=-1) + signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8)) + signs = signs & np.uint8(0x01) + signs = np.where(signs == 0, np.float32(1), np.float32(-1)) + signs = signs.reshape((n_blocks, -1, 2, 8)) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, (qs & np.uint16(511)).reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 2, 8)) + + return (db * grid * signs).reshape((n_blocks, -1)) + + +class IQ2_S(__Quant, qtype=GGMLQuantizationType.IQ2_S): + # iq2s_grid, but with each byte of the original packed in 2 bits, + # by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2. + grid_shape = (1024, 8) + grid_map = (0x08, 0x19, 0x2b) + grid_hex = ( + b"00000200050008000a0011001400160019002000220025002800410044004600" + b"490050005200550058006100640066006900800082008500880091009400a000" + b"a500aa0001010401060109011001120115011801210124014001420145014801" + b"510154015601590160016501680181018401900192019501a101a40100020202" + b"050208021102140220022a02410244024602490250025502800285028a029402" + b"a202010404040604090410041204150418042104240426042904400442044504" + b"48044a0451045404560459046004620465048104840486048904900495049804" + b"a104a40400050205050508050a05110514051605190520052505280541054405" + b"46054905500552055505580561056405800582058505880591059405a0050106" + b"0406060609061006150640064506480651065406600681068406900600080208" + b"050808081108140816081908200825082a084108440846084908500852085508" + b"580861086408800885089408aa08010904091009120915091809210940094509" + b"480951095409600981099009000a110a140a220a280a2a0a500a990a01100410" + b"0610091010101210151018102110241026104010421045104810511054105610" + b"59106010621065106810811084108610901095109810a110a410001102110511" + b"08110a1111111411161119112011221125112811411144114611491150115211" + b"5511581161116411801182118511881191119411011204120912101215122112" + b"2412401245125112541281128412901200140214051408141114141416141914" + b"2014251428144114441446144914501452145514581461146414801482148514" + b"881491149414a014011504150615091510151215151518152115241540154215" + b"4515481551155415601581158415901500160516081611161416201641164416" + b"50168016aa160118041806180918101815181818211840184218451848185118" + b"541860188118841800190219051908191119141920194119441950196919a219" + b"041a101a401a561a00200220052008201120142016201920202025202a204120" + b"4420502052205520642080208a209420aa200121042110211221152121214021" + b"4221452151215421602181218421902100220a22222228222a22442250228822" + b"8a22a82201240424062409241024152418242124242440244224452448245124" + b"5424602481248424902400250525082511251425202541254425502566258025" + b"0126042610264026592600280528112814284128442850288a28aa2801290429" + b"102995290a2a222a642a882a8a2a014004400640094010401240154018401a40" + b"21402440264040404240454048404a4051405440564059406040624065408140" + b"8440904095409840a140a4400041024105410841114114411641194120412241" + b"2541414144414641494150415241554158416141644180418241854188419141" + b"9441a04101420442104212421542184224424042454248425142544260428142" + b"844200440244054408440a441144144416441944204422442544284441444444" + b"46444944504452445544584461446444804482448544884491449444a0440145" + b"0445064509451045124515451845214524454045424545454845514554456045" + b"6a4581458445904500460246054608461146144620464146444650468046a546" + b"0148044809481048124815481848214824484048424845484848514854486048" + b"84489048004902490549084911491449204941494449504980499649014a044a" + b"104a404a00500250055008501150145016501950205022502550285041504450" + b"4650495050505250555058506150645080508250855088509150945001510451" + b"0651095110511251155118512151245140514251455148515151545160518151" + b"8451905100520552085211521452205241524452505269528052015404540654" + b"0954105412541554185421542454405442544554485451545454605481548454" + b"9054005502550555085511551455205541554455505580550156045610562656" + b"405600580258055808581158145820584158445850585a588058015904591059" + b"4059005a195a855aa85a01600460066010601260156018602160246040604560" + b"4860516054606060846090600061026105610861116114612061416144615061" + b"806199610462106240625662a162006405640864116414642064416444645064" + b"806401650465106540654a656865926500669466016804681068656898680069" + b"2a69426aa16a0080028005800880118014801980208025804180448050805280" + b"5580588061808080858091809480018104810981108112811581188121812481" + b"408142814581488151815481818184819081a981008205820a82118214824182" + b"4482508201840484068409841084128415841884218440844284458448845184" + b"5484608481848484908400850285058508851185148520854185448550858085" + b"8a85018604861086298640860088058811881488418844885088a28801890489" + b"40896589228a588a5a8a828aa28a019004900990109012901590189024904090" + b"4290459048905190549060908190849090900091059111911491419144915091" + b"5a910192049210924092a6920094029405940894119414942094419444945094" + b"8094969401950495109540959895a19500964696649601980498109826984098" + b"a998009949995299909a00a005a00aa014a022a02aa041a044a050a0a2a0aaa0" + b"40a165a102a20aa222a228a22aa282a288a28aa2a8a201a404a410a440a489a4" + b"a4a400a519a551a60aa828a8a2a854a986a908aa0aaa20aa22aa28aa88aaaaaa" + ) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qs, rest = np.hsplit(rest, [QK_K // 8]) + signs, rest = np.hsplit(rest, [QK_K // 8]) + qh, scales = np.hsplit(rest, [QK_K // 32]) + + d = d.view(np.float16).astype(np.float32) + + scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) + scales = (scales & 0x0F).reshape((n_blocks, -1)) + db = d * (np.float32(0.5) + scales) * np.float32(0.25) + db = db.reshape((n_blocks, -1, 1, 1)) + + # unpack the sign bits + signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8)) + signs = signs & np.uint8(0x01) + signs = np.where(signs == 0, np.float32(1), np.float32(-1)) + signs = signs.reshape((n_blocks, -1, 2, 8)) + + qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4)) + qs = qs.astype(np.uint16) | ((qh & 0x03).astype(np.uint16) << 8).reshape((n_blocks, -1)) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 2, 8)) + + return (db * grid * signs).reshape((n_blocks, -1)) + + +class IQ3_XXS(__Quant, qtype=GGMLQuantizationType.IQ3_XXS): + grid_shape = (256, 4) + grid_map = (0x04, 0x0c, 0x14, 0x1c, 0x24, 0x2c, 0x34, 0x3e) + grid_hex = ( + b"0000020004001100130017002000220031004200730075000101030110011201" + b"2101250130013201410154017001000202020402110220022202310233023702" + b"5102570275020103070310031203250370031304370444045704730475040105" + b"0705320552053506640610071407160743076107011003101010121021102310" + b"3010321034104710501000110211111120112211011203121012121221123012" + b"7212001302132013311346136613011405145014201524154615711505162217" + b"4017002002201120132020202220262031204220012103210521102112212121" + b"3021632167217021002202221122172220222222372240225522012310231423" + b"7023742335245324032527254125742501270327162745270130103012302130" + b"2330503065307230003102312031313144314631013203321032253252327232" + b"1133333330344734723400350635223555351436363663363337603704401740" + b"3540374053405740744120423742404260426642074345430444514464442545" + b"4345704505471047124730471250415070500051065126515551145232527252" + b"0253535310542354275472540255315550562457425724604460466064602161" + b"6161176264623063366344640565526533660367216703700570077010703270" + b"5270267140711272457252720073157333736073217441740075027524753076" + ) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qs, scales = np.hsplit(rest, [QK_K // 4]) + + d = d.view(np.float16).astype(np.float32) + scales = scales.view(np.uint32) + + db = d * (np.float32(0.5) + (scales >> 28).astype(np.float32)) * np.float32(0.5) + db = db.reshape((n_blocks, -1, 1, 1)) + + # get the sign indices and unpack the bits + signs = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4)) + ksigns = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128)) + signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1)) + signs = np.take_along_axis(ksigns, signs, axis=-1) + signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8)) + signs = signs & np.uint8(0x01) + signs = np.where(signs == 0, np.float32(1), np.float32(-1)) + signs = signs.reshape((n_blocks, -1, 4, 8)) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 4, 8)) + + return (db * grid * signs).reshape((n_blocks, -1)) + + +class IQ3_S(__Quant, qtype=GGMLQuantizationType.IQ3_S): + grid_shape = (512, 4) + grid_map = (0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f) + grid_hex = ( + b"0000010002000500070010001100120014001600200021002500330040004200" + b"4500470051005300600062007100740077000001010102010401100111011501" + b"2001230127013101350144016101650172010002010205020702100213021602" + b"2102250230023402420245024702510253027002730203031103150320032203" + b"3103330336034403500352036703710375030004130417042104240432044004" + b"4304510470040205040520052205260533054105450547056605730506061106" + b"1306310652067106000702070407200722072607330750075407001001100210" + b"0410101011101310151017102010221031103410361054105610611072100011" + b"0111031106111011141121113011331141115011521170117611001212121512" + b"1712201224123212401243125512601272120113041307131013131321132713" + b"3013341341136213701303140514121414143114331442144614501454140115" + b"1015131521153015321551152016241627164416461601170317101712172117" + b"3517411762177017002001200320052007201020122014201620212023202720" + b"3020322041204320452050205220672070207320752000210221102113211721" + b"2221252131213421422151210122042207222122232230223722412253225722" + b"7122742200230223052311232223242331233323422350236623012407242024" + b"2324322435244124722475240425112522253725402553257025002602260726" + b"2126552661260527112726273027432750270230113013301530173022303130" + b"3330353042304430473051306330713001310331053114312131233140316031" + b"7231763100321232203232323432503201331033143321332333273330334133" + b"4333473355337333033411341634223431345234603464340135103512352535" + b"3235443556357335163641360137033720372237353700400440124020402440" + b"2740324041405040704002410741114113412241304135414341514155410142" + b"0342104215422142334240425742624270420443114313432043224331433543" + b"0044024424443744404471440545074521456245134634466046104715473047" + b"4347514702501050145022504050445047505250665074500151035105511251" + b"2151325172510052115223523052365253520253075310532753445351536553" + b"7353015404542054325446541255265551555355425602570457225711601360" + b"1560316033606060006120612761646112623462426255626262706200631463" + b"2163406325644364626400650365346560650566406611671367007004700770" + b"2070227036704070547062700271117124714371457101720472107216722172" + b"3072517202733273357353730174057413742074507422754275027631760077" + ) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qs, rest = np.hsplit(rest, [QK_K // 4]) + qh, rest = np.hsplit(rest, [QK_K // 32]) + signs, scales = np.hsplit(rest, [QK_K // 8]) + + d = d.view(np.float16).astype(np.float32) + + scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) + scales = (scales & 0x0F).reshape((n_blocks, -1)) + db = d * (1 + 2 * scales) + db = db.reshape((n_blocks, -1, 1, 1)) + + # unpack the sign bits + signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8)) + signs = signs & np.uint8(0x01) + signs = np.where(signs == 0, np.float32(1), np.float32(-1)) + signs = signs.reshape((n_blocks, -1, 4, 8)) + + qh = qh.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8) + qh = (qh & 0x01).astype(np.uint16).reshape((n_blocks, -1)) + qs = qs.astype(np.uint16) | (qh << 8) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 4, 8)) + + return (db * grid * signs).reshape((n_blocks, -1)) + + +class IQ1_S(__Quant, qtype=GGMLQuantizationType.IQ1_S): + # iq1s_grid, with each byte packed into 2 bits + # -1, 0, 1 <=> 0, 1, 2 + grid_shape = (2048, 8) + grid_map = (-1, 0, 1) + grid_hex = ( + b"00000200050008000a00110015002000220028002a0045005100540056006500" + b"8000820088008a009500a000a200a800aa000401050111011401160119011a01" + b"2501410146014901520155015a0161016401660168018501910194019601a501" + b"0002020208020a0215022002220228022a024502510259026402690280028202" + b"88028a02910295029902a002a202a802aa021104140416042504410449045504" + b"5a046404650491049904a5040105040505050605150518051a05290540054505" + b"4a0550055105540555055605590560056205650568056a058105910595059805" + b"9a05a105a405a505a605a9051406190641064406500652065506580660066106" + b"6606690685069106940699060008020808080a0815082008220828082a084508" + b"5108560865088008820888088a089508a008a208a808aa080509110914091909" + b"2409250941095009510955096109640969099109940996099909a509000a020a" + b"080a0a0a150a200a220a280a2a0a450a510a590a610a650a800a820a850a880a" + b"8a0a950aa00aa20aa80aaa0a1010111014101910241025104110441050105510" + b"58106110641065106910911094109610a110a510011104110611091110111211" + b"1511181121112411291145114a11501151115211541155115611591160116511" + b"841192119511a111a41111121412161225124012461249125212551258125a12" + b"641266128512911294129612a512011406140914141415141814191421142614" + b"41144514461448144a1451145414551456145914621465146814841489149014" + b"94149514981499149a14a114a414a514a914021505150a151115141515151615" + b"191520152215251528152a154115441545154615511552155415551556155915" + b"5a1561156415651566156915801582158415851588158a159015911594159515" + b"961599159a15a015a215a51501160416051606161516161618161a1621162616" + b"401642164416451648164a165116551656165816591661166416651668166916" + b"6a1686168a1692169516a416a916111816182518411844184618491850185518" + b"58185a1860186118641866186918851891189418a5181019121915191a192119" + b"25194219441945194819511954195519561959195a19601965196a1989199119" + b"921995199819a119a619a919091a161a241a261a441a461a491a501a521a551a" + b"581a611a661a691a851a911a961a9a1a0020022008200a201520202022202520" + b"28202a20452051205920612065208020822088208a209520a020a220a520a820" + b"aa2005211121142119212521422144214921552158215a216121642165216621" + b"8521902196219921a521012208220a22112215222022222228222a2245225122" + b"562259226522812288228a2291229522a022a222a822aa220524142416241924" + b"252444244524462449245224552458245a2466248524912494249924a124a524" + b"0925152521252925402545254825512554255525592562256525682589259025" + b"9425952598259a25a125a425a625a92505261026122619262526412649265526" + b"6026612669268426862690269a260028022808280a2815282028222828282a28" + b"45285128542865288028822888288a28a028a228a828aa280929112914291929" + b"2529462949295229552961296429662969298529902996299929a429a529002a" + b"022a082a0a2a202a222a282a2a2a452a512a562a592a652a802a822a882a8a2a" + b"952aa02aa22aa82aaa2a054011401640254049405240554058405a4061406440" + b"664094409940a140a6400041014104410641094112411541164118411a412141" + b"26412941454148414a41514154415541564159415a41654168416a4181418441" + b"8641904192419541a041a141a241054211421442164225424142524255425a42" + b"6442694289429442a5420144154419442944454448444a445144544455445644" + b"61446244654468446a44814486448944904492449544a044a144a94401450245" + b"05450a4511451445154516451945204525452a45414544454545464549455045" + b"5145544555455645584559456145644565456645694582458445854588459145" + b"94459545964599459a45a545a845aa450146054609461446154618461a462146" + b"2446294640464246454648465046514652465546564659466246654668468146" + b"85468a4694469546a146a446a6460548114815481a4825484248494850485548" + b"5848614864486648694885489148944896489948a5480149054906490a491049" + b"144915491849214924492649404945494a495149524954495549564959496049" + b"6249654966496a49864989499249954996499849a149a449a649a949164a444a" + b"464a494a554a584a5a4a644a694a944aa54a0150045005500650095012501550" + b"1a50215024502950405045504850515054505550565059506550685086508950" + b"95509850a050a150a650a9500551085109510a51115114511551165118511951" + b"20512551265128512a5141514451455146514951505151515251545155515651" + b"585159515a51615164516551665169518251855191519451955196519951a051" + b"a551aa5101520652125215521a5221522452425245524a525152545255525652" + b"595262526552855290529252955299529a52a452045405541154145415541654" + b"185419542154255428542a54415444544554465449544a545054515454545554" + b"5654585459545a54615462546454655466546954805488548a54915494549554" + b"96549954a154a454a554aa540155025504550555065509551055115512551455" + b"1555165519551a55215524552555265529554055415542554455455546554855" + b"4955505551555255545555555655585559555a55605561556455655566556855" + b"69556a5581558455855589558a559055915594559555965598559955a155a455" + b"a555a655a9550056015602560456065608560956115614561556185619562056" + b"2156225624562556265628562956415645564656485649564a56505651565256" + b"545655565656585659565a566156645665566956825685568656885689568a56" + b"915695569a56a256a556a656a856a95604580558065809581058155818582158" + b"2a58455848584a58515854585558565858585958605862586458655882588958" + b"9058925895589858a158a9580159025905590a59115914591559165919592559" + b"41594459455946594959505951595259545955595659585959595a5961596459" + b"655966596959815985598959915994599559965998599959a559045a085a155a" + b"1a5a205a255a265a295a455a485a495a515a555a565a585a595a625a655a685a" + b"6a5a815a8a5a925a955a965a985a9a5aa15a0560146016601960256044605060" + b"5560566058605a60616064606660696081609660a56001610461066109611261" + b"15612161226126612961456149615161556156615961656166616a6184618a61" + b"92619561a161a661a96111621662196240624162466255625662586260628562" + b"91629662a56211641264156416641a6421642664296440644264456448644a64" + b"516454645564566459645a646064626465648464856489649064926494649564" + b"966498649a64a164a464a964056508650a651165156516651965446545654665" + b"496550655165546555655665596561656465656566656965866589658a659165" + b"9565966599659a65a265a565a665a86502660966156620662666286629664066" + b"456648664a66516654665566566658665a666066656668668066826685668a66" + b"9466966698669966a066a466a666aa661668196825684168526855685a686168" + b"6968856891689868a66801690469106915692169246926692969406941694569" + b"4669486951695469556956695969606965696a69826984698a699569a169a469" + b"a569a969116a166a186a416a446a496a506a556a586a5a6a646a656a696a866a" + b"946a986a9a6aa66a0080028008800a802080228028802a804580508051805480" + b"5680598065808080828088808a809580a080a280a880aa800581118114811681" + b"1981258141814481498150815281558156815881598164816681698185818981" + b"948196819981a5810082028208820a8215822082228228822a82518254825982" + b"65828082828288828a829582a082a282a882aa82148419844184448451845584" + b"5a846184648469849484998401850985128515851a8526852985408541854585" + b"4885518554855585568559855a856585668568856a8581858485868589859085" + b"928595859885a68511861686198625864186448649864a865086558659865a86" + b"618666866a86858691869a86a4860088028808880a8815882088228828882a88" + b"41884588518854885988658869888088828888888a889588a088a288a888aa88" + b"05890689118914891689258941894489468949895089528955895a8961896489" + b"858996899989a589008a028a088a0a8a158a208a228a288a2a8a458a518a548a" + b"568a808a828a888a8a8a958aa08aa28aa88aaa8a059011901690189019902590" + b"419046904990559058905a9069906a9085909190949096909990a59001910491" + b"069109911091159118911a912191249126912991409145915091519154915591" + b"569159916291659184918691929195919891a191a491a691a991059211921492" + b"19922592449246924992509252925592589266926992859294929692a9920194" + b"04940694109415941894269440944a9451945494559456945894599460946194" + b"62946594849486949294949495949894a194a9940095059508950a9510951195" + b"14951595169519952195259529952a9541954495459546954995509551955295" + b"549555955695589559955a956195649565956695699581958595889591959295" + b"94959595969599959a95a095a295a595a895aa95019604961096159619962096" + b"2696299645964896499651965296559656965996659668968296849689968a96" + b"929694969596a496a696a9960598169819982598419846985098529855985698" + b"5a98649865988598919896989998a59804990699099910991299159918991a99" + b"209921992499269940994299459948994a995199549955995699599962996599" + b"66996a99819984999099929995999a99a199a699059a159a259a449a469a499a" + b"509a559a589a619a859a919a949a959a969a00a002a008a00aa015a020a022a0" + b"28a02aa045a051a054a056a059a080a082a088a08aa095a0a0a0a2a0a8a0aaa0" + b"05a109a111a114a116a119a11aa146a149a151a155a158a15aa161a164a185a1" + b"90a192a196a199a102a208a20aa210a219a222a228a22aa245a251a256a259a2" + b"65a280a282a288a28aa295a2a0a2a2a2a8a2aaa219a425a441a444a450a454a4" + b"55a458a45aa461a465a466a468a469a485a406a509a510a512a515a518a526a5" + b"29a542a545a551a554a555a556a559a565a56aa581a584a585a586a589a592a5" + b"95a598a505a611a616a61aa621a625a644a646a64aa652a655a656a658a660a6" + b"62a686a690a695a696a699a6a1a6a4a6a6a600a802a808a80aa820a822a828a8" + b"2aa851a854a856a859a880a882a888a88aa895a8a0a8a2a8a8a8aaa805a914a9" + b"19a921a925a941a950a955a95aa961a966a969a990a996a900aa02aa08aa0aaa" + b"20aa22aa28aa2aaa51aa54aa56aa80aa82aa88aa8aaa95aaa0aaa2aaa8aaaaaa" + ) + + delta = np.float32(0.125) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qs, qh = np.hsplit(rest, [QK_K // 8]) + + d = d.view(np.float16).astype(np.float32) + qh = qh.view(np.uint16) + + dl = d * (2 * ((qh >> 12) & 7) + 1) + dl = dl.reshape((n_blocks, -1, 1, 1)) + delta = np.where((qh & np.uint16(0x8000)) == 0, cls.delta, -cls.delta) + delta = delta.reshape((n_blocks, -1, 1, 1)) + + qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4)) + qs = qs.astype(np.uint16) | ((qh & 7) << 8).reshape((n_blocks, -1)) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 4, 8)) + + return (dl * (grid + delta)).reshape((n_blocks, -1)) + + +class IQ1_M(__Quant, qtype=GGMLQuantizationType.IQ1_M): + grid_shape = IQ1_S.grid_shape + grid_map = IQ1_S.grid_map + grid_hex = IQ1_S.grid_hex + + delta = IQ1_S.delta + + # Okay *this* type is weird. It's the only one which stores the f16 scales in multiple parts. + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + qs, rest = np.hsplit(blocks, [QK_K // 8]) + qh, scales = np.hsplit(rest, [QK_K // 16]) + + # The f16 scale is packed across multiple bytes + scales = scales.view(np.uint16) + d = (scales.reshape((n_blocks, 4)) & np.uint16(0xF000)) >> np.array([12, 8, 4, 0], dtype=np.uint16).reshape((1, 4)) + d = d[..., 0] | d[..., 1] | d[..., 2] | d[..., 3] + d = d.view(np.float16).astype(np.float32).reshape((n_blocks, 1)) + + scales = scales.reshape(n_blocks, -1, 1) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4)) + scales = (scales & 0x07).reshape((n_blocks, -1)) + dl = d * (2 * scales + 1) + dl = dl.reshape((n_blocks, -1, 2, 1, 1)) + + qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) + qs = qs.astype(np.uint16) | ((qh & 0x07).astype(np.uint16) << 8).reshape((n_blocks, -1)) + + delta = np.where(qh & 0x08 == 0, cls.delta, -cls.delta) + delta = delta.reshape((n_blocks, -1, 2, 2, 1)) + + assert cls.grid is not None + grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) + grid = grid.reshape((n_blocks, -1, 2, 2, 8)) + + return (dl * (grid + delta)).reshape((n_blocks, -1)) + + +class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL): + kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, qs = np.hsplit(blocks, [2]) + + d = d.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1)) + + kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16) + qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1)) + + return (d * qs) + + +class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + scales_h, rest = np.hsplit(rest, [2]) + scales_l, qs = np.hsplit(rest, [QK_K // 64]) + + d = d.view(np.float16).astype(np.float32) + scales_h = scales_h.view(np.uint16) + + scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) + scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1)) + scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F) + scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03) + + scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32) + dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1)) + + qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F) + + kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1)) + qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32)) + + return (dl * qs).reshape((n_blocks, -1)) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 9aa2209e2..a4f185c06 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -10,10 +10,10 @@ class TensorNameMap: # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais + "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone "transformer.word_embeddings", # falcon "word_embeddings", # bloom - "model.embed_tokens", # llama-hf + "model.embed_tokens", # llama-hf nemotron "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert nomic-bert "language_model.embedding.word_embeddings", # persimmon @@ -52,7 +52,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 @@ -62,7 +62,7 @@ class TensorNameMap: # Output norm MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon jais + "transformer.ln_f", # gpt2 gpt-j falcon jais exaone "model.norm", # llama-hf baichuan internlm2 "norm", # llama-pth "transformer.norm_f", # mpt dbrx @@ -75,6 +75,7 @@ class TensorNameMap: "transformer.rms_norm", # Grok "encoder.final_layernorm", # chatglm "transformer.norm", # openelm + "model.norm", # nemotron ), # Rope frequencies @@ -88,12 +89,12 @@ class TensorNameMap: # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "h.{bid}.input_layernorm", # bloom "transformer.h.{bid}.ln_mlp", # falcon40b - "model.layers.{bid}.input_layernorm", # llama-hf + "model.layers.{bid}.input_layernorm", # llama-hf nemotron "layers.{bid}.attention_norm", # llama-pth "language_model.encoder.layers.{bid}.input_layernorm", # persimmon "model.layers.{bid}.ln1", # yi @@ -135,18 +136,19 @@ class TensorNameMap: # Attention query MODEL_TENSOR.ATTN_Q: ( - "model.layers.{bid}.self_attn.q_proj", # llama-hf + "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron "layers.{bid}.attention.wq", # llama-pth "encoder.layer.{bid}.attention.self.query", # bert "transformer.h.{bid}.attn.q_proj", # gpt-j "model.layers.layers.{bid}.self_attn.q_proj", # plamo "model.layers.{bid}.attention.wq", # internlm2 "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok + "transformer.h.{bid}.attn.attention.q_proj", # exaone ), # Attention key MODEL_TENSOR.ATTN_K: ( - "model.layers.{bid}.self_attn.k_proj", # llama-hf + "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert "transformer.h.{bid}.attn.k_proj", # gpt-j @@ -154,18 +156,20 @@ class TensorNameMap: "model.layers.layers.{bid}.self_attn.k_proj", # plamo "model.layers.{bid}.attention.wk", # internlm2 "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok + "transformer.h.{bid}.attn.attention.k_proj", # exaone ), # Attention value MODEL_TENSOR.ATTN_V: ( - "model.layers.{bid}.self_attn.v_proj", # llama-hf + "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert "transformer.h.{bid}.attn.v_proj", # gpt-j "transformer.h.{bid}.attn.v", # refact "model.layers.layers.{bid}.self_attn.v_proj", # plamo "model.layers.{bid}.attention.wv", # internlm2 - "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok + "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok + "transformer.h.{bid}.attn.attention.v_proj", # exaone ), # Attention output @@ -175,7 +179,7 @@ class TensorNameMap: "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom - "model.layers.{bid}.self_attn.o_proj", # llama-hf + "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert "transformer.h.{bid}.attn.out_proj", # gpt-j @@ -190,6 +194,7 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx "encoder.layers.{bid}.self_attention.dense", # chatglm "transformer.layers.{bid}.attn.out_proj", # openelm + "transformer.h.{bid}.attn.attention.out_proj", # exaone ), # Attention output norm @@ -215,10 +220,10 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais + "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt - "model.layers.{bid}.post_attention_layernorm", # llama-hf + "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron "layers.{bid}.ffn_norm", # llama-pth "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon "model.layers.{bid}.ln2", # yi @@ -258,7 +263,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom - "model.layers.{bid}.mlp.up_proj", # llama-hf refact + "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.h.{bid}.mlp.fc_in", # gpt-j @@ -277,6 +282,7 @@ class TensorNameMap: "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 "model.layers.{bid}.residual_mlp.w3", # arctic "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm + "transformer.h.{bid}.mlp.c_fc_1", # exaone ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -308,6 +314,7 @@ class TensorNameMap: "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 "transformer.h.{bid}.mlp.linear_1", # refact "model.layers.{bid}.residual_mlp.w1", # arctic + "transformer.h.{bid}.mlp.c_fc_0", # exaone ), MODEL_TENSOR.FFN_GATE_EXP: ( @@ -329,7 +336,7 @@ class TensorNameMap: "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom - "model.layers.{bid}.mlp.down_proj", # llama-hf + "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert "transformer.h.{bid}.mlp.fc_out", # gpt-j @@ -347,6 +354,7 @@ class TensorNameMap: "model.layers.{bid}.residual_mlp.w2", # arctic "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2 "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm + "model.layers.h.{bid}.mlp.c_proj", # exaone ), MODEL_TENSOR.FFN_DOWN_EXP: ( diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 19f6761e2..eea381e5a 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.9.1" +version = "0.10.0" description = "Read and write ML models in GGUF for GGML" authors = ["GGML "] packages = [ diff --git a/gguf-py/tests/test_quants.py b/gguf-py/tests/test_quants.py new file mode 100755 index 000000000..8b7a85c2c --- /dev/null +++ b/gguf-py/tests/test_quants.py @@ -0,0 +1,237 @@ +#!/usr/bin/env python3 + +# Test gguf.quants so that it exactly matches the C implementation of the (de)quantization + +# NOTE: this is kind of a mess, but at least it worked for initially testing the Python implementations. + +from __future__ import annotations + +import argparse +from math import prod +import os +import sys +from pathlib import Path +import ctypes +import logging +import numpy as np + +# Necessary to load the local gguf package +if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): + sys.path.insert(0, str(Path(__file__).parent.parent)) + +import gguf +from gguf.constants import GGMLQuantizationType + + +logger = logging.getLogger("test-quants") + + +c_float_p = ctypes.POINTER(ctypes.c_float) + + +class ggml_init_params(ctypes.Structure): + _fields_ = [ + ("mem_size", ctypes.c_size_t), + ("mem_buffer", ctypes.c_void_p), + ("no_alloc", ctypes.c_bool), + ] + + +class GGMLQuants: + libggml: ctypes.CDLL + + def __init__(self, libggml: Path): + self.libggml = ctypes.CDLL(str(libggml)) + self.libggml.ggml_quantize_chunk.restype = ctypes.c_size_t + # enum ggml_type type, + # const float * src, + # void * dst, + # int64_t start, + # int64_t nrows, + # int64_t n_per_row, + # const float * imatrix) { + self.libggml.ggml_quantize_chunk.argtypes = ( + ctypes.c_int, + ctypes.POINTER(ctypes.c_float), + ctypes.c_void_p, + ctypes.c_int64, + ctypes.c_int64, + ctypes.c_int64, + ctypes.POINTER(ctypes.c_float), + ) + + self.libggml.ggml_quantize_requires_imatrix.restype = ctypes.c_bool + self.libggml.ggml_quantize_requires_imatrix.argtypes = (ctypes.c_int,) + + for t in ( + "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", + "q2_K", "q3_K", "q4_K", "q5_K", "q6_K", + "iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m", + "iq4_nl", "iq4_xs", + ): + dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + t) + dequant_func.restype = None + dequant_func.argtypes = (ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.c_int64) + + self.libggml.ggml_fp16_to_fp32_row.restype = None + self.libggml.ggml_fp16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) + self.libggml.ggml_bf16_to_fp32_row.restype = None + self.libggml.ggml_bf16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) + + self.libggml.ggml_init.argtypes = (ggml_init_params,) + + self.libggml.ggml_init(ggml_init_params(1 * 1024 * 1024, 0, False)) + + def dequantize(self, tensor: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: + result = np.zeros(gguf.quant_shape_from_byte_shape(tensor.shape, qtype), dtype=np.float32, order="C") + if qtype == GGMLQuantizationType.F32: + # no-op + result = tensor.view(np.float32) + elif qtype == GGMLQuantizationType.F16: + self.libggml.ggml_fp16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) + elif qtype == GGMLQuantizationType.BF16: + self.libggml.ggml_bf16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) + else: + lw_qname = qtype.name.lower() + if lw_qname[-1] == "k": + lw_qname = lw_qname[:-1] + "K" + dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + lw_qname) + dequant_func(tensor.ctypes.data_as(ctypes.c_void_p), result.ctypes.data_as(c_float_p), result.size) + return result + + def quantize(self, data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: + result = np.zeros(gguf.quant_shape_to_byte_shape(data.shape, qtype), dtype=np.uint8, order="C") + if self.libggml.ggml_quantize_requires_imatrix(qtype.value): + # TODO: is a column-wise sum of squares appropriate? + qw = np.sum((data * data).reshape((-1, data.shape[-1])), axis=0).ctypes.data_as(c_float_p) + else: + qw = ctypes.cast(0, c_float_p) + result_size = self.libggml.ggml_quantize_chunk(qtype.value, data.ctypes.data_as(c_float_p), result.ctypes.data_as(ctypes.c_void_p), 0, prod(data.shape[:-1]), data.shape[-1], qw) + assert result.size == result_size + return result + + +def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) -> bool: + same = np.array_equal(t1, t2) + if same: + return True + else: + block_size, type_size = gguf.GGML_QUANT_SIZES[qtype] + if t1.dtype == np.float32: + t1 = t1.reshape((-1, block_size)) + t2 = t2.reshape((-1, block_size)) + else: + t1 = t1.reshape((-1, type_size)) + t2 = t2.reshape((-1, type_size)) + x = t1.view(np.uint8) ^ t2.view(np.uint8) + diff_bits = np.count_nonzero(np.unpackbits(x, axis=-1), axis=-1) + num_bad_blocks = np.count_nonzero(diff_bits, axis=0) + if num_bad_blocks == 0 and t1.shape == t2.shape: + logger.debug("Bits are equal, but arrays don't match, likely contains NANs") + return True + logger.debug(f"{num_bad_blocks} bad blocks ({100 * num_bad_blocks / x.shape[0]:.6f}%)") + bad_block_id = np.argmax(diff_bits, axis=0) + logger.debug(f"Worst block id: {bad_block_id}") + logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}") + + sum_diff_bits = np.sum(diff_bits) + logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits/(x.size * 8):.6f}%)") + return False + + +def do_test(libggml_path: Path, quick: bool = False): + ggml_quants = GGMLQuants(libggml_path) + + np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n}) + + r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False) + + for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()): + has_dequantize = False + has_quantize = False + + try: + gguf.dequantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][1]), dtype=np.uint8), qtype) + has_dequantize = True + except (NotImplementedError, AssertionError) as e: + if isinstance(e, AssertionError): + logger.error(f"Error with {qtype.name}: {e}") + raise e + try: + gguf.quantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][0]), dtype=np.float32), qtype) + has_quantize = True + except (NotImplementedError, AssertionError) as e: + if isinstance(e, AssertionError): + logger.error(f"Error with {qtype.name}: {e}") + raise e + + if not has_dequantize and not has_quantize: + continue + + logger.info(f"Testing {qtype.name}") + + rc = r.copy(order="C") + + pyq = None + ggq = None + + if has_quantize: + logger.debug(f"Quantizing to {qtype.name} with Python") + pyq = gguf.quants.quantize(rc, qtype) + + logger.debug(f"Quantizing to {qtype.name} with C") + ggq = ggml_quants.quantize(rc, qtype) + + if qtype == GGMLQuantizationType.F16: + pyq = pyq.view(np.uint8) + quant_equal = compare_tensors(pyq, ggq, qtype) + + if not quant_equal: + logger.error(f"Quantization to {qtype.name} does not match ❌") + else: + logger.info(f"Quantization to {qtype.name} matches exactly ✅") + + if has_dequantize: + if ggq is None and not quick: + logger.debug(f"Quantizing to {qtype.name} with C") + ggq = ggml_quants.quantize(rc, qtype) + + if ggq is not None: + logger.debug(f"Dequantizing from {qtype.name} with Python") + pydq = gguf.quants.dequantize(ggq, qtype) + logger.debug(f"Dequantizing from {qtype.name} with C") + ggdq = ggml_quants.dequantize(ggq, qtype) + + dequant_equal = compare_tensors(pydq, ggdq, qtype) + + if not dequant_equal: + logger.error(f"Dequantization from {qtype.name} does not match ❌") + else: + logger.info(f"Dequantization from {qtype.name} matches exactly ✅") + + rq_shape = gguf.quants.quant_shape_to_byte_shape((8, 1024, 1024 // 2), qtype) + rq = np.random.random(rq_shape).astype(np.float16).view(np.uint8) + + logger.debug(f"Dequantizing random f16 data as {qtype.name} with Python") + pydq = gguf.quants.dequantize(rq, qtype) + logger.debug(f"Dequantizing random f16 data as {qtype.name} with C") + ggdq = ggml_quants.dequantize(rq, qtype) + + dequant_equal = compare_tensors(pydq, ggdq, qtype) + + if not dequant_equal: + logger.error(f"Dequantization from random f16 data as {qtype.name} does not match ❌") + else: + logger.info(f"Dequantization from random f16 data as {qtype.name} matches exactly ✅") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation") + parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so") + parser.add_argument("--quick", action="store_true", help="Don't quantize with C when it's not strictly necessary") + + args = parser.parse_args() + + logging.basicConfig(level=logging.DEBUG) + + do_test(args.libggml, args.quick) diff --git a/include/llama.h b/include/llama.h index f23355a6b..188ae76f8 100644 --- a/include/llama.h +++ b/include/llama.h @@ -93,15 +93,15 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20, LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21, LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22, + LLAMA_VOCAB_PRE_TYPE_BLOOM = 23, + LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24, + LLAMA_VOCAB_PRE_TYPE_EXAONE = 25, }; - // note: these values should be synchronized with ggml_rope - // TODO: maybe move this enum to ggml.h (ggml_rope_type) enum llama_rope_type { LLAMA_ROPE_TYPE_NONE = -1, - LLAMA_ROPE_TYPE_NORM = 0, - LLAMA_ROPE_TYPE_NEOX = 2, - LLAMA_ROPE_TYPE_GLM = 4, + LLAMA_ROPE_TYPE_NORM = 0, + LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX, }; enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file @@ -345,7 +345,7 @@ extern "C" { int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() enum llama_ftype ftype; // quantize to this llama_ftype enum ggml_type output_tensor_type; // output tensor type - enum ggml_type token_embedding_type; // itoken embeddings tensor type + enum ggml_type token_embedding_type; // token embeddings tensor type bool allow_requantize; // allow quantizing non-f32/f16 tensors bool quantize_output_tensor; // quantize output.weight bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored @@ -504,6 +504,9 @@ extern "C" { // Returns true if the model contains an encoder that requires llama_encode() call LLAMA_API bool llama_model_has_encoder(const struct llama_model * model); + // Returns true if the model contains a decoder that requires llama_decode() call + LLAMA_API bool llama_model_has_decoder(const struct llama_model * model); + // For encoder-decoder models, this function returns id of the token that must be provided // to the decoder to start generating output sequence. For other models, it returns -1. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model); @@ -912,11 +915,8 @@ extern "C" { LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding - // Returns -1 if unknown, 1 for true or 0 for false. - LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model); - - // Returns -1 if unknown, 1 for true or 0 for false. - LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model); + LLAMA_API bool llama_add_bos_token(const struct llama_model * model); + LLAMA_API bool llama_add_eos_token(const struct llama_model * model); // Codellama infill tokens LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index aa4895c6d..b29892565 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -62,6 +62,7 @@ while read c; do src/ggml*.m \ src/ggml*.metal \ src/ggml*.cu \ + src/ggml-cann/* \ src/ggml-cuda/* \ src/ggml-sycl/* \ src/vulkan-shaders/* \ @@ -108,6 +109,8 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then # src/ggml-alloc.c -> ggml/src/ggml-alloc.c # src/ggml-backend-impl.h -> ggml/src/ggml-backend-impl.h # src/ggml-backend.c -> ggml/src/ggml-backend.c + # src/ggml-cann/* -> ggml/src/ggml-cann/ + # src/ggml-cann.cpp -> ggml/src/ggml-cann.cpp # src/ggml-common.h -> ggml/src/ggml-common.h # src/ggml-cuda/* -> ggml/src/ggml-cuda/ # src/ggml-cuda.cu -> ggml/src/ggml-cuda.cu @@ -126,6 +129,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then # include/ggml-alloc.h -> ggml/include/ggml-alloc.h # include/ggml-backend.h -> ggml/include/ggml-backend.h # include/ggml-blas.h -> ggml/include/ggml-blas.h + # include/ggml-cann.h -> ggml/include/ggml-cann.h # include/ggml-cuda.h -> ggml/include/ggml-cuda.h # include/ggml-kompute.h -> ggml/include/ggml-kompute.h # include/ggml-metal.h -> ggml/include/ggml-metal.h @@ -152,6 +156,8 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then -e 's/([[:space:]]|[ab]\/)src\/ggml-alloc\.c/\1ggml\/src\/ggml-alloc.c/g' \ -e 's/([[:space:]]|[ab]\/)src\/ggml-backend-impl\.h/\1ggml\/src\/ggml-backend-impl.h/g' \ -e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.c/\1ggml\/src\/ggml-backend.c/g' \ + -e 's/([[:space:]]|[ab]\/)src\/ggml-cann\//\1ggml\/src\/ggml-cann\//g' \ + -e 's/([[:space:]]|[ab]\/)src\/ggml-cann\.cpp/\1ggml\/src\/ggml-cann.cpp/g' \ -e 's/([[:space:]]|[ab]\/)src\/ggml-common\.h/\1ggml\/src\/ggml-common.h/g' \ -e 's/([[:space:]]|[ab]\/)src\/ggml-cuda\//\1ggml\/src\/ggml-cuda\//g' \ -e 's/([[:space:]]|[ab]\/)src\/ggml-cuda\.cu/\1ggml\/src\/ggml-cuda.cu/g' \ @@ -169,18 +175,19 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then -e 's/([[:space:]]|[ab]\/)include\/ggml-alloc\.h/\1ggml\/include\/ggml-alloc.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-backend\.h/\1ggml\/include\/ggml-backend.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-blas\.h/\1ggml\/include\/ggml-blas.h/g' \ + -e 's/([[:space:]]|[ab]\/)include\/ggml-cann\.h/\1ggml\/include\/ggml-cann.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-cuda\.h/\1ggml\/include\/ggml-cuda.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-kompute\.h/\1ggml\/include\/ggml-kompute.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-metal\.h/\1ggml\/include\/ggml-metal.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-rpc\.h/\1ggml\/include\/ggml-rpc.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-sycl\.h/\1ggml\/include\/ggml-sycl.h/g' \ -e 's/([[:space:]]|[ab]\/)include\/ggml-vulkan\.h/\1ggml\/include\/ggml-vulkan.h/g' \ - -e 's/([[:space:]]|[ab]\/)examples\/common\.h/examples\/common.h/g' \ - -e 's/([[:space:]]|[ab]\/)examples\/common\.cpp/examples\/common.cpp/g' \ - -e 's/([[:space:]]|[ab]\/)examples\/common-ggml\.h/examples\/common-ggml.h/g' \ - -e 's/([[:space:]]|[ab]\/)examples\/common-ggml\.cpp/examples\/common-ggml.cpp/g' \ - -e 's/([[:space:]]|[ab]\/)LICENSE/LICENSE/g' \ - -e 's/([[:space:]]|[ab]\/)scripts\/gen-authors\.sh/scripts\/gen-authors.sh/g' \ + -e 's/([[:space:]]|[ab]\/)examples\/common\.h/\1examples\/common.h/g' \ + -e 's/([[:space:]]|[ab]\/)examples\/common\.cpp/\1examples\/common.cpp/g' \ + -e 's/([[:space:]]|[ab]\/)examples\/common-ggml\.h/\1examples\/common-ggml.h/g' \ + -e 's/([[:space:]]|[ab]\/)examples\/common-ggml\.cpp/\1examples\/common-ggml.cpp/g' \ + -e 's/([[:space:]]|[ab]\/)LICENSE/\1LICENSE/g' \ + -e 's/([[:space:]]|[ab]\/)scripts\/gen-authors\.sh/\1scripts\/gen-authors.sh/g' \ > ggml-src.patch.tmp mv ggml-src.patch.tmp ggml-src.patch diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 1b82b1047..eef6768b1 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -18703ad600cc68dbdb04d57434c876989a841d12 +797faa25af14126eb30134d4033139ae3c5428ed diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index d6d7d0a60..30a62e088 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -10,6 +10,8 @@ cp -rpv ../ggml/src/ggml-aarch64.h ./ggml/src/ggml-aarch64.h cp -rpv ../ggml/src/ggml-alloc.c ./ggml/src/ggml-alloc.c cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml/src/ggml-backend-impl.h cp -rpv ../ggml/src/ggml-backend.c ./ggml/src/ggml-backend.c +cp -rpv ../ggml/src/ggml-cann/* ./ggml/src/ggml-cann/ +cp -rpv ../ggml/src/ggml-cann.cpp ./ggml/src/ggml-cann.cpp cp -rpv ../ggml/src/ggml-common.h ./ggml/src/ggml-common.h cp -rpv ../ggml/src/ggml-cuda/* ./ggml/src/ggml-cuda/ cp -rpv ../ggml/src/ggml-cuda.cu ./ggml/src/ggml-cuda.cu @@ -29,6 +31,7 @@ cp -rpv ../ggml/include/ggml.h ./ggml/include/ggml.h cp -rpv ../ggml/include/ggml-alloc.h ./ggml/include/ggml-alloc.h cp -rpv ../ggml/include/ggml-backend.h ./ggml/include/ggml-backend.h cp -rpv ../ggml/include/ggml-blas.h ./ggml/include/ggml-blas.h +cp -rpv ../ggml/include/ggml-cann.h ./ggml/include/ggml-cann.h cp -rpv ../ggml/include/ggml-cuda.h ./ggml/include/ggml-cuda.h cp -rpv ../ggml/include/ggml-kompute.h ./ggml/include/ggml-kompute.h cp -rpv ../ggml/include/ggml-metal.h ./ggml/include/ggml-metal.h diff --git a/src/llama-impl.h b/src/llama-impl.h index dcc8c1c15..399b134a7 100644 --- a/src/llama-impl.h +++ b/src/llama-impl.h @@ -24,3 +24,18 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void * #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) + +// +// helpers +// + +static void replace_all(std::string & s, const std::string & search, const std::string & replace) { + if (search.empty()) { + return; // Avoid infinite loop if 'search' is an empty string + } + size_t pos = 0; + while ((pos = s.find(search, pos)) != std::string::npos) { + s.replace(pos, search.length(), replace); + pos += replace.length(); + } +} diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp index 8910f6d65..8f4841d9d 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampling.cpp @@ -85,14 +85,14 @@ void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_arra constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); - constexpr float bucker_inter = -bucket_low * bucket_scale; + constexpr float bucket_inter = -bucket_low * bucket_scale; std::vector bucket_idx(candidates->size); std::vector histo(nbuckets, 0); for (int i = 0; i < (int)candidates->size; ++i) { const float val = candidates->data[i].logit; - int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); + int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets-1, ib)); bucket_idx[i] = ib; ++histo[ib]; diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 9be076f6d..17deefaa8 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -16,20 +16,6 @@ // helpers // -static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - std::string result; - for (size_t pos = 0; ; pos += search.length()) { - auto new_pos = s.find(search, pos); - if (new_pos == std::string::npos) { - result += s.substr(pos, s.size() - pos); - break; - } - result += s.substr(pos, new_pos - pos) + replace; - pos = new_pos; - } - s = std::move(result); -} - LLAMA_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; @@ -402,6 +388,7 @@ struct llm_tokenizer_bpe { case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: case LLAMA_VOCAB_PRE_TYPE_SMOLLM: case LLAMA_VOCAB_PRE_TYPE_CODESHELL: + case LLAMA_VOCAB_PRE_TYPE_EXAONE: regex_exprs = { "\\p{N}", "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", @@ -424,6 +411,8 @@ struct llm_tokenizer_bpe { }; break; case LLAMA_VOCAB_PRE_TYPE_PORO: + case LLAMA_VOCAB_PRE_TYPE_BLOOM: + case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH: regex_exprs = { " ?[^(\\s|.,!?…。,、।۔،)]+", }; @@ -816,6 +805,9 @@ struct llm_tokenizer_ugm { * the best tokenization. */ void tokenize(const std::string & text, std::vector & output) { + // get current size of output (for reversal later) + size_t output_size = output.size(); + // normalize the input first std::string normalized; normalize(text, &normalized); @@ -895,7 +887,7 @@ struct llm_tokenizer_ugm { } // reverse the output since we added tokens starting from the end of the input - std::reverse(output.begin(), output.end()); + std::reverse(output.begin() + output_size, output.end()); } private: @@ -1477,11 +1469,11 @@ llama_token llama_token_pad_impl(const struct llama_vocab & vocab) { return vocab.special_pad_id; } -int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab) { +bool llama_add_bos_token_impl(const struct llama_vocab & vocab) { return vocab.tokenizer_add_bos; } -int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab) { +bool llama_add_eos_token_impl(const struct llama_vocab & vocab) { return vocab.tokenizer_add_eos; } diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 7adfc16da..6e8f30be4 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -95,8 +95,8 @@ llama_token llama_token_sep_impl(const struct llama_vocab & vocab); llama_token llama_token_nl_impl (const struct llama_vocab & vocab); llama_token llama_token_pad_impl(const struct llama_vocab & vocab); -int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab); -int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab); +bool llama_add_bos_token_impl(const struct llama_vocab & vocab); +bool llama_add_eos_token_impl(const struct llama_vocab & vocab); llama_token llama_token_prefix_impl(const struct llama_vocab & vocab); llama_token llama_token_middle_impl(const struct llama_vocab & vocab); diff --git a/src/llama.cpp b/src/llama.cpp index e76b51a33..a1a013eb4 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -123,17 +123,6 @@ static std::string trim(const std::string & str) { return str.substr(start, end - start); } -static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - if (search.empty()) { - return; // Avoid infinite loop if 'search' is an empty string - } - size_t pos = 0; - while ((pos = s.find(search, pos)) != std::string::npos) { - s.replace(pos, search.length(), replace); - pos += replace.length(); - } -} - static bool is_float_close(float a, float b, float abs_tol) { // Check for non-negative tolerance if (abs_tol < 0.0) { @@ -221,7 +210,10 @@ enum llm_arch { LLM_ARCH_CHATGLM, LLM_ARCH_BITNET, LLM_ARCH_T5, + LLM_ARCH_T5ENCODER, LLM_ARCH_JAIS, + LLM_ARCH_NEMOTRON, + LLM_ARCH_EXAONE, LLM_ARCH_UNKNOWN, }; @@ -265,7 +257,10 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_CHATGLM, "chatglm" }, { LLM_ARCH_BITNET, "bitnet" }, { LLM_ARCH_T5, "t5" }, + { LLM_ARCH_T5ENCODER, "t5encoder" }, { LLM_ARCH_JAIS, "jais" }, + { LLM_ARCH_NEMOTRON, "nemotron" }, + { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1274,6 +1269,24 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_T5ENCODER, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" }, + { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" }, + { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" }, + { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" }, + { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" }, + { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" }, + { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" }, + { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" }, + { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" }, + { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" }, + { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_JAIS, { @@ -1289,6 +1302,43 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, + { + LLM_ARCH_NEMOTRON, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_EXAONE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -3572,13 +3622,8 @@ namespace GGUFMeta { using llama_buf_map = std::unordered_map; -// TODO: update when needed or think of some clever automatic way to do this -static size_t llama_model_max_nodes(const llama_model & /*model*/) { - //if (model.arch == LLM_ARCH_LLAMA && model.hparams.n_layer > ??) { // llama-3 405B - // return 32768; - //} - - return 8192; +static size_t llama_model_max_nodes(const llama_model & model) { + return std::max(8192, model.tensors_by_name.size()*5); } struct llama_model_loader { @@ -4898,7 +4943,6 @@ static void llm_load_hparams( } break; case LLM_ARCH_PHI3: { - ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { @@ -4907,6 +4951,22 @@ static void llm_load_hparams( case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } + + // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931 + if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) { + // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct + hparams.n_swa = 2047; + } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) { + // default value for Phi-3-mini-128k-instruct + hparams.n_swa = 262144; + } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) { + // default value for Phi-3-medium-128k-instruct + hparams.n_swa = 131072; + } + bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); + if (!found_swa && hparams.n_swa == 0) { + throw std::runtime_error("invalid value for sliding_window"); + } } break; case LLM_ARCH_PLAMO: { @@ -5204,6 +5264,12 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_T5ENCODER: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); + model.type = e_model::MODEL_UNKNOWN; + } break; case LLM_ARCH_JAIS: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); @@ -5216,6 +5282,23 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_NEMOTRON: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_4B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_EXAONE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -5448,6 +5531,15 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "codeshell") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL; + } else if ( + tokenizer_pre == "bloom") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM; + } else if ( + tokenizer_pre == "gpt3-finnish") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH; + } else if ( + tokenizer_pre == "exaone") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } @@ -6086,9 +6178,9 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); // optional MLP bias - layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } else { layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); @@ -6412,7 +6504,7 @@ static bool llm_load_tensors( layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens - layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); @@ -7438,6 +7530,42 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_T5ENCODER: + { + const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; + + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); + + layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}); + + layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; case LLM_ARCH_JAIS: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -7507,6 +7635,78 @@ static bool llm_load_tensors( layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); } } break; + case LLM_ARCH_NEMOTRON: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + + // optional MLP bias + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + } + } break; + case LLM_ARCH_EXAONE: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -8193,7 +8393,7 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); cb(kq, "kq", il); - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) { + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON) { // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 ggml_mul_mat_set_prec(kq, GGML_PREC_F32); @@ -13152,7 +13352,7 @@ struct llm_build_context { return gf; } - struct ggml_cgraph * build_t5() { + struct ggml_cgraph * build_t5_encoder() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); // mutable variable, needed during the last layer of the computation to skip unused tokens @@ -13167,303 +13367,323 @@ struct llm_build_context { inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - if (lctx.is_encoding) { - struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false); + GGML_ASSERT(lctx.is_encoding); + struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false); - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false); + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false); - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm_enc, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm_enc, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_enc, cur); - cb(Qcur, "Qcur", il); + // self-attention + { + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur); + cb(Qcur, "Qcur", il); - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_enc, cur); - cb(Kcur, "Kcur", il); + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur); + cb(Kcur, "Kcur", il); - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_enc, cur); - cb(Vcur, "Vcur", il); + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur); + cb(Vcur, "Vcur", il); - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); - struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); + struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); - struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); - cb(kq, "kq", il); + struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + cb(kq, "kq", il); - struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc; - struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b); - struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias); - cb(kq_b, "kq_b", il); + struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc; + struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b); + struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias); + cb(kq_b, "kq_b", il); - kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); + kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); - struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens))); - cb(v, "v", il); + struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens))); + cb(v, "v", il); - struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq); - cb(kqv, "kqv", il); + struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq); + cb(kqv, "kqv", il); - struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); + struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); - cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); - cb(cur, "kqv_merged_cont", il); + cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); + cb(cur, "kqv_merged_cont", il); - ggml_build_forward_expand(gf, cur); + ggml_build_forward_expand(gf, cur); - cur = ggml_mul_mat(ctx0, model.layers[il].wo_enc, cur); - cb(cur, "kqv_out", il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm_enc, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - // T5 uses relu, flan-T5 uses gelu-gated - cur = llm_build_ffn(ctx0, lctx, cur, - model.layers[il].ffn_up_enc, NULL, NULL, - model.layers[il].ffn_gate_enc, NULL, NULL, - model.layers[il].ffn_down_enc, NULL, NULL, - NULL, - model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, - model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, - cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur); + cb(cur, "kqv_out", il); } - cur = inpL; - cb(cur, "result_embd", -1); - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm_enc, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - } else { - GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first"); - - struct ggml_tensor * embd_enc = llm_build_inp_embd_enc(); - struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true); - - struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask(); - struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il); - - struct ggml_tensor * k = - ggml_view_3d(ctx0, kv_self.k_l[il], - n_embd_head_k, n_kv, n_head_kv, - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), - ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), - 0); - cb(k, "k", il); - - struct ggml_tensor * v = - ggml_view_3d(ctx0, kv_self.v_l[il], - n_kv, n_embd_head_v, n_head_kv, - ggml_element_size(kv_self.v_l[il])*n_ctx, - ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v, - 0); - cb(v, "v", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - - struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); - - struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); - cb(kq, "kq", il); - - struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; - struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b); - struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias); - cb(kq_b, "kq_b", il); - - kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); - - struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); - cb(kqv, "kqv", il); - - struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); - - cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); - cb(cur, "kqv_merged_cont", il); - - ggml_build_forward_expand(gf, cur); - - cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); - cb(cur, "kqv_out", il); - } - - cur = ggml_add(ctx0, cur, inpSA); - cb(cur, "cross_inp", il); - - struct ggml_tensor * inpCA = cur; - - // norm - cur = llm_build_norm(ctx0, cur, hparams, - model.layers[il].attn_norm_cross, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm_cross", il); - - // cross-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_cross, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_cross, embd_enc); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_cross, embd_enc); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc); - - struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); - struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); - - struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); - cb(kq, "kq", il); - - kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); - - struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc))); - cb(v, "v", il); - - struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq); - cb(kqv, "kqv", il); - - struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); - - cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); - cb(cur, "kqv_merged_cont", il); - - ggml_build_forward_expand(gf, cur); - - cur = ggml_mul_mat(ctx0, model.layers[il].wo_cross, cur); - cb(cur, "kqv_out", il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - // T5 uses relu, flan-T5 uses gelu-gated - cur = llm_build_ffn(ctx0, lctx, cur, - model.layers[il].ffn_up, NULL, NULL, - model.layers[il].ffn_gate, NULL, NULL, - model.layers[il].ffn_down, NULL, NULL, - NULL, - model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, - model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, - cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } - cur = inpL; - cb(cur, "result_embd", -1); + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm_enc, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); + // T5 uses relu, flan-T5 uses gelu-gated + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up_enc, NULL, NULL, + model.layers[il].ffn_gate_enc, NULL, NULL, + model.layers[il].ffn_down_enc, NULL, NULL, + NULL, + model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, + model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, + cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx0, cur, layer_dir); + } + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; } + cur = inpL; + cb(cur, "result_embd", -1); + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm_enc, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_t5_decoder() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + GGML_ASSERT(!lctx.is_encoding); + GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first"); + + struct ggml_tensor * embd_enc = llm_build_inp_embd_enc(); + struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true); + + struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask(); + struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il); + + struct ggml_tensor * k = + ggml_view_3d(ctx0, kv_self.k_l[il], + n_embd_head_k, n_kv, n_head_kv, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), + 0); + cb(k, "k", il); + + struct ggml_tensor * v = + ggml_view_3d(ctx0, kv_self.v_l[il], + n_kv, n_embd_head_v, n_head_kv, + ggml_element_size(kv_self.v_l[il])*n_ctx, + ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v, + 0); + cb(v, "v", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + + struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + + struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + cb(kq, "kq", il); + + struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; + struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b); + struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias); + cb(kq_b, "kq_b", il); + + kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); + cb(kqv, "kqv", il); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); + + cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); + cb(cur, "kqv_merged_cont", il); + + ggml_build_forward_expand(gf, cur); + + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur); + cb(cur, "kqv_out", il); + } + + cur = ggml_add(ctx0, cur, inpSA); + cb(cur, "cross_inp", il); + + struct ggml_tensor * inpCA = cur; + + // norm + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].attn_norm_cross, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm_cross", il); + + // cross-attention + { + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc); + + struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); + + struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + cb(kq, "kq", il); + + kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); + + struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc))); + cb(v, "v", il); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq); + cb(kqv, "kqv", il); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); + + cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); + cb(cur, "kqv_merged_cont", il); + + ggml_build_forward_expand(gf, cur); + + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur); + cb(cur, "kqv_out", il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // T5 uses relu, flan-T5 uses gelu-gated + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, + model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, + cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx0, cur, layer_dir); + } + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + cb(cur, "result_embd", -1); + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + cb(cur, "result_output", -1); + ggml_build_forward_expand(gf, cur); return gf; @@ -13674,6 +13894,254 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_nemotron() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + //GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + NULL, NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_exaone() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -13915,12 +14383,28 @@ static struct ggml_cgraph * llama_build_graph( } break; case LLM_ARCH_T5: { - result = llm.build_t5(); + if (lctx.is_encoding) { + result = llm.build_t5_encoder(); + } else { + result = llm.build_t5_decoder(); + } + } break; + case LLM_ARCH_T5ENCODER: + { + result = llm.build_t5_encoder(); } break; case LLM_ARCH_JAIS: { result = llm.build_jais(); } break; + case LLM_ARCH_NEMOTRON: + { + result = llm.build_nemotron(); + } break; + case LLM_ARCH_EXAONE: + { + result = llm.build_exaone(); + } break; default: GGML_ABORT("fatal error"); } @@ -14363,7 +14847,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { // TODO: use a per-batch flag for logits presence instead const bool has_logits = !cparams.embeddings; - const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE)); + const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; @@ -14634,12 +15118,15 @@ static int llama_decode_internal( res = nullptr; embd = nullptr; } else if (cparams.embeddings) { - res = nullptr; // do not extract logits for embedding case - embd = gf->nodes[gf->n_nodes - 1]; - if (strcmp(embd->name, "result_embd_pooled") != 0) { - embd = gf->nodes[gf->n_nodes - 2]; + res = nullptr; // do not extract logits for embedding case + embd = nullptr; + for (int i = gf->n_nodes - 1; i >= 0; --i) { + if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) { + embd = gf->nodes[i]; + break; + } } - GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor"); + GGML_ASSERT(embd != nullptr && "missing embeddings tensor"); } else { embd = nullptr; // do not extract embeddings when not needed GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); @@ -14846,9 +15333,24 @@ static int llama_encode_internal( ggml_cgraph * gf = llama_build_graph(lctx, batch, false); // the output embeddings after the final encoder normalization - struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 1]; + struct ggml_tensor * embd = nullptr; - GGML_ASSERT(strcmp(embd->name, "result_norm") == 0); + // there are two cases here + if (llama_model_has_decoder(&lctx.model)) { + // first case is an encoder-decoder T5 model where embeddings are passed to decoder + embd = gf->nodes[gf->n_nodes - 1]; + GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor"); + } else { + // second case is an encoder-only T5 model + if (cparams.embeddings) { + // only output embeddings if required + embd = gf->nodes[gf->n_nodes - 1]; + if (strcmp(embd->name, "result_embd_pooled") != 0) { + embd = gf->nodes[gf->n_nodes - 2]; + } + GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor"); + } + } ggml_backend_sched_alloc_graph(lctx.sched, gf); @@ -14861,20 +15363,54 @@ static int llama_encode_internal( ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); GGML_ASSERT(backend_embd != nullptr); - // extract token embeddings - GGML_ASSERT(lctx.embd != nullptr); + if (llama_model_has_decoder(&lctx.model)) { + lctx.embd_enc.resize(n_tokens*n_embd); + float * embd_out = lctx.embd_enc.data(); - lctx.embd_enc.resize(n_tokens*n_embd); - float * embd_out = lctx.embd_enc.data(); + ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float)); - ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float)); + // remember the sequence ids used during the encoding - needed for cross attention later + lctx.seq_ids_enc.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + for (int s = 0; s < batch.n_seq_id[i]; s++) { + llama_seq_id seq_id = batch.seq_id[i][s]; + lctx.seq_ids_enc[i].insert(seq_id); + } + } + } else { + GGML_ASSERT(lctx.embd != nullptr); - // remember the sequence ids used during the encoding - needed for cross attention later - lctx.seq_ids_enc.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - for (int s = 0; s < batch.n_seq_id[i]; s++) { - llama_seq_id seq_id = batch.seq_id[i][s]; - lctx.seq_ids_enc[i].insert(seq_id); + switch (cparams.pooling_type) { + case LLAMA_POOLING_TYPE_NONE: + { + // extract token embeddings + GGML_ASSERT(lctx.embd != nullptr); + float * embd_out = lctx.embd; + + GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size); + ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float)); + } break; + case LLAMA_POOLING_TYPE_MEAN: + case LLAMA_POOLING_TYPE_CLS: + case LLAMA_POOLING_TYPE_LAST: + { + // extract sequence embeddings + auto & embd_seq_out = lctx.embd_seq; + embd_seq_out.clear(); + + for (uint32_t i = 0; i < n_tokens; i++) { + const llama_seq_id seq_id = batch.seq_id[i][0]; + if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { + continue; + } + embd_seq_out[seq_id].resize(n_embd); + ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); + } + } break; + case LLAMA_POOLING_TYPE_UNSPECIFIED: + { + GGML_ABORT("unknown pooling type"); + } } } } @@ -15310,7 +15846,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { if (n_expert > 1) { - // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly + // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. @@ -16586,6 +17122,8 @@ struct llama_context * llama_new_context_with_model( ctx->sampling.rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; + // build worst-case graph for encoder if a model contains encoder + ctx->is_encoding = llama_model_has_encoder(model); uint32_t kv_size = cparams.n_ctx; ggml_type type_k = params.type_k; @@ -16910,6 +17448,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_MAMBA: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_T5: + case LLM_ARCH_T5ENCODER: case LLM_ARCH_JAIS: return LLAMA_ROPE_TYPE_NONE; @@ -16948,6 +17487,8 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_OPENELM: case LLM_ARCH_GPTNEOX: case LLM_ARCH_CODESHELL: + case LLM_ARCH_NEMOTRON: + case LLM_ARCH_EXAONE: return LLAMA_ROPE_TYPE_NEOX; // all model arches should be listed explicitly here @@ -17057,8 +17598,16 @@ struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const ch bool llama_model_has_encoder(const struct llama_model * model) { switch (model->arch) { - case LLM_ARCH_T5: return true; - default: return false; + case LLM_ARCH_T5: return true; + case LLM_ARCH_T5ENCODER: return true; + default: return false; + } +} + +bool llama_model_has_decoder(const struct llama_model * model) { + switch (model->arch) { + case LLM_ARCH_T5ENCODER: return false; + default: return true; } } @@ -17361,6 +17910,7 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi // TODO: replace all non-fatal assertions with returned errors or exceptions struct llama_data_write { virtual void write(const void * src, size_t size) = 0; + virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0; virtual size_t get_size_written() = 0; virtual ~llama_data_write() = default; @@ -17483,9 +18033,8 @@ struct llama_data_write { // Read each range of cells of k_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; - tmp_buf.resize(range_size * k_size_row); - ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row); - write(tmp_buf.data(), tmp_buf.size()); + const size_t buf_size = range_size * k_size_row; + write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size); } } @@ -17504,9 +18053,8 @@ struct llama_data_write { // Read each range of cells of v_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; - tmp_buf.resize(range_size * v_size_row); - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row); - write(tmp_buf.data(), tmp_buf.size()); + const size_t buf_size = range_size * v_size_row; + write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size); } } } else { @@ -17532,9 +18080,8 @@ struct llama_data_write { for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t src_offset = (range.first + j * kv_size) * v_size_el; - tmp_buf.resize(range_size * v_size_el); - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size()); - write(tmp_buf.data(), tmp_buf.size()); + const size_t buf_size = range_size * v_size_el; + write_tensor_data(kv_self.v_l[il], src_offset, buf_size); } } } @@ -17893,12 +18440,14 @@ struct llama_data_write_dummy : llama_data_write { llama_data_write_dummy() {} - // TODO: avoid unnecessary calls to ggml_backend_tensor_get in a dummy context - void write(const void * /* src */, size_t size) override { size_written += size; } + void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { + size_written += size; + } + size_t get_size_written() override { return size_written; } @@ -17921,6 +18470,16 @@ struct llama_data_write_buffer : llama_data_write { buf_size -= size; } + void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { + if (size > buf_size) { + throw std::runtime_error("unexpectedly reached end of buffer"); + } + ggml_backend_tensor_get(tensor, ptr, offset, size); + ptr += size; + size_written += size; + buf_size -= size; + } + size_t get_size_written() override { return size_written; } @@ -17956,6 +18515,7 @@ struct llama_data_read_buffer : llama_data_read { struct llama_data_write_file : llama_data_write { llama_file * file; size_t size_written = 0; + std::vector temp_buffer; llama_data_write_file(llama_file * f) : file(f) {} @@ -17964,6 +18524,12 @@ struct llama_data_write_file : llama_data_write { size_written += size; } + void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { + temp_buffer.resize(size); + ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); + write(temp_buffer.data(), temp_buffer.size()); + } + size_t get_size_written() override { return size_written; } @@ -18548,11 +19114,11 @@ llama_token llama_token_pad(const struct llama_model * model) { return llama_token_pad_impl(model->vocab); } -int32_t llama_add_bos_token(const struct llama_model * model) { +bool llama_add_bos_token(const struct llama_model * model) { return llama_add_bos_token_impl(model->vocab); } -int32_t llama_add_eos_token(const struct llama_model * model) { +bool llama_add_eos_token(const struct llama_model * model) { return llama_add_eos_token_impl(model->vocab); } @@ -18853,6 +19419,22 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "Assistant:"; } + } else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) { + // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb + // EXAONE-3.0-7.8B-Instruct + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n"; + } else if (role == "user") { + ss << "[|user|]" << trim(message->content) << "\n"; + } else if (role == "assistant") { + ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n"; + } + } + if (add_ass) { + ss << "[|assistant|]"; + } } else { // template not supported return -1; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 54cef05c3..2f4117a62 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1511,6 +1511,7 @@ struct test_group_norm : public test_case { const ggml_type type; const std::array ne; const int32_t num_groups; + const float eps; std::string vars() override { return VARS_TO_STR3(type, ne, num_groups); @@ -1518,12 +1519,13 @@ struct test_group_norm : public test_case { test_group_norm(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 64, 320, 1}, - int32_t num_groups = 32) - : type(type), ne(ne), num_groups(num_groups) {} + int32_t num_groups = 32, + float eps = 1e-6f) + : type(type), ne(ne), num_groups(num_groups), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * out = ggml_group_norm(ctx, a, num_groups); + ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps); return out; } }; diff --git a/tests/test-lora-conversion-inference.sh b/tests/test-lora-conversion-inference.sh new file mode 100755 index 000000000..c05c8e187 --- /dev/null +++ b/tests/test-lora-conversion-inference.sh @@ -0,0 +1,139 @@ +#!/bin/bash +set -e + +# Array of models to iterate over +declare -a params=( + "Gemma2ForCausalLM 64" + "LlamaForCausalLM 64" + "Phi3ForCausalLM 64" +) + +MODELS_REPO=lora-tests +MODELS_REPO_URL=https://huggingface.co/ggml-org/$MODELS_REPO + +# Clone the Hugging Face repository if the directory does not exist +if [ ! -d "$MODELS_REPO" ]; then + echo "Cloning the Hugging Face repository..." + git clone $MODELS_REPO_URL +else + echo "Repository already exists. Skipping clone." +fi + +# Array to store results to print +results=() + +trim_leading_whitespace() { + local input_string="$1" + echo "${input_string#"${input_string%%[![:space:]]*}"}" +} + +extract_starting_substring() { + local reference_string="$1" + local target_string="$2" + + local target_length=${#target_string} + echo "${reference_string:0:$target_length}" +} + +get_first_word() { + local input_string="$1" + read -r first_word _ <<< "$input_string" + echo "$first_word" +} + +# Load the expected strings +EXPECTED_BASE_FULL=$(cat $MODELS_REPO/data/pale_blue_dot.txt) +EXPECTED_LORA_FULL=$(cat $MODELS_REPO/data/bohemian_rhapsody.txt) +EXPECTED_BASE_FIRST_WORD=$(get_first_word "$EXPECTED_BASE_FULL") +EXPECTED_LORA_FIRST_WORD=$(get_first_word "$EXPECTED_LORA_FULL") + +run_conversion_and_inference_lora() { + local model_name=$1 + local hidden_size=$2 + + echo -e "\n\n-------- RUNNING TEST FOR MODEL $model_name --------\n\n" + + # Convert safetensors to gguf + echo "Running convert_hf_to_gguf.py for $model_name with hidden_size $hidden_size..." + python convert_hf_to_gguf.py $MODELS_REPO/$model_name/hidden_size=$hidden_size/base \ + --outfile $MODELS_REPO/$model_name/hidden_size=$hidden_size/base/Base-F32.gguf \ + --outtype f32 + + echo -e "\n\n---------------------------\n\n" + echo "Running convert_lora_to_gguf.py for $model_name with hidden_size $hidden_size..." + python3 convert_lora_to_gguf.py $MODELS_REPO/$model_name/hidden_size=$hidden_size/lora \ + --base $MODELS_REPO/$model_name/hidden_size=$hidden_size/base \ + --outtype f32 + + echo -e "\n\n---------------------------\n\n" + echo "Running llama-export-lora with lora for $model_name with hidden_size $hidden_size..." + ./llama-export-lora \ + -m $MODELS_REPO/$model_name/hidden_size=$hidden_size/base/Base-F32.gguf \ + -o $MODELS_REPO/$model_name/hidden_size=$hidden_size/base/Base-F32-lora-merged.gguf \ + --lora $MODELS_REPO/$model_name/hidden_size=$hidden_size/lora/Lora-F32-LoRA.gguf + + # Run inference + echo -e "\n\n---------------------------\n\n" + echo "Running llama-cli without lora for $model_name with hidden_size $hidden_size..." + OUTPUT_BASE=$(./llama-cli -m $MODELS_REPO/$model_name/hidden_size=$hidden_size/base/Base-F32.gguf \ + -p "$EXPECTED_BASE_FIRST_WORD" -n 50 --seed 42 --temp 0) + + echo -e "\n\n---------------------------\n\n" + echo "Running llama-cli with hot lora for $model_name with hidden_size $hidden_size..." + OUTPUT_LORA_HOT=$(./llama-cli -m $MODELS_REPO/$model_name/hidden_size=$hidden_size/base/Base-F32.gguf \ + --lora $MODELS_REPO/$model_name/hidden_size=$hidden_size/lora/Lora-F32-LoRA.gguf \ + -p "$EXPECTED_LORA_FIRST_WORD" -n 50 --seed 42 --temp 0) + + echo -e "\n\n---------------------------\n\n" + echo "Running llama-cli with merged lora for $model_name with hidden_size $hidden_size..." + OUTPUT_LORA_MERGED=$(./llama-cli -m $MODELS_REPO/$model_name/hidden_size=$hidden_size/base/Base-F32-lora-merged.gguf \ + -p "$EXPECTED_LORA_FIRST_WORD" -n 50 --seed 42 --temp 0) + + # Remove any initial white space + OUTPUT_BASE=$(trim_leading_whitespace "$OUTPUT_BASE") + OUTPUT_LORA_HOT=$(trim_leading_whitespace "$OUTPUT_LORA_HOT") + OUTPUT_LORA_MERGED=$(trim_leading_whitespace "$OUTPUT_LORA_MERGED") + # Extract the corresponding substring from full string + EXPECTED_BASE=$(extract_starting_substring "$EXPECTED_BASE_FULL" "$OUTPUT_BASE") + EXPECTED_LORA=$(extract_starting_substring "$EXPECTED_LORA_FULL" "$OUTPUT_LORA_HOT") + + # Assert output equals the expected output + if [[ "$OUTPUT_BASE" != "$EXPECTED_BASE" ]]; then + echo "Error: $model_name OUTPUT_BASE does not start with the expected string." + echo -e "Out=$OUTPUT_BASE\n\nExp=$EXPECTED_BASE" + exit 1 + fi + if [[ "$OUTPUT_LORA_HOT" != "$EXPECTED_LORA" ]]; then + echo "Error: $model_name OUTPUT_LORA_HOT does not start with the expected string." + echo -e "Out=$OUTPUT_LORA_HOT\n\nExp=$EXPECTED_LORA" + exit 1 + fi + if [[ "$OUTPUT_LORA_MERGED" != "$EXPECTED_LORA" ]]; then + echo "Error: $model_name OUTPUT_LORA_MERGED does not start with the expected string." + echo -e "Out=$OUTPUT_LORA_MERGED\n\nExp=$EXPECTED_LORA" + exit 1 + fi + + # Store the results + results+=(" + \n\033[1mResults for $model_name with hidden_size $hidden_size:\033[0m + \n\033[32m • Base:\n$OUTPUT_BASE + \n\033[34m • Lora hot:\n$OUTPUT_LORA_HOT + \n\033[36m • Lora merged:\n$OUTPUT_LORA_MERGED + \n \033[0m + ") + + echo "All tests passed for $model_name with hidden_size $hidden_size!" +} + +# Run test for each model +for param in "${params[@]}"; do + run_conversion_and_inference_lora $param +done + +# Print results +echo -e "\n\n---------------------------\n\n" +echo -e "\n\033[1mSummary of All Results:\033[0m" +for result in "${results[@]}"; do + echo -e "$result" +done