added stream saving context data to file to avoid allocating unnecessary amounts of memory

This commit is contained in:
l3utterfly 2023-08-02 16:41:25 +08:00
parent 220d931864
commit 6c798db041

109
llama.cpp
View file

@ -3841,6 +3841,104 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
return written; return written;
} }
// writes state data directly to file instead of copying it into a buffer
void llama_write_state_data_to_file(struct llama_context * ctx, llama_file * dst_file) {
// copy rng
{
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[LLAMA_MAX_RNG_STATE];
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
dst_file->write_raw(&rng_size, sizeof(rng_size));
dst_file->write_raw(&rng_buf[0], LLAMA_MAX_RNG_STATE);
}
// copy logits
{
const size_t logits_cap = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
dst_file->write_raw(&logits_cap, sizeof(logits_cap));
dst_file->write_raw(&logits_size, sizeof(logits_size));
if (logits_size) {
dst_file->write_raw(ctx->logits.data(), logits_size * sizeof(float));
}
// If there is a gap between the size and the capacity, write padding
size_t padding_size = (logits_cap - logits_size) * sizeof(float);
if (padding_size > 0) {
std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
dst_file->write_raw(padding.data(), padding_size);
}
}
// copy embeddings
{
const size_t embedding_size = ctx->embedding.size();
dst_file->write_raw(&embedding_size, sizeof(embedding_size));
if (embedding_size) {
dst_file->write_raw(ctx->embedding.data(), embedding_size * sizeof(float));
}
}
// copy kv cache
{
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = hparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
const int kv_ntok = llama_get_kv_cache_token_count(ctx);
dst_file->write_raw(&kv_size, sizeof(kv_size));
dst_file->write_raw(&kv_ntok, sizeof(kv_ntok));
if (kv_size) {
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
kout3d->data = kout3d_data.data();
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
vout3d->data = vout3d_data.data();
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
// our data is now in the kout3d_data and vout3d_data buffers
// write them to file
dst_file->write_raw(kout3d_data.data(), kout3d_data.size());
dst_file->write_raw(vout3d_data.data(), vout3d_data.size());
}
}
}
// Sets the state reading from the specified source address // Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
uint8_t * inp = src; uint8_t * inp = src;
@ -4023,15 +4121,8 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi
file.write_u32((uint32_t) n_token_count); file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state // save the context state using stream saving
{ llama_write_state_data_to_file(ctx, &file);
const size_t n_state_size_max = llama_get_state_size(ctx);
std::vector<uint8_t> state_data(n_state_size_max);
const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
file.write_raw(state_data.data(), n_state_size_cur);
}
return true; return true;
} }