Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)

Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
This commit is contained in:
Ivan Stepanov 2023-04-28 19:53:24 +03:00
parent 61f822f63b
commit 6c4c88d54f
6 changed files with 70 additions and 99 deletions

View file

@ -76,7 +76,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
# Compile flags
#
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)

View file

@ -158,13 +158,13 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.mirostat = std::stoi(argv[i]);
} else if (arg == "--mirostat_eta") {
} else if (arg == "--mirostat_lr") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mirostat_eta = std::stof(argv[i]);
} else if (arg == "--mirostat_tau") {
} else if (arg == "--mirostat_ent") {
if (++i >= argc) {
invalid_param = true;
break;
@ -242,7 +242,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
char sign;
std::string value_str;
try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-' || sign == '=' || sign == ':')) {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
} else {
throw std::exception();
@ -309,18 +309,21 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " --top_p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " --presence_penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
fprintf(stderr, " --frequency_penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
fprintf(stderr, " --mirostat N use mirostat sampling (default: %d, 0 = disabled, 1 = mirostat, 2 = mirostat 2.0)\n", params.mirostat);
fprintf(stderr, " --mirostat_eta N mirostat learning rate (default: %.1f)\n", (double)params.mirostat_eta);
fprintf(stderr, " --mirostat_tau N mirostat target entropy (default: %.1f)\n", (double)params.mirostat_tau);
fprintf(stderr, " -l TOKEN+BIAS, --logit-bias TOKEN+BIAS");
fprintf(stderr, " --mirostat N use Mirostat sampling.\n");
fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
fprintf(stderr, " --mirostat_lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
fprintf(stderr, " --mirostat_ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello'\n");
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2+-inf)\n");
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
fprintf(stderr, " --memory_f32 use f32 instead of f16 for memory key+value\n");
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);

View file

@ -276,7 +276,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
}
fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_eta = %f, mirostat_tau = %f\n",
fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
fprintf(stderr, "\n\n");
@ -420,8 +420,8 @@ int main(int argc, char ** argv) {
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (size_t i = 0; i < (size_t) n_vocab; i++) {
candidates.emplace_back(i, logits[i], 0.0f);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
@ -445,11 +445,12 @@ int main(int argc, char ** argv) {
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
static int mirostat_k = 40;
const int mirostat_m = 100;
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, float(n_vocab), &mirostat_k, &mirostat_mu);
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling

View file

@ -1710,12 +1710,6 @@ void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_dat
} else {
candidates->data[i].logit /= penalty;
}
// But it does not penalize tokens that logits are near zero, which is a problem.
// Another solution is to convert the logits to probabilities, apply the penalty, and then convert back to logits.
// float probability = std::exp(candidates[i].logit);
// probability /= penalty;
// candidates[i].logit = std::log(probability);
}
candidates->sorted = false;
@ -1757,9 +1751,9 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
}
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float N, int * k, float * mu) {
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
assert(ctx);
auto N = float(llama_n_vocab(ctx));
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
@ -1779,12 +1773,10 @@ llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float new_k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
*k = int(std::min(new_k, float(candidates->size)));
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
// Sample the next word X using top-k sampling
// printf("llama_sample_mirostat *k = %d\n", *k);
llama_sample_top_k(nullptr, candidates, *k);
llama_sample_top_k(nullptr, candidates, int(k));
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}

34
llama.h
View file

@ -189,37 +189,47 @@ extern "C" {
// Sampling functions
/// @brief Repetition penalty
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/pdf/1909.05858.pdf with negative logit fix
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty);
/// @brief Frequency and presence repetition penalties
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
/// @brief Tail Free Sampling https://www.trentonbricken.com/Tail-Free-Sampling/
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1);
/// @brief Locally Typical Sampling https://arxiv.org/pdf/2202.00666.pdf
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @brief Mirostat implementation.
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param ctx The llama context.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param N The size of the vocabulary. This is used in the calculation of the `k` value.
/// @param k A reference to the integer variable used to store the calculated top-k value. The top-k value determines how many of the most probable tokens are considered for sampling.
/// @param mu A reference to the floating-point variable that represents the maximum cross-entropy value. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float N, int * k, float * mu);
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
// Performance information

View file

@ -1,4 +1,3 @@
#include "ggml.h"
#include "llama.h"
#include <assert.h>
#include <math.h>
@ -23,12 +22,12 @@ void test_top_k(const std::vector<float> & probs,
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
llama_sample_top_k(nullptr, &candidates_p, k);
@ -48,12 +47,12 @@ void test_top_p(const std::vector<float> & probs,
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// DUMP(&candidates_p);
llama_sample_top_p(nullptr, &candidates_p, p);
// DUMP(&candidates_p);
@ -71,12 +70,12 @@ void test_tfs(const std::vector<float> & probs,
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// DUMP(&candidates_p);
llama_sample_tail_free(nullptr, &candidates_p, z);
// DUMP(&candidates_p);
@ -94,12 +93,12 @@ void test_typical(const std::vector<float> & probs,
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// DUMP(&candidates_p);
llama_sample_typical(nullptr, &candidates_p, p);
// DUMP(&candidates_p);
@ -121,12 +120,12 @@ void test_repetition_penalty(
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_repetition_penalty(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), penalty);
@ -150,12 +149,12 @@ void test_frequency_presence_penalty(
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
@ -168,38 +167,6 @@ void test_frequency_presence_penalty(
}
}
void test_mirostat() {
std::vector<float> probs = {0.1, 0.2, 0.3, 0.4};
std::vector<float> expected_probs = {0.1, 0.2, 0.3, 0.4};
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int i = 0; i < n_vocab; i++) {
float logit = log(probs[i]);
candidates.emplace_back(llama_token_data{i, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size() };
DUMP(&candidates_p);
float tau = 5.0f;
float mu = 2.0f * tau;
int k = 0;
float eta = 0.1f;
int m = 100;
// float N = 32000;
float N = 4;
// llama_sample_mirostat(ctx, &candidates_p, tau, eta, m, N, &k, &mu);
DUMP(&candidates_p);
// assert(candidates_p.size == expected_probs.size());
// for (size_t i = 0; i < candidates_p.size; i++) {
// assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
// }
}
int main(void) {
test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4}, 1);
test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2}, 3);
@ -223,7 +190,5 @@ int main(void) {
test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.499966, 0.499966, 0.000023, 0.000023, 0.000023}, 5.0, 5.0);
test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.499977, 0.499977, 0.000023, 0.000023, 0.000000}, 5.0, 5.0);
// test_mirostat();
printf("OK\n");
}