Merge upstream changes, fix conflicts

This commit is contained in:
0cc4m 2024-03-27 20:12:14 +01:00
commit 6cb07fb0af
180 changed files with 28171 additions and 18244 deletions

View file

@ -12,6 +12,7 @@ Checks: >
-readability-implicit-bool-conversion, -readability-implicit-bool-conversion,
-readability-magic-numbers, -readability-magic-numbers,
-readability-uppercase-literal-suffix, -readability-uppercase-literal-suffix,
-readability-simplify-boolean-expr,
clang-analyzer-*, clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling, -clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*, performance-*,

View file

@ -26,8 +26,8 @@ COPY . .
# Set nvcc architecture # Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH} ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS # Enable CUDA
ENV LLAMA_CUBLAS=1 ENV LLAMA_CUDA=1
RUN make RUN make

View file

@ -12,7 +12,7 @@
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries. # 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support. # It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-cublas Name: llama.cpp-cuda
Version: %( date "+%%Y%%m%%d" ) Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist} Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL) Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
@ -32,16 +32,16 @@ CPU inference for Meta's Lllama2 models using default options.
%setup -n llama.cpp-master %setup -n llama.cpp-master
%build %build
make -j LLAMA_CUBLAS=1 make -j LLAMA_CUDA=1
%install %install
mkdir -p %{buildroot}%{_bindir}/ mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacppcublas cp -p main %{buildroot}%{_bindir}/llamacppcuda
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver cp -p server %{buildroot}%{_bindir}/llamacppcudaserver
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple cp -p simple %{buildroot}%{_bindir}/llamacppcudasimple
mkdir -p %{buildroot}/usr/lib/systemd/system mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacublas.service %{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacuda.service
[Unit] [Unit]
Description=Llama.cpp server, CPU only (no GPU support in this build). Description=Llama.cpp server, CPU only (no GPU support in this build).
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service] [Service]
Type=simple Type=simple
EnvironmentFile=/etc/sysconfig/llama EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamacppcublasserver $LLAMA_ARGS ExecStart=/usr/bin/llamacppcudaserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID ExecReload=/bin/kill -s HUP $MAINPID
Restart=never Restart=never
@ -67,10 +67,10 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/* rm -rf %{_builddir}/*
%files %files
%{_bindir}/llamacppcublas %{_bindir}/llamacppcuda
%{_bindir}/llamacppcublasserver %{_bindir}/llamacppcudaserver
%{_bindir}/llamacppcublassimple %{_bindir}/llamacppcudasimple
/usr/lib/systemd/system/llamacublas.service /usr/lib/systemd/system/llamacuda.service
%config /etc/sysconfig/llama %config /etc/sysconfig/llama
%pre %pre

View file

@ -20,8 +20,8 @@ COPY . .
# Set nvcc architecture # Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH} ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS # Enable CUDA
ENV LLAMA_CUBLAS=1 ENV LLAMA_CUDA=1
RUN make RUN make

View file

@ -4,13 +4,14 @@
config, config,
stdenv, stdenv,
mkShell, mkShell,
runCommand,
cmake, cmake,
ninja, ninja,
pkg-config, pkg-config,
git, git,
python3, python3,
mpi, mpi,
openblas, # TODO: Use the generic `blas` so users could switch between alternative implementations blas,
cudaPackages, cudaPackages,
darwin, darwin,
rocmPackages, rocmPackages,
@ -35,7 +36,8 @@
# It's necessary to consistently use backendStdenv when building with CUDA support, # It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream. # otherwise we get libstdc++ errors downstream.
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv, effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
enableStatic ? effectiveStdenv.hostPlatform.isStatic enableStatic ? effectiveStdenv.hostPlatform.isStatic,
precompileMetalShaders ? false
}@inputs: }@inputs:
let let
@ -87,6 +89,11 @@ let
] ]
); );
xcrunHost = runCommand "xcrunHost" {} ''
mkdir -p $out/bin
ln -s /usr/bin/xcrun $out/bin
'';
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64 # apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
# separately # separately
darwinBuildInputs = darwinBuildInputs =
@ -150,6 +157,8 @@ effectiveStdenv.mkDerivation (
postPatch = '' postPatch = ''
substituteInPlace ./ggml-metal.m \ substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";" --replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
# TODO: Package up each Python script or service appropriately. # TODO: Package up each Python script or service appropriately.
# If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`, # If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`,
@ -157,6 +166,14 @@ effectiveStdenv.mkDerivation (
substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python" substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python"
''; '';
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
# `default.metallib` may be compiled with Metal compiler from XCode
# and we need to escape sandbox on MacOS to access Metal compiler.
# `xcrun` is used find the path of the Metal compiler, which is varible
# and not on $PATH
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
nativeBuildInputs = nativeBuildInputs =
[ [
cmake cmake
@ -173,6 +190,8 @@ effectiveStdenv.mkDerivation (
] ]
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [ ++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
glibc.static glibc.static
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
xcrunHost
]; ];
buildInputs = buildInputs =
@ -181,6 +200,7 @@ effectiveStdenv.mkDerivation (
++ optionals useMpi [ mpi ] ++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ] ++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs ++ optionals useRocm rocmBuildInputs
++ optionals useBlas [ blas ]
++ optionals useVulkan vulkanBuildInputs; ++ optionals useVulkan vulkanBuildInputs;
cmakeFlags = cmakeFlags =
@ -191,7 +211,7 @@ effectiveStdenv.mkDerivation (
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true) (cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas) (cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL) (cmakeBool "LLAMA_CLBLAST" useOpenCL)
(cmakeBool "LLAMA_CUBLAS" useCuda) (cmakeBool "LLAMA_CUDA" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm) (cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit) (cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi) (cmakeBool "LLAMA_MPI" useMpi)
@ -216,8 +236,10 @@ effectiveStdenv.mkDerivation (
# Should likely use `rocmPackages.clr.gpuTargets`. # Should likely use `rocmPackages.clr.gpuTargets`.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102" "-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
] ]
++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") ] ++ optionals useMetalKit [
++ optionals useBlas [ (lib.cmakeFeature "LLAMA_BLAS_VENDOR" "OpenBLAS") ]; (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
];
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level, # TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet. # if they haven't been added yet.

View file

@ -20,8 +20,8 @@ COPY . .
# Set nvcc architecture # Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH} ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS # Enable CUDA
ENV LLAMA_CUBLAS=1 ENV LLAMA_CUDA=1
RUN make RUN make

View file

@ -15,14 +15,133 @@ on:
types: [opened, synchronize, reopened] types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env: env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }} BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GGML_NLOOP: 3 GGML_NLOOP: 3
GGML_N_THREADS: 1 GGML_N_THREADS: 1
jobs: jobs:
macOS-latest-cmake-arm64:
runs-on: macos-14
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
macOS-latest-cmake-x64:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
ubuntu-focal-make: ubuntu-focal-make:
runs-on: ubuntu-20.04 runs-on: ubuntu-20.04
env:
LLAMA_NODE_AVAILABLE: true
LLAMA_PYTHON_AVAILABLE: true
steps: steps:
- name: Clone - name: Clone
@ -35,6 +154,14 @@ jobs:
sudo apt-get update sudo apt-get update
sudo apt-get install build-essential gcc-8 sudo apt-get install build-essential gcc-8
- uses: actions/setup-node@v4
with:
node-version: "20"
- uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Build - name: Build
id: make_build id: make_build
env: env:
@ -98,6 +225,17 @@ jobs:
cd build cd build
ctest -L main --verbose --timeout 900 ctest -L main --verbose --timeout 900
- name: Test llama2c conversion
id: llama2c_test
run: |
cd build
echo "Fetch tokenizer"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
# ubuntu-latest-cmake-sanitizer: # ubuntu-latest-cmake-sanitizer:
# runs-on: ubuntu-latest # runs-on: ubuntu-latest
# #
@ -590,13 +728,13 @@ jobs:
path: | path: |
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
windows-latest-cmake-cublas: windows-latest-cmake-cuda:
runs-on: windows-latest runs-on: windows-latest
strategy: strategy:
matrix: matrix:
cuda: ['12.2.0', '11.7.1'] cuda: ['12.2.0', '11.7.1']
build: ['cublas'] build: ['cuda']
steps: steps:
- name: Clone - name: Clone
@ -617,7 +755,7 @@ jobs:
run: | run: |
mkdir build mkdir build
cd build cd build
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUDA=ON -DBUILD_SHARED_LIBS=ON
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Determine tag name - name: Determine tag name
@ -662,6 +800,7 @@ jobs:
windows-latest-cmake-sycl: windows-latest-cmake-sycl:
runs-on: windows-latest runs-on: windows-latest
defaults: defaults:
run: run:
shell: bash shell: bash
@ -670,7 +809,6 @@ jobs:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
steps: steps:
- name: Clone - name: Clone
id: checkout id: checkout
@ -685,6 +823,32 @@ jobs:
id: cmake_build id: cmake_build
run: examples/sycl/win-build-sycl.bat run: examples/sycl/win-build-sycl.bat
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
ios-xcode-build: ios-xcode-build:
runs-on: macos-latest runs-on: macos-latest
@ -747,7 +911,9 @@ jobs:
- macOS-latest-make - macOS-latest-make
- macOS-latest-cmake - macOS-latest-cmake
- windows-latest-cmake - windows-latest-cmake
- windows-latest-cmake-cublas - windows-latest-cmake-cuda
- macOS-latest-cmake-arm64
- macOS-latest-cmake-x64
steps: steps:
- name: Clone - name: Clone

View file

@ -12,11 +12,12 @@ jobs:
steps: steps:
- uses: actions/stale@v5 - uses: actions/stale@v5
with: with:
exempt-issue-labels: "refactor,help wanted,good first issue,research"
days-before-issue-stale: 30 days-before-issue-stale: 30
days-before-issue-close: 14 days-before-issue-close: 14
stale-issue-label: "stale" stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale." close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1 days-before-pr-stale: -1
days-before-pr-close: -1 days-before-pr-close: -1
operations-per-run: 1000 operations-per-run: 10000
repo-token: ${{ secrets.GITHUB_TOKEN }} repo-token: ${{ secrets.GITHUB_TOKEN }}

View file

@ -5,6 +5,10 @@ env:
GGML_NLOOP: 3 GGML_NLOOP: 3
GGML_N_THREADS: 1 GGML_N_THREADS: 1
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
run: run:
runs-on: ubuntu-20.04 runs-on: ubuntu-20.04

View file

@ -15,6 +15,10 @@ on:
branches: branches:
- master - master
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
push_to_registry: push_to_registry:
name: Push Docker image to Docker Hub name: Push Docker image to Docker Hub

View file

@ -14,6 +14,10 @@ on:
branches: branches:
- master - master
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
editorconfig: editorconfig:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View file

@ -17,6 +17,10 @@ on:
types: [opened, synchronize, reopened] types: [opened, synchronize, reopened]
paths: ['**/*.nix', 'flake.lock'] paths: ['**/*.nix', 'flake.lock']
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
nix-build-aarch64: nix-build-aarch64:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View file

@ -8,6 +8,10 @@ on:
pull_request: pull_request:
types: [opened, synchronize, reopened] types: [opened, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
nix-eval: nix-eval:
strategy: strategy:

View file

@ -16,6 +16,10 @@ on:
- 'requirements.txt' - 'requirements.txt'
- 'requirements/*.txt' - 'requirements/*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
python-check-requirements: python-check-requirements:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View file

@ -2,6 +2,10 @@ name: flake8 Lint
on: [push, pull_request] on: [push, pull_request]
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
flake8-lint: flake8-lint:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View file

@ -18,6 +18,10 @@ on:
schedule: schedule:
- cron: '0 0 * * *' - cron: '0 0 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
server: server:
runs-on: ubuntu-latest runs-on: ubuntu-latest
@ -31,7 +35,6 @@ jobs:
include: include:
- build_type: Release - build_type: Release
sanitizer: "" sanitizer: ""
disabled_on_pr: true
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
container: container:

View file

@ -6,6 +6,10 @@ on:
branches: branches:
- master - master
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
build: build:
strategy: strategy:

8
.gitignore vendored
View file

@ -11,7 +11,10 @@
*.gcda *.gcda
*.dot *.dot
*.bat *.bat
*.tmp
*.metallib *.metallib
*.etag
*.lastModified
.DS_Store .DS_Store
.build/ .build/
.cache/ .cache/
@ -47,6 +50,7 @@ models-mnt
/embedding /embedding
/gguf /gguf
/gguf-llama-simple /gguf-llama-simple
/gguf-split
/gritlm /gritlm
/imatrix /imatrix
/infill /infill
@ -55,6 +59,9 @@ models-mnt
/llava-cli /llava-cli
/lookahead /lookahead
/lookup /lookup
/lookup-create
/lookup-merge
/lookup-stats
/main /main
/metal /metal
/passkey /passkey
@ -70,6 +77,7 @@ models-mnt
/batched-bench /batched-bench
/export-lora /export-lora
/finetune /finetune
/retrieval
/speculative /speculative
/parallel /parallel
/train-text-from-scratch /train-text-from-scratch

View file

@ -89,8 +89,8 @@ endif()
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_BLAS "llama: use BLAS" OFF) option(LLAMA_BLAS "llama: use BLAS" OFF)
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUBLAS "llama: use CUDA" OFF) option(LLAMA_CUDA "llama: use CUDA" OFF)
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF) option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF) option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF) option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels") set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
@ -99,6 +99,7 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access") "llama: max. batch size for using peer access")
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF) option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF) option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
@ -359,18 +360,25 @@ if (LLAMA_QKK_64)
endif() endif()
if (LLAMA_CUBLAS) if (LLAMA_CUBLAS)
message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead")
set(LLAMA_CUDA ON)
endif()
if (LLAMA_CUDA)
cmake_minimum_required(VERSION 3.17) cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit) find_package(CUDAToolkit)
if (CUDAToolkit_FOUND) if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found") message(STATUS "CUDA found")
enable_language(CUDA) enable_language(CUDA)
set(GGML_HEADERS_CUDA ggml-cuda.h) set(GGML_HEADERS_CUDA ggml-cuda.h)
set(GGML_SOURCES_CUDA ggml-cuda.cu)
add_compile_definitions(GGML_USE_CUBLAS) file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
add_compile_definitions(GGML_USE_CUDA)
if (LLAMA_CUDA_FORCE_DMMV) if (LLAMA_CUDA_FORCE_DMMV)
add_compile_definitions(GGML_CUDA_FORCE_DMMV) add_compile_definitions(GGML_CUDA_FORCE_DMMV)
endif() endif()
@ -387,6 +395,9 @@ if (LLAMA_CUBLAS)
endif() endif()
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE}) add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
if (LLAMA_CUDA_NO_PEER_COPY)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
if (LLAMA_STATIC) if (LLAMA_STATIC)
if (WIN32) if (WIN32)
@ -416,7 +427,7 @@ if (LLAMA_CUBLAS)
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}") message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
else() else()
message(WARNING "cuBLAS not found") message(WARNING "CUDA not found")
endif() endif()
endif() endif()
@ -515,9 +526,11 @@ if (LLAMA_HIPBLAS)
message(STATUS "HIP and hipBLAS found") message(STATUS "HIP and hipBLAS found")
set(GGML_HEADERS_ROCM ggml-cuda.h) set(GGML_HEADERS_ROCM ggml-cuda.h)
set(GGML_SOURCES_ROCM ggml-cuda.cu)
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS) file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
if (LLAMA_HIP_UMA) if (LLAMA_HIP_UMA)
add_compile_definitions(GGML_HIP_UMA) add_compile_definitions(GGML_HIP_UMA)
@ -531,11 +544,15 @@ if (LLAMA_HIPBLAS)
add_compile_definitions(GGML_CUDA_FORCE_MMQ) add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif() endif()
if (LLAMA_CUDA_NO_PEER_COPY)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y}) add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX) set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
if (LLAMA_STATIC) if (LLAMA_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm") message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
@ -818,7 +835,7 @@ endif()
set(CUDA_CXX_FLAGS "") set(CUDA_CXX_FLAGS "")
if (LLAMA_CUBLAS) if (LLAMA_CUDA)
set(CUDA_FLAGS -use_fast_math) set(CUDA_FLAGS -use_fast_math)
if (LLAMA_FATAL_WARNINGS) if (LLAMA_FATAL_WARNINGS)
@ -1043,7 +1060,7 @@ endif()
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>") add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>") add_compile_options("$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
if (LLAMA_CUBLAS) if (LLAMA_CUDA)
list(APPEND CUDA_CXX_FLAGS ${ARCH_FLAGS}) list(APPEND CUDA_CXX_FLAGS ${ARCH_FLAGS})
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "") if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
@ -1153,6 +1170,7 @@ add_library(llama
llama.h llama.h
unicode.h unicode.h
unicode.cpp unicode.cpp
unicode-data.cpp
) )
target_include_directories(llama PUBLIC .) target_include_directories(llama PUBLIC .)
@ -1248,6 +1266,12 @@ if (LLAMA_METAL)
GROUP_READ GROUP_READ
WORLD_READ WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR}) DESTINATION ${CMAKE_INSTALL_BINDIR})
if (NOT LLAMA_METAL_EMBED_LIBRARY)
install(
FILES ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DESTINATION ${CMAKE_INSTALL_BINDIR}
)
endif()
endif() endif()
# #

101
Makefile
View file

@ -1,15 +1,16 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = \ BUILD_TARGETS = \
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \ simple batched batched-bench save-load-state server gguf gguf-split llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = \ TEST_TARGETS = \
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \ tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \ tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \ tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease \
tests/test-json-schema-to-grammar
# Code coverage output files # Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@ -389,14 +390,20 @@ ifdef LLAMA_BLIS
endif # LLAMA_BLIS endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS ifdef LLAMA_CUBLAS
# LLAMA_CUBLAS is deprecated and will be removed in the future
LLAMA_CUDA := 1
endif
ifdef LLAMA_CUDA
ifneq ('', '$(wildcard /opt/cuda)') ifneq ('', '$(wildcard /opt/cuda)')
CUDA_PATH ?= /opt/cuda CUDA_PATH ?= /opt/cuda
else else
CUDA_PATH ?= /usr/local/cuda CUDA_PATH ?= /usr/local/cuda
endif endif
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
OBJS += ggml-cuda.o OBJS += ggml-cuda.o
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
MK_NVCCFLAGS += -use_fast_math MK_NVCCFLAGS += -use_fast_math
ifdef LLAMA_FATAL_WARNINGS ifdef LLAMA_FATAL_WARNINGS
MK_NVCCFLAGS += -Werror all-warnings MK_NVCCFLAGS += -Werror all-warnings
@ -451,19 +458,30 @@ ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
else else
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
#ifdef LLAMA_CUDA_CUBLAS ifdef LLAMA_CUDA_NO_PEER_COPY
# MK_NVCCFLAGS += -DGGML_CUDA_CUBLAS MK_NVCCFLAGS += -DGGML_CUDA_NO_PEER_COPY
#endif # LLAMA_CUDA_CUBLAS endif # LLAMA_CUDA_NO_PEER_COPY
ifdef LLAMA_CUDA_CCBIN ifdef LLAMA_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN) MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
endif endif
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml-common.h
ifdef JETSON_EOL_MODULE_DETECT ifdef JETSON_EOL_MODULE_DETECT
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@ define NVCC_COMPILE
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
else else
define NVCC_COMPILE
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@ $(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
endif # JETSON_EOL_MODULE_DETECT endif # JETSON_EOL_MODULE_DETECT
endif # LLAMA_CUBLAS
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
$(NVCC_COMPILE)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(NVCC_COMPILE)
endif # LLAMA_CUDA
ifdef LLAMA_CLBLAST ifdef LLAMA_CLBLAST
@ -509,7 +527,6 @@ ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
endif # LLAMA_VULKAN endif # LLAMA_VULKAN
ifdef LLAMA_HIPBLAS ifdef LLAMA_HIPBLAS
ifeq ($(wildcard /opt/rocm),) ifeq ($(wildcard /opt/rocm),)
ROCM_PATH ?= /usr ROCM_PATH ?= /usr
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch)) GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
@ -521,7 +538,7 @@ ifdef LLAMA_HIPBLAS
LLAMA_CUDA_DMMV_X ?= 32 LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1 LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2 LLAMA_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
ifdef LLAMA_HIP_UMA ifdef LLAMA_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA MK_CPPFLAGS += -DGGML_HIP_UMA
endif # LLAMA_HIP_UMA endif # LLAMA_HIP_UMA
@ -534,9 +551,18 @@ endif # LLAMA_HIP_UMA
ifdef LLAMA_CUDA_FORCE_DMMV ifdef LLAMA_CUDA_FORCE_DMMV
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # LLAMA_CUDA_FORCE_DMMV endif # LLAMA_CUDA_FORCE_DMMV
ifdef LLAMA_CUDA_NO_PEER_COPY
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # LLAMA_CUDA_NO_PEER_COPY
OBJS += ggml-cuda.o OBJS += ggml-cuda.o
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $< $(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # LLAMA_HIPBLAS endif # LLAMA_HIPBLAS
ifdef LLAMA_METAL ifdef LLAMA_METAL
@ -589,7 +615,7 @@ override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS)
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS) override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
# identify CUDA host compiler # identify CUDA host compiler
ifdef LLAMA_CUBLAS ifdef LLAMA_CUDA
GF_CC := $(NVCC) $(NVCCFLAGS) 2>/dev/null .c -Xcompiler GF_CC := $(NVCC) $(NVCCFLAGS) 2>/dev/null .c -Xcompiler
include scripts/get-flags.mk include scripts/get-flags.mk
CUDA_CXXFLAGS := $(BASE_CXXFLAGS) $(GF_CXXFLAGS) -Wno-pedantic CUDA_CXXFLAGS := $(BASE_CXXFLAGS) $(GF_CXXFLAGS) -Wno-pedantic
@ -614,7 +640,7 @@ $(info I NVCCFLAGS: $(NVCCFLAGS))
$(info I LDFLAGS: $(LDFLAGS)) $(info I LDFLAGS: $(LDFLAGS))
$(info I CC: $(shell $(CC) --version | head -n 1)) $(info I CC: $(shell $(CC) --version | head -n 1))
$(info I CXX: $(shell $(CXX) --version | head -n 1)) $(info I CXX: $(shell $(CXX) --version | head -n 1))
ifdef LLAMA_CUBLAS ifdef LLAMA_CUDA
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1)) $(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])') CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1) ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
@ -624,9 +650,16 @@ $(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be exp
endif # CUDA_POWER_ARCH endif # CUDA_POWER_ARCH
endif # CUDA_DOCKER_ARCH endif # CUDA_DOCKER_ARCH
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1) endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
endif # LLAMA_CUBLAS endif # LLAMA_CUDA
$(info ) $(info )
ifdef LLAMA_CUBLAS
$(info !!!!)
$(info LLAMA_CUBLAS is deprecated and will be removed in the future. Use LLAMA_CUDA instead.)
$(info !!!!)
$(info )
endif
# #
# Build library # Build library
# #
@ -646,7 +679,10 @@ ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
unicode.o: unicode.cpp unicode.h unicode.o: unicode.cpp unicode.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o: unicode-data.cpp unicode-data.h
$(CXX) $(CXXFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
@ -666,9 +702,15 @@ console.o: common/console.cpp common/console.h
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
json-schema-to-grammar.o: common/json-schema-to-grammar.cpp common/json-schema-to-grammar.h
$(CXX) $(CXXFLAGS) -c $< -o $@
train.o: common/train.cpp common/train.h train.o: common/train.cpp common/train.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
ngram-cache.o: common/ngram-cache.cpp common/ngram-cache.h
$(CXX) $(CXXFLAGS) -c $< -o $@
libllama.so: llama.o ggml.o $(OBJS) libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
@ -676,7 +718,8 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS) ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
clean: clean:
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS) rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
rm -vrf ggml-cuda/*.o
find examples pocs -type f -name "*.o" -delete find examples pocs -type f -name "*.o" -delete
# #
@ -745,7 +788,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp json-schema-to-grammar.o common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2) $(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
@ -753,6 +796,10 @@ gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@ -790,6 +837,10 @@ export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@ -802,9 +853,15 @@ lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-create.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) -o lookup-create $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-merge.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) -o lookup-merge $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-stats.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) -o lookup-stats $(LDFLAGS)
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@ -861,6 +918,10 @@ tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS) tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

View file

@ -32,6 +32,7 @@ let package = Package(
"ggml.c", "ggml.c",
"llama.cpp", "llama.cpp",
"unicode.cpp", "unicode.cpp",
"unicode-data.cpp",
"ggml-alloc.c", "ggml-alloc.c",
"ggml-backend.c", "ggml-backend.c",
"ggml-quants.c", "ggml-quants.c",

View file

@ -29,6 +29,8 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
## News ## News
- 2024.3 - 2024.3
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing. - Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE. - Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**. - Support detecting all GPUs with level-zero and same top **Max compute units**.
@ -81,7 +83,7 @@ For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, rec
|-|-|-| |-|-|-|
|Ampere Series| Support| A100| |Ampere Series| Support| A100|
### oneMKL ### oneMKL for CUDA
The current oneMKL release does not contain the oneMKL cuBlas backend. The current oneMKL release does not contain the oneMKL cuBlas backend.
As a result for Nvidia GPU's oneMKL must be built from source. As a result for Nvidia GPU's oneMKL must be built from source.
@ -114,7 +116,7 @@ You can choose between **F16** and **F32** build. F16 is faster for long-prompt
# Or, for F32: # Or, for F32:
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile . docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example # Note: you can also use the ".devops/server-intel.Dockerfile", which compiles the "server" example
``` ```
### Run ### Run
@ -254,16 +256,16 @@ Run without parameter:
Check the ID in startup log, like: Check the ID in startup log, like:
``` ```
found 4 SYCL devices: found 6 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3, | | | |Compute |Max compute|Max work|Max sub| |
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 |ID| Device Type| Name|capability|units |group |group |Global mem size|
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2, |--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280 | 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0, | 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280 | 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0, | 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 | 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
``` ```
|Attribute|Note| |Attribute|Note|
@ -271,12 +273,35 @@ found 4 SYCL devices:
|compute capability 1.3|Level-zero running time, recommended | |compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases| |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute llama.cpp 4. Device selection and execution of llama.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0** There are two device selection modes:
- Single device: Use one device assigned by user.
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|Device selection|Parameter|
|-|-|
|Single device|--split-mode none --main-gpu DEVICE_ID |
|Multiple devices|--split-mode layer (default)|
Examples:
- Use device 0:
```sh ```sh
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
or run by script:
```sh
./examples/sycl/run_llama2.sh 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
``` ```
or run by script: or run by script:
@ -289,12 +314,18 @@ Note:
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue. - By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
5. Check the device ID in output 5. Verify the device ID in output
Verify to see if the selected GPU is shown in the output, like:
Like:
``` ```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device detect 1 SYCL GPUs: [0] with top Max compute units:512
``` ```
Or
```
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Windows ## Windows
@ -355,7 +386,7 @@ a. Download & install cmake for Windows: https://cmake.org/download/
b. Download & install mingw-w64 make for Windows provided by w64devkit b. Download & install mingw-w64 make for Windows provided by w64devkit
- Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases). - Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
- Extract `w64devkit` on your pc. - Extract `w64devkit` on your pc.
@ -430,15 +461,16 @@ build\bin\main.exe
Check the ID in startup log, like: Check the ID in startup log, like:
``` ```
found 4 SYCL devices: found 6 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3, | | | |Compute |Max compute|Max work|Max sub| |
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 |ID| Device Type| Name|capability|units |group |group |Global mem size|
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2, |--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280 | 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0, | 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280 | 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0, | 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136 | 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
``` ```
@ -447,13 +479,31 @@ found 4 SYCL devices:
|compute capability 1.3|Level-zero running time, recommended | |compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases| |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute llama.cpp
Set device ID = 0 by **set GGML_SYCL_DEVICE=0** 4. Device selection and execution of llama.cpp
There are two device selection modes:
- Single device: Use one device assigned by user.
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|Device selection|Parameter|
|-|-|
|Single device|--split-mode none --main-gpu DEVICE_ID |
|Multiple devices|--split-mode layer (default)|
Examples:
- Use device 0:
``` ```
set GGML_SYCL_DEVICE=0 build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 ```
- Use multiple devices:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
``` ```
or run by script: or run by script:
@ -466,11 +516,17 @@ Note:
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue. - By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
5. Check the device ID in output
Like: 5. Verify the device ID in output
Verify to see if the selected GPU is shown in the output, like:
``` ```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```
use 1 SYCL GPUs: [0] with Max compute units:512
``` ```
## Environment Variable ## Environment Variable
@ -489,7 +545,6 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|Name|Value|Function| |Name|Value|Function|
|-|-|-| |-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| |GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer| |ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
@ -507,6 +562,9 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
## Q&A ## Q&A
Note: please add prefix **[SYCL]** in issue title, so that we will check it as soon as possible.
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`. - Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment. Miss to enable oneAPI running environment.
@ -538,4 +596,4 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
## Todo ## Todo
- Support multiple cards. - Support row layer split for multiple card runs.

View file

@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Recent API changes ### Recent API changes
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017 - [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328 - [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796 - [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
@ -17,10 +18,12 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics ### Hot topics
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
- Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017 - Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981 - Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962 - Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328 - Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
- Support loading sharded model, using `gguf-split` CLI https://github.com/ggerganov/llama.cpp/pull/6187
---- ----
@ -145,6 +148,7 @@ Typically finetunes of the base models below are supported as well.
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp) - Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig) - Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart) - Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
**UI:** **UI:**
@ -165,6 +169,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT) - [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) - [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL) - [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [RecurseChat](https://recurse.chat/) (proprietary)
- [semperai/amica](https://github.com/semperai/amica) - [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai) - [withcatai/catai](https://github.com/withcatai/catai)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT) - [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
@ -445,30 +450,27 @@ Building the program with BLAS support may lead to some performance improvements
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information. Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
- #### cuBLAS - #### CUDA
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling. For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
- Using `make`: - Using `make`:
```bash ```bash
make LLAMA_CUBLAS=1 make LLAMA_CUDA=1
``` ```
- Using `CMake`: - Using `CMake`:
```bash ```bash
mkdir build mkdir build
cd build cd build
cmake .. -DLLAMA_CUBLAS=ON cmake .. -DLLAMA_CUDA=ON
cmake --build . --config Release cmake --build . --config Release
``` ```
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance: The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
<!---
| LLAMA_CUDA_CUBLAS | Boolean | false | Use cuBLAS instead of custom CUDA kernels for prompt processing. Faster for all quantization formats except for q4_0 and q8_0, especially for k-quants. Increases VRAM usage (700 MiB for 7b, 970 MiB for 13b, 1430 MiB for 33b). |
--->
| Option | Legal values | Default | Description | | Option | Legal values | Default | Description |
|--------------------------------|------------------------|---------|-------------| |--------------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. | | LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
@ -630,6 +632,15 @@ Building the program with BLAS support may lead to some performance improvements
- #### Vulkan - #### Vulkan
> [!WARNING]
>
> Vulkan support has been broken in https://github.com/ggerganov/llama.cpp/pull/6122
> due to relying on `GGML_OP_GET_ROWS` which is not yet properly supported by the Vulkan backend,
> but should be fixed relatively soon (possibly in https://github.com/ggerganov/llama.cpp/pull/6155
> (ref: https://github.com/ggerganov/llama.cpp/pull/6122#issuecomment-2015327635)).
>
> Meanwhile, if you want to use the Vulkan backend, you should use the commit right before the breaking change, https://github.com/ggerganov/llama.cpp/commit/55c1b2a3bbd470e9e2a3a0618b92cf64a885f806
**With docker**: **With docker**:
You don't need to install Vulkan SDK. It will be installed inside the container. You don't need to install Vulkan SDK. It will be installed inside the container.

View file

@ -116,24 +116,26 @@ pub fn build(b: *std.build.Builder) !void {
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c"); const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c"); const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const unicode = make.obj("unicode", "unicode.cpp"); const unicode = make.obj("unicode", "unicode.cpp");
const unicode_data = make.obj("unicode-data", "unicode-data.cpp");
const llama = make.obj("llama", "llama.cpp"); const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp"); const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp"); const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp"); const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp"); const sampling = make.obj("sampling", "common/sampling.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
const train = make.obj("train", "common/train.cpp"); const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp"); const clip = make.obj("clip", "examples/llava/clip.cpp");
const llava = make.obj("llava", "examples/llava/llava.cpp"); const llava = make.obj("llava", "examples/llava/llava.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, console, grammar_parser }); _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo }); _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo }); _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo }); _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train }); _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train }); _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, grammar_parser, clip, llava }); const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, sampling, grammar_parser, json_schema_to_grammar, clip, llava });
if (server.target.isWindows()) { if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32"); server.linkSystemLibrary("ws2_32");
} }

View file

@ -40,7 +40,7 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
fi fi
if [ ! -z ${GG_BUILD_CUDA} ]; then if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUBLAS=1" CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUDA=1"
fi fi
if [ ! -z ${GG_BUILD_SYCL} ]; then if [ ! -z ${GG_BUILD_SYCL} ]; then
@ -412,8 +412,8 @@ function gg_run_open_llama_7b_v2 {
set -e set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}

View file

@ -47,6 +47,8 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif() endif()
set(TARGET json-schema-to-grammar)
add_library(${TARGET} OBJECT json-schema-to-grammar.cpp json-schema-to-grammar.h)
set(TARGET common) set(TARGET common)
@ -60,8 +62,11 @@ add_library(${TARGET} STATIC
console.cpp console.cpp
grammar-parser.h grammar-parser.h
grammar-parser.cpp grammar-parser.cpp
json.hpp
train.h train.h
train.cpp train.cpp
ngram-cache.h
ngram-cache.cpp
) )
if (BUILD_SHARED_LIBS) if (BUILD_SHARED_LIBS)

View file

@ -39,18 +39,21 @@
#endif #endif
#if defined(LLAMA_USE_CURL) #if defined(LLAMA_USE_CURL)
#include <curl/curl.h> #include <curl/curl.h>
#include <curl/easy.h>
#include <thread>
#include <future>
#endif #endif
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
#define GGML_USE_CUBLAS_SYCL #define GGML_USE_CUDA_SYCL
#endif #endif
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN) #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
#define GGML_USE_CUBLAS_SYCL_VULKAN #define GGML_USE_CUDA_SYCL_VULKAN
#endif #endif
#if defined(LLAMA_USE_CURL) #if defined(LLAMA_USE_CURL)
@ -61,7 +64,7 @@
#else #else
#include <sys/syslimits.h> #include <sys/syslimits.h>
#endif #endif
#define LLAMA_CURL_MAX_PATH_LENGTH PATH_MAX #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
#define LLAMA_CURL_MAX_HEADER_LENGTH 256 #define LLAMA_CURL_MAX_HEADER_LENGTH 256
#endif // LLAMA_USE_CURL #endif // LLAMA_USE_CURL
@ -101,7 +104,7 @@ int32_t get_num_physical_cores() {
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
} }
void process_escapes(std::string& input) { void process_escapes(std::string & input) {
std::size_t input_len = input.length(); std::size_t input_len = input.length();
std::size_t output_idx = 0; std::size_t output_idx = 0;
@ -154,8 +157,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
return result; return result;
} }
static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int & i, bool & invalid_param) { bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
std::string arg = argv[i];
llama_sampling_params& sparams = params.sparams; llama_sampling_params& sparams = params.sparams;
if (arg == "-s" || arg == "--seed") { if (arg == "-s" || arg == "--seed") {
@ -648,14 +650,6 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
params.model = argv[i]; params.model = argv[i];
return true; return true;
} }
if (arg == "-mu" || arg == "--model-url") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.model_url = argv[i];
return true;
}
if (arg == "-md" || arg == "--model-draft") { if (arg == "-md" || arg == "--model-draft") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -672,6 +666,30 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
params.model_alias = argv[i]; params.model_alias = argv[i];
return true; return true;
} }
if (arg == "-mu" || arg == "--model-url") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.model_url = argv[i];
return true;
}
if (arg == "-hfr" || arg == "--hf-repo") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.hf_repo = argv[i];
return true;
}
if (arg == "-hff" || arg == "--hf-file") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.hf_file = argv[i];
return true;
}
if (arg == "--lora") { if (arg == "--lora") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -843,9 +861,9 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
return true; return true;
} }
params.main_gpu = std::stoi(argv[i]); params.main_gpu = std::stoi(argv[i]);
#ifndef GGML_USE_CUBLAS_SYCL #ifndef GGML_USE_CUDA_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n"); fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL #endif // GGML_USE_CUDA_SYCL
return true; return true;
} }
if (arg == "--split-mode" || arg == "-sm") { if (arg == "--split-mode" || arg == "-sm") {
@ -871,9 +889,9 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
invalid_param = true; invalid_param = true;
return true; return true;
} }
#ifndef GGML_USE_CUBLAS_SYCL #ifndef GGML_USE_CUDA_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n"); fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL #endif // GGML_USE_CUDA_SYCL
return true; return true;
} }
if (arg == "--tensor-split" || arg == "-ts") { if (arg == "--tensor-split" || arg == "-ts") {
@ -899,9 +917,9 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
params.tensor_split[i] = 0.0f; params.tensor_split[i] = 0.0f;
} }
} }
#ifndef GGML_USE_CUBLAS_SYCL_VULKAN #ifndef GGML_USE_CUDA_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n"); fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL #endif // GGML_USE_CUDA_SYCL_VULKAN
return true; return true;
} }
if (arg == "--no-mmap") { if (arg == "--no-mmap") {
@ -948,6 +966,22 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
} }
return true; return true;
} }
if (arg == "-lcs" || arg == "--lookup-cache-static") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lookup_cache_static = argv[i];
return true;
}
if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lookup_cache_dynamic = argv[i];
return true;
}
if (arg == "--save-all-logits" || arg == "--kl-divergence-base") { if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -1028,8 +1062,8 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
params.ignore_eos = true; params.ignore_eos = true;
return true; return true;
} }
if (arg == "--no-penalize-nl") { if (arg == "--penalize-nl") {
sparams.penalize_nl = false; sparams.penalize_nl = true;
return true; return true;
} }
if (arg == "-l" || arg == "--logit-bias") { if (arg == "-l" || arg == "--logit-bias") {
@ -1056,7 +1090,8 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
return true; return true;
} }
if (arg == "-h" || arg == "--help") { if (arg == "-h" || arg == "--help") {
return false; gpt_print_usage(argc, argv, gpt_params());
exit(0);
} }
if (arg == "--version") { if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
@ -1200,13 +1235,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
std::replace(arg.begin(), arg.end(), '_', '-'); std::replace(arg.begin(), arg.end(), '_', '-');
} }
if (!gpt_params_find_arg(argc, argv, params, i, invalid_param)) { if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
throw std::invalid_argument("error: unknown argument: " + arg); throw std::invalid_argument("error: unknown argument: " + arg);
} }
} }
if (invalid_param) { if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg); throw std::invalid_argument("error: invalid parameter for argument: " + arg);
} }
if (params.prompt_cache_all && if (params.prompt_cache_all &&
(params.interactive || params.interactive_first || (params.interactive || params.interactive_first ||
params.instruct)) { params.instruct)) {
@ -1214,6 +1251,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
} }
// short-hand to avoid specifying --hf-file -> default it to --model
if (!params.hf_repo.empty() && params.hf_file.empty()) {
params.hf_file = params.model;
}
if (params.escape) { if (params.escape) {
process_escapes(params.prompt); process_escapes(params.prompt);
process_escapes(params.input_prefix); process_escapes(params.input_prefix);
@ -1331,7 +1373,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -dt N, --defrag-thold N\n"); printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold); printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --penalize-nl penalize newline tokens\n");
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n"); printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
@ -1403,12 +1445,20 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" layer range to apply the control vector(s) to, start and end inclusive\n"); printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
printf(" -m FNAME, --model FNAME\n"); printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str()); printf(" model path (default: %s)\n", params.model.c_str());
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: %s)\n", params.model_url.c_str());
printf(" -md FNAME, --model-draft FNAME\n"); printf(" -md FNAME, --model-draft FNAME\n");
printf(" draft model for speculative decoding\n"); printf(" draft model for speculative decoding (default: unused)\n");
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: unused)\n");
printf(" -hfr REPO, --hf-repo REPO\n");
printf(" Hugging Face model repository (default: unused)\n");
printf(" -hff FILE, --hf-file FILE\n");
printf(" Hugging Face model file (default: unused)\n");
printf(" -ld LOGDIR, --logdir LOGDIR\n"); printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n"); printf(" path under which to save YAML logs (no logging if unset)\n");
printf(" -lcs FNAME, --lookup-cache-static FNAME\n");
printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n");
printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n");
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
@ -1589,6 +1639,9 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "q4_1") { if (s == "q4_1") {
return GGML_TYPE_Q4_1; return GGML_TYPE_Q4_1;
} }
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
if (s == "q5_0") { if (s == "q5_0") {
return GGML_TYPE_Q5_0; return GGML_TYPE_Q5_0;
} }
@ -1652,25 +1705,13 @@ void llama_batch_add(
#ifdef LLAMA_USE_CURL #ifdef LLAMA_USE_CURL
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, static bool llama_download_file(CURL * curl, const char * url, const char * path) {
struct llama_model_params params) { bool force_download = false;
// Basic validation of the model_url
if (!model_url || strlen(model_url) == 0) {
fprintf(stderr, "%s: invalid model_url\n", __func__);
return NULL;
}
// Initialize libcurl globally
auto curl = curl_easy_init();
if (!curl) {
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
return NULL;
}
// Set the URL, allow to follow http redirection // Set the URL, allow to follow http redirection
curl_easy_setopt(curl, CURLOPT_URL, model_url); curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
#if defined(_WIN32) #if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows. // operating system. Currently implemented under MS-Windows.
@ -1679,16 +1720,16 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
// Check if the file already exists locally // Check if the file already exists locally
struct stat model_file_info; struct stat model_file_info;
auto file_exists = (stat(path_model, &model_file_info) == 0); auto file_exists = (stat(path, &model_file_info) == 0);
// If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files // If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files
char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0}; char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
char etag_path[LLAMA_CURL_MAX_PATH_LENGTH] = {0}; char etag_path[PATH_MAX] = {0};
snprintf(etag_path, sizeof(etag_path), "%s.etag", path_model); snprintf(etag_path, sizeof(etag_path), "%s.etag", path);
char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0}; char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
char last_modified_path[LLAMA_CURL_MAX_PATH_LENGTH] = {0}; char last_modified_path[PATH_MAX] = {0};
snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path_model); snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path);
if (file_exists) { if (file_exists) {
auto * f_etag = fopen(etag_path, "r"); auto * f_etag = fopen(etag_path, "r");
@ -1696,7 +1737,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
if (!fgets(etag, sizeof(etag), f_etag)) { if (!fgets(etag, sizeof(etag), f_etag)) {
fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path); fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path);
} else { } else {
fprintf(stderr, "%s: previous model file found %s: %s\n", __func__, etag_path, etag); fprintf(stderr, "%s: previous file found %s: %s\n", __func__, etag_path, etag);
} }
fclose(f_etag); fclose(f_etag);
} }
@ -1706,7 +1747,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) { if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) {
fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path); fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path);
} else { } else {
fprintf(stderr, "%s: previous model file found %s: %s\n", __func__, last_modified_path, fprintf(stderr, "%s: previous file found %s: %s\n", __func__, last_modified_path,
last_modified); last_modified);
} }
fclose(f_last_modified); fclose(f_last_modified);
@ -1724,6 +1765,11 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata; llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
// Convert header field name to lowercase
for (size_t i = 0; i < n_items && buffer[i] != ':'; ++i) {
buffer[i] = tolower(buffer[i]);
}
const char * etag_prefix = "etag: "; const char * etag_prefix = "etag: ";
if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) { if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) {
strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF
@ -1746,7 +1792,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
if (res != CURLE_OK) { if (res != CURLE_OK) {
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
return NULL; return false;
} }
long http_code = 0; long http_code = 0;
@ -1754,30 +1800,34 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
if (http_code != 200) { if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed // HEAD not supported, we don't know if the file has changed
// force trigger downloading // force trigger downloading
file_exists = false; force_download = true;
fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code); fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
} }
} }
// If the ETag or the Last-Modified headers are different: trigger a new download // If the ETag or the Last-Modified headers are different: trigger a new download
if (!file_exists || strcmp(etag, headers.etag) != 0 || strcmp(last_modified, headers.last_modified) != 0) { bool should_download = !file_exists
char path_model_temporary[LLAMA_CURL_MAX_PATH_LENGTH] = {0}; || force_download
snprintf(path_model_temporary, sizeof(path_model_temporary), "%s.downloadInProgress", path_model); || (strlen(headers.etag) > 0 && strcmp(etag, headers.etag) != 0)
|| (strlen(headers.last_modified) > 0 && strcmp(last_modified, headers.last_modified) != 0);
if (should_download) {
char path_temporary[PATH_MAX] = {0};
snprintf(path_temporary, sizeof(path_temporary), "%s.downloadInProgress", path);
if (file_exists) { if (file_exists) {
fprintf(stderr, "%s: deleting previous downloaded model file: %s\n", __func__, path_model); fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path);
if (remove(path_model) != 0) { if (remove(path) != 0) {
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path_model); fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path);
return NULL; return false;
} }
} }
// Set the output file // Set the output file
auto * outfile = fopen(path_model_temporary, "wb"); auto * outfile = fopen(path_temporary, "wb");
if (!outfile) { if (!outfile) {
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path_model); fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path);
return NULL; return false;
} }
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd); typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
@ -1791,15 +1841,30 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
// display download progress // display download progress
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L); curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download // start the download
fprintf(stderr, "%s: downloading model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
model_url, path_model, headers.etag, headers.last_modified); llama_download_hide_password_in_url(url).c_str(), path, headers.etag, headers.last_modified);
auto res = curl_easy_perform(curl); auto res = curl_easy_perform(curl);
if (res != CURLE_OK) { if (res != CURLE_OK) {
fclose(outfile); fclose(outfile);
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
return NULL; return false;
} }
long http_code = 0; long http_code = 0;
@ -1808,7 +1873,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
fclose(outfile); fclose(outfile);
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code); fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
return NULL; return false;
} }
// Clean up // Clean up
@ -1820,7 +1885,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
if (etag_file) { if (etag_file) {
fputs(headers.etag, etag_file); fputs(headers.etag, etag_file);
fclose(etag_file); fclose(etag_file);
fprintf(stderr, "%s: model etag saved %s: %s\n", __func__, etag_path, headers.etag); fprintf(stderr, "%s: file etag saved %s: %s\n", __func__, etag_path, headers.etag);
} }
} }
@ -1830,42 +1895,177 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
if (last_modified_file) { if (last_modified_file) {
fputs(headers.last_modified, last_modified_file); fputs(headers.last_modified, last_modified_file);
fclose(last_modified_file); fclose(last_modified_file);
fprintf(stderr, "%s: model last modified saved %s: %s\n", __func__, last_modified_path, fprintf(stderr, "%s: file last modified saved %s: %s\n", __func__, last_modified_path,
headers.last_modified); headers.last_modified);
} }
} }
if (rename(path_model_temporary, path_model) != 0) { if (rename(path_temporary, path) != 0) {
curl_easy_cleanup(curl);
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary, path);
return false;
}
}
return true;
}
struct llama_model * llama_load_model_from_url(
const char * model_url,
const char * path_model,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (!model_url || strlen(model_url) == 0) {
fprintf(stderr, "%s: invalid model_url\n", __func__);
return NULL;
}
// Initialize libcurl
auto * curl = curl_easy_init();
if (!curl) {
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
return NULL;
}
if (!curl) {
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
return NULL;
}
if (!llama_download_file(curl, model_url, path_model)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
if (!ctx_gguf) {
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_model_temporary, path_model);
return NULL; return NULL;
} }
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
} }
curl_easy_cleanup(curl); curl_easy_cleanup(curl);
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
fprintf(stderr, "\n%s: unexpected model file name: %s"
" n_split=%d\n", __func__, path_model, n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
fprintf(stderr, "\n%s: unexpected model url: %s"
" n_split=%d\n", __func__, model_url, n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
auto * curl = curl_easy_init();
bool res = llama_download_file(curl, split_url, split_path);
curl_easy_cleanup(curl);
return res;
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_load_model_from_file(path_model, params); return llama_load_model_from_file(path_model, params);
} }
struct llama_model * llama_load_model_from_hf(
const char * repo,
const char * model,
const char * path_model,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += model;
return llama_load_model_from_url(model_url.c_str(), path_model, params);
}
#else #else
struct llama_model * llama_load_model_from_url(const char * /*model_url*/, const char * /*path_model*/, struct llama_model * llama_load_model_from_url(
struct llama_model_params /*params*/) { const char * /*model_url*/,
const char * /*path_model*/,
const struct llama_model_params & /*params*/) {
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__); fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr; return nullptr;
} }
struct llama_model * llama_load_model_from_hf(
const char * /*repo*/,
const char * /*model*/,
const char * /*path_model*/,
const struct llama_model_params & /*params*/) {
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
#endif // LLAMA_USE_CURL #endif // LLAMA_USE_CURL
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) { std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto mparams = llama_model_params_from_gpt_params(params); auto mparams = llama_model_params_from_gpt_params(params);
llama_model * model = nullptr; llama_model * model = nullptr;
if (!params.model_url.empty()) {
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
} else if (!params.model_url.empty()) {
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams); model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
} else { } else {
model = llama_load_model_from_file(params.model.c_str(), mparams); model = llama_load_model_from_file(params.model.c_str(), mparams);
} }
if (model == NULL) { if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return std::make_tuple(nullptr, nullptr); return std::make_tuple(nullptr, nullptr);
@ -1905,7 +2105,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
} }
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]); const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]); float lora_scale = std::get<1>(params.lora_adapter[i]);
int err = llama_model_apply_lora_from_file(model, int err = llama_model_apply_lora_from_file(model,
lora_adapter.c_str(), lora_adapter.c_str(),
@ -2187,7 +2387,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false"); fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
@ -2289,7 +2489,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false"); fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);

View file

@ -88,18 +88,22 @@ struct gpt_params {
// // sampling parameters // // sampling parameters
struct llama_sampling_params sparams; struct llama_sampling_params sparams;
std::string model = "models/7B/ggml-model-f16.gguf"; // model path std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_url = ""; // model url to download std::string model_draft = ""; // draft model for speculative decoding
std::string model_draft = ""; // draft model for speculative decoding std::string model_alias = "unknown"; // model alias
std::string model_alias = "unknown"; // model alias std::string model_url = ""; // model url to download
std::string prompt = ""; std::string hf_repo = ""; // HF repo
std::string prompt_file = ""; // store the external prompt file name std::string hf_file = ""; // HF file
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string prompt = "";
std::string input_prefix = ""; // string to prefix user inputs with std::string prompt_file = ""; // store the external prompt file name
std::string input_suffix = ""; // string to suffix user inputs with std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files std::string logdir = ""; // directory in which to save YAML log files
std::string logits_file = ""; // file for saving *all* logits std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::vector<llama_model_kv_override> kv_overrides; std::vector<llama_model_kv_override> kv_overrides;
@ -139,7 +143,7 @@ struct gpt_params {
bool interactive_first = false; // wait for user input immediately bool interactive_first = false; // wait for user input immediately
bool multiline_input = false; // reverse the usage of `\` bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = false; // insert new sequences for decoding on-the-fly bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens bool ignore_eos = false; // ignore generated EOS tokens
@ -167,6 +171,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
std::string get_system_info(const gpt_params & params); std::string get_system_info(const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng); std::string gpt_random_prompt(std::mt19937 & rng);
@ -192,8 +198,8 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params); struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
struct llama_model_params params); struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
// Batch utils // Batch utils
@ -302,3 +308,10 @@ struct llama_control_vector_load_info {
// Load control vectors, scale each by strength, and add them together. // Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty} // On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos); llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
//
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";

View file

@ -0,0 +1,721 @@
#include "json-schema-to-grammar.h"
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using json = nlohmann::ordered_json;
const std::string SPACE_RULE = "\" \"?";
std::unordered_map<std::string, std::string> PRIMITIVE_RULES = {
{"boolean", "(\"true\" | \"false\") space"},
{"number", "(\"-\"? ([0-9] | [1-9] [0-9]*)) (\".\" [0-9]+)? ([eE] [-+]? [0-9]+)? space"},
{"integer", "(\"-\"? ([0-9] | [1-9] [0-9]*)) space"},
{"value", "object | array | string | number | boolean"},
{"object", "\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space"},
{"array", "\"[\" space ( value (\",\" space value)* )? \"]\" space"},
{"uuid", "\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space"},
{"string", " \"\\\"\" (\n"
" [^\"\\\\] |\n"
" \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])\n"
" )* \"\\\"\" space"},
{"null", "\"null\" space"}
};
std::vector<std::string> OBJECT_RULE_NAMES = {"object", "array", "string", "number", "boolean", "null", "value"};
std::unordered_map<std::string, std::string> DATE_RULES = {
{"date", "[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )"},
{"time", "([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )"},
{"date-time", "date \"T\" time"},
{"date-string", "\"\\\"\" date \"\\\"\" space"},
{"time-string", "\"\\\"\" time \"\\\"\" space"},
{"date-time-string", "\"\\\"\" date-time \"\\\"\" space"}
};
static bool is_reserved_name(const std::string & name) {
static std::unordered_set<std::string> RESERVED_NAMES;
if (RESERVED_NAMES.empty()) {
RESERVED_NAMES.insert("root");
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
for (const auto &p : DATE_RULES) RESERVED_NAMES.insert(p.first);
}
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
std::string::const_iterator searchStart(input.cbegin());
std::string::const_iterator searchEnd(input.cend());
while (std::regex_search(searchStart, searchEnd, match, regex)) {
result.append(searchStart, searchStart + match.position());
result.append(replacement(match));
searchStart = match.suffix().first;
}
result.append(searchStart, searchEnd);
return result;
}
static std::string format_literal(const std::string & literal) {
std::string escaped = replacePattern(literal, GRAMMAR_LITERAL_ESCAPE_RE, [&](const std::smatch & match) {
char c = match.str()[0];
return GRAMMAR_LITERAL_ESCAPES.at(c);
});
return "\"" + escaped + "\"";
}
class SchemaConverter {
private:
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
std::unordered_map<std::string, json> _refs;
std::unordered_set<std::string> _refs_being_resolved;
std::vector<std::string> _errors;
std::vector<std::string> _warnings;
std::string _add_rule(const std::string & name, const std::string & rule) {
std::string esc_name = regex_replace(name, INVALID_RULE_CHARS_RE, "-");
if (_rules.find(esc_name) == _rules.end() || _rules[esc_name] == rule) {
_rules[esc_name] = rule;
return esc_name;
} else {
int i = 0;
while (_rules.find(esc_name + std::to_string(i)) != _rules.end() && _rules[esc_name + std::to_string(i)] != rule) {
i++;
}
std::string key = esc_name + std::to_string(i);
_rules[key] = rule;
return key;
}
}
std::string _generate_union_rule(const std::string & name, const std::vector<json> & alt_schemas) {
std::vector<std::string> rules;
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
if (!(pattern.front() == '^' && pattern.back() == '$')) {
_errors.push_back("Pattern must start with '^' and end with '$'");
return "";
}
std::string sub_pattern = pattern.substr(1, pattern.length() - 2);
std::unordered_map<std::string, std::string> sub_rule_ids;
size_t i = 0;
size_t length = sub_pattern.length();
using literal_or_rule = std::pair<std::string, bool>;
auto to_rule = [&](const literal_or_rule & ls) {
auto is_literal = ls.second;
auto s = ls.first;
return is_literal ? "\"" + s + "\"" : s;
};
std::function<literal_or_rule()> transform = [&]() -> literal_or_rule {
size_t start = i;
std::vector<literal_or_rule> seq;
auto get_dot = [&]() {
std::string rule;
if (_dotall) {
rule = "[\\U00000000-\\U0010FFFF]";
} else {
rule = "[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]";
}
return _add_rule("dot", rule);
};
// Joins the sequence, merging consecutive literals together.
auto join_seq = [&]() {
std::vector<literal_or_rule> ret;
std::string literal;
auto flush_literal = [&]() {
if (literal.empty()) {
return false;
}
ret.push_back(std::make_pair(literal, true));
literal.clear();
return true;
};
for (const auto & item : seq) {
auto is_literal = item.second;
if (is_literal) {
literal += item.first;
} else {
flush_literal();
ret.push_back(item);
}
}
flush_literal();
std::vector<std::string> results;
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
};
while (i < length) {
char c = sub_pattern[i];
if (c == '.') {
seq.push_back(std::make_pair(get_dot(), false));
i++;
} else if (c == '(') {
i++;
if (i < length) {
if (sub_pattern[i] == '?') {
_warnings.push_back("Unsupported pattern syntax");
}
}
seq.push_back(std::make_pair("(" + to_rule(transform()) + ")", false));
} else if (c == ')') {
i++;
if (start > 0 && sub_pattern[start - 1] != '(') {
_errors.push_back("Unbalanced parentheses");
}
return join_seq();
} else if (c == '[') {
std::string square_brackets = std::string(1, c);
i++;
while (i < length && sub_pattern[i] != ']') {
if (sub_pattern[i] == '\\') {
square_brackets += sub_pattern.substr(i, 2);
i += 2;
} else {
square_brackets += sub_pattern[i];
i++;
}
}
if (i >= length) {
_errors.push_back("Unbalanced square brackets");
}
square_brackets += ']';
i++;
seq.push_back(std::make_pair(square_brackets, false));
} else if (c == '|') {
seq.push_back(std::make_pair("|", false));
i++;
} else if (c == '*' || c == '+' || c == '?') {
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
i++;
} else if (c == '{') {
std::string curly_brackets = std::string(1, c);
i++;
while (i < length && sub_pattern[i] != '}') {
curly_brackets += sub_pattern[i];
i++;
}
if (i >= length) {
_errors.push_back("Unbalanced curly brackets");
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
if (nums.size() == 1) {
min_times = max_times = std::stoi(nums[0]);
} else if (nums.size() != 2) {
_errors.push_back("Wrong number of values in curly brackets");
} else {
if (!nums[0].empty()) {
min_times = std::stoi(nums[0]);
}
if (!nums[1].empty()) {
max_times = std::stoi(nums[1]);
}
}
} catch (const std::invalid_argument & e) {
_errors.push_back("Invalid number in curly brackets");
return std::make_pair("", false);
}
auto &last = seq.back();
auto &sub = last.first;
auto sub_is_literal = last.second;
if (min_times == 0 && max_times == std::numeric_limits<int>::max()) {
sub += "*";
} else if (min_times == 0 && max_times == 1) {
sub += "?";
} else if (min_times == 1 && max_times == std::numeric_limits<int>::max()) {
sub += "+";
} else {
if (!sub_is_literal) {
std::string & sub_id = sub_rule_ids[sub];
if (sub_id.empty()) {
sub_id = _add_rule(name + "-" + std::to_string(sub_rule_ids.size()), sub);
}
sub = sub_id;
}
std::string result;
if (sub_is_literal && min_times > 0) {
result = "\"" + repeat(sub.substr(1, sub.length() - 2), min_times) + "\"";
} else {
for (int j = 0; j < min_times; j++) {
if (j > 0) {
result += " ";
}
result += sub;
}
}
if (min_times > 0 && min_times < max_times) {
result += " ";
}
if (max_times == std::numeric_limits<int>::max()) {
result += sub + "*";
} else {
for (int j = min_times; j < max_times; j++) {
if (j > min_times) {
result += " ";
}
result += sub + "?";
}
}
seq.back().first = result;
seq.back().second = false;
}
} else {
std::string literal;
auto is_non_literal = [&](char c) {
return NON_LITERAL_SET.find(c) != NON_LITERAL_SET.end();
};
while (i < length) {
if (sub_pattern[i] == '\\' && i < length - 1) {
char next = sub_pattern[i + 1];
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.find(next) != ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.end()) {
i++;
literal += sub_pattern[i];
i++;
} else {
literal += sub_pattern.substr(i, 2);
i += 2;
}
} else if (sub_pattern[i] == '"') {
literal += "\\\"";
i++;
} else if (!is_non_literal(sub_pattern[i]) &&
(i == length - 1 || literal.empty() || sub_pattern[i + 1] == '.' || !is_non_literal(sub_pattern[i + 1]))) {
literal += sub_pattern[i];
i++;
} else {
break;
}
}
if (!literal.empty()) {
seq.push_back(std::make_pair(literal, true));
}
}
}
return join_seq();
};
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
ref_name = visit(resolved, ref_name);
_refs_being_resolved.erase(ref);
}
return ref_name;
}
std::string _build_object_rule(
const std::vector<std::pair<std::string, json>> & properties,
const std::unordered_set<std::string> & required,
const std::string & name,
const json & additional_properties)
{
std::vector<std::string> required_props;
std::vector<std::string> optional_props;
std::unordered_map<std::string, std::string> prop_kv_rule_names;
for (const auto & kv : properties) {
const auto &prop_name = kv.first;
const auto &prop_schema = kv.second;
std::string prop_rule_name = visit(prop_schema, name + (name.empty() ? "" : "-") + prop_name);
prop_kv_rule_names[prop_name] = _add_rule(
name + (name.empty() ? "" : "-") + prop_name + "-kv",
format_literal(json(prop_name).dump()) + " space \":\" space " + prop_rule_name
);
if (required.find(prop_name) != required.end()) {
required_props.push_back(prop_name);
} else {
optional_props.push_back(prop_name);
}
}
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
std::string kv_rule = _add_rule(sub_name + "-kv", _add_rule("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
prop_kv_rule_names["*"] = kv_rule;
optional_props.push_back("*");
}
std::string rule = "\"{\" space ";
for (size_t i = 0; i < required_props.size(); i++) {
if (i > 0) {
rule += " \",\" space ";
}
rule += prop_kv_rule_names[required_props[i]];
}
if (!optional_props.empty()) {
rule += " (";
if (!required_props.empty()) {
rule += " \",\" space ( ";
}
std::function<std::string(const std::vector<std::string> &, bool)> get_recursive_refs = [&](const std::vector<std::string> & ks, bool first_is_optional) {
std::string res;
if (ks.empty()) {
return res;
}
std::string k = ks[0];
std::string kv_rule_name = prop_kv_rule_names[k];
if (k == "*") {
res = _add_rule(
name + (name.empty() ? "" : "-") + "additional-kvs",
kv_rule_name + " ( \",\" space " + kv_rule_name + " )*"
);
} else if (first_is_optional) {
res = "( \",\" space " + kv_rule_name + " )?";
} else {
res = kv_rule_name;
}
if (ks.size() > 1) {
res += " " + _add_rule(
name + (name.empty() ? "" : "-") + k + "-rest",
get_recursive_refs(std::vector<std::string>(ks.begin() + 1, ks.end()), true)
);
}
return res;
};
for (size_t i = 0; i < optional_props.size(); i++) {
if (i > 0) {
rule += " | ";
}
rule += get_recursive_refs(std::vector<std::string>(optional_props.begin() + i, optional_props.end()), false);
}
if (!required_props.empty()) {
rule += " )";
}
rule += " )?";
}
rule += " \"}\" space";
return rule;
}
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
/*
* Resolves all $ref fields in the given schema, fetching any remote schemas,
* replacing each $ref with absolute reference URL and populates _refs with the
* respective referenced (sub)schema dictionaries.
*/
std::function<void(json &)> visit_refs = [&](json & n) {
if (n.is_array()) {
for (auto & x : n) {
visit_refs(x);
}
} else if (n.is_object()) {
if (n.contains("$ref")) {
std::string ref = n["$ref"];
if (_refs.find(ref) == _refs.end()) {
json target;
if (ref.find("https://") == 0) {
std::string base_url = ref.substr(0, ref.find('#'));
auto it = _refs.find(base_url);
if (it != _refs.end()) {
target = it->second;
} else {
// Fetch the referenced schema and resolve its refs
auto referenced = _fetch_json(ref);
resolve_refs(referenced, base_url);
_refs[base_url] = referenced;
}
if (ref.find('#') == std::string::npos || ref.substr(ref.find('#') + 1).empty()) {
return;
}
} else if (ref.find("#/") == 0) {
target = schema;
n["$ref"] = url + ref;
ref = url + ref;
} else {
_errors.push_back("Unsupported ref: " + ref);
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
} else {
for (auto & kv : n.items()) {
visit_refs(kv.value());
}
}
}
};
visit_refs(schema);
}
std::string _generate_constant_rule(const json & value) {
return format_literal(value.dump());
}
std::string visit(const json & schema, const std::string & name) {
json schema_type = schema.contains("type") ? schema["type"] : json();
std::string schema_format = schema.contains("format") ? schema["format"].get<std::string>() : "";
std::string rule_name = is_reserved_name(name) ? name + "-" : name.empty() ? "root" : name;
if (schema.contains("$ref")) {
return _add_rule(rule_name, _resolve_ref(schema["$ref"]));
} else if (schema.contains("oneOf") || schema.contains("anyOf")) {
std::vector<json> alt_schemas = schema.contains("oneOf") ? schema["oneOf"].get<std::vector<json>>() : schema["anyOf"].get<std::vector<json>>();
return _add_rule(rule_name, _generate_union_rule(name, alt_schemas));
} else if (schema_type.is_array()) {
std::vector<json> schema_types;
for (const auto & t : schema_type) {
schema_types.push_back({{"type", t}});
}
return _add_rule(rule_name, _generate_union_rule(name, schema_types));
} else if (schema.contains("const")) {
return _add_rule(rule_name, _generate_constant_rule(schema["const"]));
} else if (schema.contains("enum")) {
std::vector<std::string> enum_values;
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, join(enum_values.begin(), enum_values.end(), " | "));
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
std::unordered_set<std::string> required;
if (schema.contains("required") && schema["required"].is_array()) {
for (const auto & item : schema["required"]) {
if (item.is_string()) {
required.insert(item.get<std::string>());
}
}
}
std::vector<std::pair<std::string, json>> properties;
if (schema.contains("properties")) {
for (const auto & prop : schema["properties"].items()) {
properties.emplace_back(prop.key(), prop.value());
}
}
return _add_rule(rule_name,
_build_object_rule(
properties, required, name,
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
std::unordered_set<std::string> required;
std::vector<std::pair<std::string, json>> properties;
std::string hybrid_name = name;
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
if (comp_schema.contains("$ref")) {
add_component(_refs[comp_schema["$ref"]], is_required);
} else if (comp_schema.contains("properties")) {
for (const auto & prop : comp_schema["properties"].items()) {
properties.emplace_back(prop.key(), prop.value());
if (is_required) {
required.insert(prop.key());
}
}
} else {
// todo warning
}
};
for (auto & t : schema["allOf"]) {
if (t.contains("anyOf")) {
for (auto & tt : t["anyOf"]) {
add_component(tt, false);
}
} else {
add_component(t, true);
}
}
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
if (items.is_array()) {
std::string rule = "\"[\" space ";
for (size_t i = 0; i < items.size(); i++) {
if (i > 0) {
rule += " \",\" space ";
}
rule += visit(items[i], name + (name.empty() ? "" : "-") + "tuple-" + std::to_string(i));
}
rule += " \"]\" space";
return _add_rule(rule_name, rule);
} else {
std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item");
std::string list_item_operator = "( \",\" space " + item_rule_name + " )";
std::string successive_items;
int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0;
json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json();
int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : -1;
if (min_items > 0) {
successive_items += repeat(list_item_operator, min_items - 1);
min_items--;
}
if (max_items >= 0 && max_items > min_items) {
successive_items += repeat(list_item_operator + "?", max_items - min_items - 1);
} else {
successive_items += list_item_operator + "*";
}
std::string rule;
if (min_items == 0) {
rule = "\"[\" space ( " + item_rule_name + " " + successive_items + " )? \"]\" space";
} else {
rule = "\"[\" space " + item_rule_name + " " + successive_items + " \"]\" space";
}
return _add_rule(rule_name, rule);
}
} else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) {
return _visit_pattern(schema["pattern"], rule_name);
} else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) {
return _add_rule(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid"));
} else if ((schema_type.is_null() || schema_type == "string") && DATE_RULES.find(schema_format) != DATE_RULES.end()) {
for (const auto & kv : DATE_RULES) {
_add_rule(kv.first, kv.second);
}
return schema_format + "-string";
} else if (schema.empty() || schema_type == "object") {
for (const auto & n : OBJECT_RULE_NAMES) {
_add_rule(n, PRIMITIVE_RULES.at(n));
}
return _add_rule(rule_name, "object");
} else {
if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) {
_errors.push_back("Unrecognized schema: " + schema.dump());
return "";
}
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return _add_rule(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>()));
}
}
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
}
}
std::string format_grammar() {
std::stringstream ss;
for (const auto & kv : _rules) {
ss << kv.first << " ::= " << kv.second << std::endl;
}
return ss.str();
}
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
converter.check_errors();
return converter.format_grammar();
}

View file

@ -0,0 +1,4 @@
#pragma once
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);

File diff suppressed because it is too large Load diff

View file

@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// INTERNAL, DO NOT USE // INTERNAL, DO NOT USE
// USE LOG() INSTEAD // USE LOG() INSTEAD
// //
#ifndef _MSC_VER #if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
#define LOG_IMPL(str, ...) \ #define LOG_IMPL(str, ...) \
do { \ do { \
if (LOG_TARGET != nullptr) \ if (LOG_TARGET != nullptr) \
@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// INTERNAL, DO NOT USE // INTERNAL, DO NOT USE
// USE LOG_TEE() INSTEAD // USE LOG_TEE() INSTEAD
// //
#ifndef _MSC_VER #if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
#define LOG_TEE_IMPL(str, ...) \ #define LOG_TEE_IMPL(str, ...) \
do { \ do { \
if (LOG_TARGET != nullptr) \ if (LOG_TARGET != nullptr) \
@ -566,6 +566,7 @@ inline void log_print_usage()
printf(" --log-new Create a separate new log file on start. " printf(" --log-new Create a separate new log file on start. "
"Each log file will have unique name: \"<name>.<ID>.log\"\n"); "Each log file will have unique name: \"<name>.<ID>.log\"\n");
printf(" --log-append Don't truncate the old log file.\n"); printf(" --log-append Don't truncate the old log file.\n");
printf("\n");
} }
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv) #define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)

282
common/ngram-cache.cpp Normal file
View file

@ -0,0 +1,282 @@
#include "ngram-cache.h"
#include "common.h"
#include "log.h"
#include <cstdint>
#include <fstream>
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
std::vector<llama_token> & inp, int nnew, bool print_progress) {
const int64_t t_start_ms = ggml_time_ms();
const int64_t inp_size = inp.size();
const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1);
int64_t n_done = 0;
for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) {
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
for (int64_t i = i_start; i < inp_size; ++i) {
const int64_t ngram_start = i - ngram_size;
llama_ngram ngram(&inp[ngram_start], ngram_size);
const llama_token token = inp[i];
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
if (part_it == ngram_cache.end()) {
llama_ngram_cache_part part;
part.emplace(token, 1);
ngram_cache.emplace(ngram, part);
} else {
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
if (token_count_it == part_it->second.end()) {
part_it->second.emplace(token, 1);
} else {
token_count_it->second++;
}
}
++n_done;
if (print_progress && n_done % 10000000 == 0) {
const int64_t t_now_ms = ggml_time_ms();
const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done;
const int64_t eta_min = eta_ms / (60*1000);
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s);
}
}
}
}
// Helper function to get a token from the combined, speculative sequence of inp and draft.
static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) {
return i < inp.size() ? inp[i] : draft[1 + i - inp.size()];
}
// If sample size or percentage are below these thresholds the draft is aborted early:
constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1};
constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50};
constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
// Helper function that tries to draft a token from only the static ngram cache:
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
if (part_static_it == nc_static.end()) {
return -1;
}
const llama_ngram_cache_part part_static = part_static_it->second;
int max_count_static = 0;
int sum_count_static = 0;
llama_token max_token = -1;
for (std::pair<llama_token, int> token_count_static : part_static) {
const llama_token token = token_count_static.first;
const int32_t count_static = token_count_static.second;
if (count_static > max_count_static) {
max_token = token;
max_count_static = count_static;
}
sum_count_static += count_static;
}
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
return -1;
}
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
return -1;
}
return max_token;
}
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
static llama_token try_draft(
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
const int * min_sample_size, const int * min_percent) {
llama_token drafted_token = -1;
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
const llama_ngram ngram_primary = ngrams_primary[i];
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
if (part_primary_it == nc_primary.end()) {
continue;
}
const llama_ngram_cache_part part_primary = part_primary_it->second;
int max_count_primary = 0;
int max_count_static = 0;
int sum_count_primary = 0;
llama_token max_token = -1;
for (std::pair<llama_token, int> token_count_primary : part_primary) {
const llama_token token = token_count_primary.first;
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
const int32_t count_primary = token_count_primary.second;
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
if (count_primary*count_static > max_count_primary*max_count_static) {
max_token = token;
max_count_primary = count_primary;
max_count_static = count_static;
}
sum_count_primary += count_primary;
}
if (sum_count_primary < min_sample_size[i]) {
continue;
}
if (100*max_count_primary < min_percent[i]*sum_count_primary) {
continue;;
}
drafted_token = max_token;
}
return drafted_token;
}
void llama_ngram_cache_draft(
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
) {
GGML_ASSERT(draft.size() == 1);
const int inp_size = inp.size();
if (inp_size < LLAMA_NGRAM_STATIC) {
return;
}
while ((int) draft.size()-1 < n_draft) {
llama_token drafted_token = -1;
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
llama_ngram ngram_static;
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
}
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
llama_ngram_cache_part part_static;
if (part_static_it != nc_static.end()) {
part_static = part_static_it->second;
}
// cd = context + dynamic
std::vector<llama_ngram> ngrams_cd;
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
llama_ngram ngram_cd;
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
}
ngrams_cd.push_back(ngram_cd);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_static, ngram_static);
}
if (drafted_token == -1) {
break;
}
LOG(" - draft candidate: token=%d\n", drafted_token);
draft.push_back(drafted_token);
}
}
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
std::ofstream file_out(filename, std::ios::binary);
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
const llama_ngram ngram = item.first;
llama_ngram_cache_part token_counts = item.second;
GGML_ASSERT(!token_counts.empty());
const int32_t ntokens = token_counts.size();
GGML_ASSERT(ntokens > 0);
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
for (std::pair<llama_token, int32_t> item2 : token_counts) {
const llama_token token = item2.first;
const int32_t count = item2.second;
GGML_ASSERT(count > 0);
file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token));
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
}
}
}
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
std::ifstream hashmap_file(filename, std::ios::binary);
if (!hashmap_file) {
throw std::ifstream::failure("Unable to open file " + filename);
}
llama_ngram_cache ngram_cache;
llama_ngram ngram;
int32_t ntokens;
llama_token token;
int32_t count;
char * ngramc = reinterpret_cast<char*>(&ngram);
char * ntokensc = reinterpret_cast<char*>(&ntokens);
char * tokenc = reinterpret_cast<char*>(&token);
char * countc = reinterpret_cast<char*>(&count);
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
GGML_ASSERT(ntokens > 0);
llama_ngram_cache_part token_counts;
for (int i = 0; i < ntokens; ++i) {
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token)));
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t)));
GGML_ASSERT(count > 0);
token_counts.emplace(token, count);
}
ngram_cache.emplace(ngram, token_counts);
}
GGML_ASSERT(hashmap_file.eof());
return ngram_cache;
}
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
const llama_ngram ngram = ngram_part.first;
llama_ngram_cache_part part = ngram_part.second;
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
if (part_merged_it == ngram_cache_target.end()) {
ngram_cache_target.emplace(ngram, part);
continue;
}
for (std::pair<llama_token, int32_t> token_count : part) {
const llama_token token = token_count.first;
const int32_t count = token_count.second;
GGML_ASSERT(count > 0);
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
if (token_count_merged_it == part_merged_it->second.end()) {
part_merged_it->second.emplace(token, count);
continue;
}
token_count_merged_it->second += count;
}
}
}

94
common/ngram-cache.h Normal file
View file

@ -0,0 +1,94 @@
#pragma once
#include "llama.h"
#include <unordered_map>
#include <string>
#include <vector>
#define LLAMA_NGRAM_MIN 1
#define LLAMA_NGRAM_MAX 4
#define LLAMA_NGRAM_STATIC 2
// Data structures to map n-grams to empirical token probabilities:
struct llama_ngram {
llama_token tokens[LLAMA_NGRAM_MAX];
llama_ngram() {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = -1;
}
}
llama_ngram(const llama_token * input, const int ngram_size) {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = i < ngram_size ? input[i] : -1;
}
}
bool operator==(const llama_ngram & other) const {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
if (tokens[i] != other.tokens[i]) {
return false;
}
}
return true;
}
};
struct llama_ngram_hash_function {
size_t operator()(const llama_ngram & ngram) const {
size_t hash = 0;
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
}
return hash;
}
};
// token -> number of times token has been seen
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
// n-gram -> empirical distribution of following tokens
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
// Update an ngram cache with tokens.
// ngram_cache: the cache to modify.
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
// inp_data: the token sequence with which to update ngram_cache.
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
// print_progress: whether to print progress to stderr.
//
// In order to get correct results inp_data can ONLY BE APPENDED TO.
// Changes in the middle need a complete rebuild.
void llama_ngram_cache_update(
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
// Try to draft tokens from ngram caches.
// inp: the tokens generated so far.
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
// n_draft: maximum number of tokens to add to draft.
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
// nc_context: ngram cache based on current context.
// nc_dynamic: ngram cache based on previous user generations.
// nc_static: ngram cache generated from a large text corpus, used for validation.
void llama_ngram_cache_draft(
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
// Save an ngram cache to a file.
// ngram_cache: the ngram cache to save.
// filename: the path under which to save the ngram cache.
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
// Load an ngram cache saved with llama_ngram_cache_save.
// filename: the path from which to load the ngram cache.
// returns: an ngram cache containing the information saved to filename.
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
// Merge two ngram caches.
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);

View file

@ -168,77 +168,20 @@ static llama_token llama_sampling_sample_impl(
bool is_resampling) { // Add a parameter to indicate if we are resampling bool is_resampling) { // Add a parameter to indicate if we are resampling
const llama_sampling_params & params = ctx_sampling->params; const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp; const float temp = params.temp;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const int mirostat = params.mirostat; const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau; const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta; const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
std::vector<float> original_logits;
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
if (!is_resampling) {
GGML_ASSERT(!original_logits.empty());
}
llama_token id = 0; llama_token id = 0;
// Get a pointer to the logits // Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx); float * logits = llama_get_logits_ith(ctx_main, idx);
// Declare original_logits at the beginning of the function scope
std::vector<float> original_logits;
if (!is_resampling) {
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
}
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
// If we are in the resampling phase, apply grammar checks before sampling logic
if (is_resampling && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
if (temp < 0.0) { if (temp < 0.0) {
// greedy sampling, with probs // greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p); llama_sample_softmax(ctx_main, &cur_p);
@ -302,11 +245,13 @@ static llama_token llama_sampling_sample_impl(
return id; return id;
} }
static llama_token_data_array llama_sample_probability_distribution_impl( static llama_token_data_array llama_sampling_prepare_impl(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,
struct llama_context * ctx_cfg, struct llama_context * ctx_cfg,
const int idx) { const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
const llama_sampling_params & params = ctx_sampling->params; const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main)); const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
@ -315,6 +260,7 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
const float penalty_repeat = params.penalty_repeat; const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq; const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present; const float penalty_present = params.penalty_present;
const bool penalize_nl = params.penalize_nl; const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev; auto & prev = ctx_sampling->prev;
@ -323,8 +269,10 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
// Get a pointer to the logits // Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx); float * logits = llama_get_logits_ith(ctx_main, idx);
// Declare original_logits at the beginning of the function scope if (apply_grammar && original_logits != NULL) {
std::vector<float> original_logits; // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
}
// apply params.logit_bias map // apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
@ -364,12 +312,11 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
} }
} }
// apply grammar checks // apply grammar checks before sampling logic
if (ctx_sampling->grammar != NULL) { if (apply_grammar && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar); llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
} }
llama_sample_softmax(ctx_main, &cur_p);
return cur_p; return cur_p;
} }
@ -382,12 +329,14 @@ llama_token llama_sampling_sample(
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false); return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
} }
llama_token_data_array llama_sampling_probability_distribution( llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,
struct llama_context * ctx_cfg, struct llama_context * ctx_cfg,
const int idx) { const int idx,
return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx); bool apply_grammar,
std::vector<float> * original_logits) {
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
} }
void llama_sampling_accept( void llama_sampling_accept(

View file

@ -32,13 +32,13 @@ typedef struct llama_sampling_params {
float dynatemp_range = 0.00f; // 0.0 = disabled float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.10f; // 1.0 = disabled float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token bool penalize_nl = false; // consider newlines as a repeatable token
std::vector<llama_sampler_type> samplers_sequence = { std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K, llama_sampler_type::TOP_K,
@ -131,12 +131,14 @@ llama_token llama_sampling_sample(
struct llama_context * ctx_cfg, struct llama_context * ctx_cfg,
int idx = 0); int idx = 0);
// returns the probability that token of given id will be sampled // Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
llama_token_data_array llama_sampling_probability_distribution( llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,
struct llama_context * ctx_cfg, struct llama_context * ctx_cfg,
int idx = 0); int idx = 0,
bool apply_grammar = true,
std::vector<float> * original_logits = nullptr);
void llama_sampling_accept( void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,

View file

@ -93,31 +93,42 @@ class Model(ABC):
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
self.gguf_writer.add_context_length(n_ctx) self.gguf_writer.add_context_length(n_ctx)
print(f"gguf: context length = {n_ctx}")
n_embd = self.find_hparam(["hidden_size", "n_embd"]) n_embd = self.find_hparam(["hidden_size", "n_embd"])
self.gguf_writer.add_embedding_length(n_embd) self.gguf_writer.add_embedding_length(n_embd)
print(f"gguf: embedding length = {n_embd}")
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
self.gguf_writer.add_feed_forward_length(n_ff) self.gguf_writer.add_feed_forward_length(n_ff)
print(f"gguf: feed forward length = {n_ff}")
n_head = self.find_hparam(["num_attention_heads", "n_head"]) n_head = self.find_hparam(["num_attention_heads", "n_head"])
self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count(n_head)
print(f"gguf: head count = {n_head}")
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
self.gguf_writer.add_head_count_kv(n_head_kv) self.gguf_writer.add_head_count_kv(n_head_kv)
print(f"gguf: key-value head count = {n_head_kv}")
if (rope_theta := self.hparams.get("rope_theta")) is not None: if (rope_theta := self.hparams.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta) self.gguf_writer.add_rope_freq_base(rope_theta)
print(f"gguf: rope theta = {rope_theta}")
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
print(f"gguf: rms norm epsilon = {f_rms_eps}")
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_eps(f_norm_eps) self.gguf_writer.add_layer_norm_eps(f_norm_eps)
print(f"gguf: layer norm epsilon = {f_norm_eps}")
if (n_experts := self.hparams.get("num_local_experts")) is not None: if (n_experts := self.hparams.get("num_local_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts) self.gguf_writer.add_expert_count(n_experts)
print(f"gguf: expert count = {n_experts}")
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used) self.gguf_writer.add_expert_used_count(n_experts_used)
print(f"gguf: experts used count = {n_experts_used}")
self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_file_type(self.ftype)
print(f"gguf: file type = {self.ftype}")
def write_tensors(self): def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
@ -320,7 +331,7 @@ class Model(ABC):
tokenizer = SentencePieceProcessor(str(tokenizer_path)) tokenizer = SentencePieceProcessor(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
for token_id in range(vocab_size): for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(token_id) piece = tokenizer.id_to_piece(token_id)
text = piece.encode("utf-8") text = piece.encode("utf-8")
score = tokenizer.get_score(token_id) score = tokenizer.get_score(token_id)
@ -345,9 +356,13 @@ class Model(ABC):
added_tokens_json = json.load(f) added_tokens_json = json.load(f)
for key in added_tokens_json: for key in added_tokens_json:
tokens.append(key.encode("utf-8")) key = key.encode("utf-8")
scores.append(-1000.0) if key not in tokens:
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) tokens.append(key)
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
assert len(tokens) == vocab_size
self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
@ -1051,6 +1066,21 @@ class MixtralModel(Model):
self._set_vocab_sentencepiece() self._set_vocab_sentencepiece()
@Model.register("GrokForCausalLM")
class GrokModel(Model):
model_arch = gguf.MODEL_ARCH.GROK
def set_vocab(self):
self._set_vocab_sentencepiece()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_name("Grok")
@Model.register("MiniCPMForCausalLM") @Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model): class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM model_arch = gguf.MODEL_ARCH.MINICPM

View file

@ -1,7 +1,7 @@
# Token generation performance troubleshooting # Token generation performance troubleshooting
## Verifying that the model is running on the GPU with cuBLAS ## Verifying that the model is running on the GPU with CUDA
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example: Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell ```shell
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some " ./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
``` ```

View file

@ -21,6 +21,7 @@ else()
add_subdirectory(embedding) add_subdirectory(embedding)
add_subdirectory(finetune) add_subdirectory(finetune)
add_subdirectory(gritlm) add_subdirectory(gritlm)
add_subdirectory(gguf-split)
add_subdirectory(infill) add_subdirectory(infill)
add_subdirectory(llama-bench) add_subdirectory(llama-bench)
add_subdirectory(llava) add_subdirectory(llava)
@ -33,6 +34,7 @@ else()
add_subdirectory(perplexity) add_subdirectory(perplexity)
add_subdirectory(quantize) add_subdirectory(quantize)
add_subdirectory(quantize-stats) add_subdirectory(quantize-stats)
add_subdirectory(retrieval)
add_subdirectory(save-load-state) add_subdirectory(save-load-state)
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(passkey) add_subdirectory(passkey)

View file

@ -48,6 +48,8 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is"; params.prompt = "Hello my name is";
} }
process_escapes(params.prompt);
// init LLM // init LLM
llama_backend_init(); llama_backend_init();
@ -78,7 +80,7 @@ int main(int argc, char ** argv) {
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234; ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req; ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel); ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_seq_max = n_parallel; ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads; ctx_params.n_threads = params.n_threads;

View file

@ -21,6 +21,8 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface.
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin` `$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
Now you can use the model with a command like: Now you can use the model with a command like:
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256` `$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`

View file

@ -1,6 +1,7 @@
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#include "common.h" #include "common.h"
#include "log.h"
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
@ -78,111 +79,101 @@ typedef struct {
struct TransformerWeights { struct TransformerWeights {
// token embedding table // token embedding table
float* token_embedding_table; // (vocab_size, dim) std::vector<float> token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms // weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim) std::vector<float> rms_ffn_weight; // (layer, dim)
// weights for matmuls // weights for matmuls
float* wq; // (layer, dim, dim) std::vector<float> wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim) std::vector<float> wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim) std::vector<float> wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim) std::vector<float> wo; // (layer, dim, dim)
// weights for ffn // weights for ffn
float* w1; // (layer, hidden_dim, dim) std::vector<float> w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim) std::vector<float> w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim) std::vector<float> w3; // (layer, hidden_dim, dim)
// final rmsnorm // final rmsnorm
float* rms_final_weight; // (dim,) std::vector<float> rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings // freq_cis for RoPE relatively positional embeddings
// float* freq_cis_real; // (seq_len, dim/2) // std::vector<float> freq_cis_real; // (seq_len, dim/2)
// float* freq_cis_imag; // (seq_len, dim/2) // std::vector<float> freq_cis_imag; // (seq_len, dim/2)
// (optional) classifier weights for the logits, on the last layer // (optional) classifier weights for the logits, on the last layer
float* wcls; std::vector<float> wcls;
~TransformerWeights() {
delete[] token_embedding_table;
delete[] rms_att_weight;
delete[] rms_ffn_weight;
delete[] wq;
delete[] wk;
delete[] wv;
delete[] wo;
delete[] w1;
delete[] w2;
delete[] w3;
delete[] rms_final_weight;
delete[] wcls;
}
}; };
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) { static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
// we calloc instead of malloc to keep valgrind happy const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
w->token_embedding_table = new float[p->vocab_size * p->dim](); try {
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); w->token_embedding_table.resize(p->vocab_size * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
w->rms_att_weight = new float[p->n_layers * p->dim](); w->rms_att_weight.resize(p->n_layers * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
w->rms_ffn_weight = new float[p->n_layers * p->dim](); w->rms_ffn_weight.resize(p->n_layers * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
w->wq = new float[p->n_layers * p->dim * p->dim](); w->wq.resize(p->n_layers * p->dim * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wk = new float[p->n_layers * p->dim * p->dim](); w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
w->wv = new float[p->n_layers * p->dim * p->dim](); w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
w->wo = new float[p->n_layers * p->dim * p->dim](); w->wo.resize(p->n_layers * p->dim * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim](); w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim](); w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim](); w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->rms_final_weight = new float[p->dim](); w->rms_final_weight.resize(p->dim);
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
if (shared_weights) { if (shared_weights) {
w->wcls = NULL; w->wcls = {};
} else { } else {
w->wcls = new float[p->vocab_size * p->dim](); w->wcls.resize(p->vocab_size * p->dim);
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
}
}
catch (std::length_error &) {
die("Invalid configuration. Failed to allocate memory for weights");
} }
} }
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) { static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1; if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1; if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1; if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1; if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1; if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1; if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1; if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
// Skip freq_cis_real & freq_cis_imag // Skip freq_cis_real & freq_cis_imag
int head_size = p->dim / p->n_heads; int head_size = p->dim / p->n_heads;
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR); fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1; if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
// Check we didn't forget to read anything // Check we didn't forget to read anything
auto curr = ftell(f); auto curr = ftell(f);
fseek(f, 0, SEEK_END); fseek(f, 0, SEEK_END);
auto end = ftell(f); auto end = ftell(f);
if (curr != end) { if (curr != end) {
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end); LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
return 1; return 1;
} }
@ -190,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bo
} }
static void print_sample_weights(TransformerWeights *w){ static void print_sample_weights(TransformerWeights *w){
printf("----- Quick print of first of the weight vales of all the variables\n"); LOG("----- Quick print of first of the weight vales of all the variables\n");
printf("%f\n", w->token_embedding_table[0]); LOG("%f\n", w->token_embedding_table[0]);
printf("%f\n", w->rms_att_weight[0]); LOG("%f\n", w->rms_att_weight[0]);
printf("%f\n", w->rms_ffn_weight[0]); LOG("%f\n", w->rms_ffn_weight[0]);
printf("%f\n", w->wq[0]); LOG("%f\n", w->wq[0]);
printf("%f\n", w->wk[0]); LOG("%f\n", w->wk[0]);
printf("%f\n", w->wv[0]); LOG("%f\n", w->wv[0]);
printf("%f\n", w->wo[0]); LOG("%f\n", w->wo[0]);
printf("%f\n", w->w1[0]); LOG("%f\n", w->w1[0]);
printf("%f\n", w->w2[0]); LOG("%f\n", w->w2[0]);
printf("%f\n", w->w3[0]); LOG("%f\n", w->w3[0]);
printf("%f\n", w->rms_att_weight[0]); LOG("%f\n", w->rms_att_weight[0]);
if (w->wcls) printf("%f\n", w->wcls[0]); if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -225,14 +216,16 @@ struct llama_vocab {
}; };
struct my_llama_hparams { struct my_llama_hparams {
uint32_t n_vocab = 32000; uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096; uint32_t n_embd = 4096;
uint32_t n_ff = 11008; uint32_t n_ff = 11008;
uint32_t n_mult = 4; uint32_t n_mult = 4;
uint32_t n_head = 32; uint32_t n_head = 32;
uint32_t n_layer = 32; uint32_t n_head_kv = 32;
uint32_t n_rot = 64; uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const my_llama_hparams& other) const { bool operator!=(const my_llama_hparams& other) const {
return memcmp(this, &other, sizeof(my_llama_hparams)); return memcmp(this, &other, sizeof(my_llama_hparams));
} }
@ -325,14 +318,30 @@ struct train_params {
}; };
static void print_params(struct my_llama_hparams * params) { static void print_params(struct my_llama_hparams * params) {
printf("%s: n_vocab: %u\n", __func__, params->n_vocab); LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
printf("%s: n_ctx: %u\n", __func__, params->n_ctx); LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
printf("%s: n_embd: %u\n", __func__, params->n_embd); LOG("%s: n_embd: %u\n", __func__, params->n_embd);
printf("%s: n_mult: %u\n", __func__, params->n_mult); LOG("%s: n_mult: %u\n", __func__, params->n_mult);
printf("%s: n_head: %u\n", __func__, params->n_head); LOG("%s: n_head: %u\n", __func__, params->n_head);
printf("%s: n_ff: %u\n", __func__, params->n_ff); LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
printf("%s: n_layer: %u\n", __func__, params->n_layer); LOG("%s: n_ff: %u\n", __func__, params->n_ff);
printf("%s: n_rot: %u\n", __func__, params->n_rot); LOG("%s: n_layer: %u\n", __func__, params->n_layer);
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
}
static void print_tensor_info(const struct ggml_context * ctx) {
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
LOG("%s: Allocating ", __func__);
int64_t total = 1;
int i = 0;
for (; i < ggml_n_dims(t); ++i) {
if (i > 0) LOG("x ");
LOG("[%" PRId64 "] ", t->ne[i]);
total *= t->ne[i];
}
if (i > 1) LOG("= [%" PRId64 "] ", total);
LOG("float space for %s\n", ggml_get_name(t));
}
} }
static void init_model(struct my_llama_model * model) { static void init_model(struct my_llama_model * model) {
@ -342,6 +351,8 @@ static void init_model(struct my_llama_model * model) {
const uint32_t n_layer = hparams.n_layer; const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
const uint32_t n_ff = hparams.n_ff; const uint32_t n_ff = hparams.n_ff;
struct ggml_context * ctx = model->ctx; struct ggml_context * ctx = model->ctx;
@ -350,25 +361,8 @@ static void init_model(struct my_llama_model * model) {
model->train_tokens = 0; model->train_tokens = 0;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
// printing the per-layer allocations here so we dont print in the for loop.
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
ggml_set_name(model->norm, "norm.weight"); ggml_set_name(model->norm, "norm.weight");
@ -383,8 +377,8 @@ static void init_model(struct my_llama_model * model) {
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
@ -406,6 +400,8 @@ static void init_model(struct my_llama_model * model) {
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
} }
print_tensor_info(ctx);
} }
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
@ -421,9 +417,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
static void print_row(struct ggml_tensor * probs, int i) { static void print_row(struct ggml_tensor * probs, int i) {
for (int k = 0; k < probs->ne[0]; ++k) { for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i); float p = get_f32_2d(probs, k, i);
printf(" %f", p); LOG(" %f", p);
} }
printf("\n"); LOG("\n");
} }
static void print_matrix(struct ggml_tensor * probs) { static void print_matrix(struct ggml_tensor * probs) {
@ -431,33 +427,12 @@ static void print_matrix(struct ggml_tensor * probs) {
for (int i = 0; i < probs->ne[1]; ++i) { for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) { for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i); float p = get_f32_2d(probs, k, i);
printf(" %.2f", p); LOG(" %.2f", p);
} }
printf("\n"); LOG("\n");
} }
} }
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file { struct llama_file {
// use FILE * so we don't have to re-open the file to mmap // use FILE * so we don't have to re-open the file to mmap
FILE * fp; FILE * fp;
@ -549,8 +524,9 @@ static std::string llama_escape_whitespaces(const std::string & text) {
return out.str(); return out.str();
} }
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
if (is_ggml_file(filename)) { if (is_ggml_file(filename)) {
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
struct ggml_context * ctx_data = NULL; struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = { struct gguf_init_params params = {
@ -578,6 +554,9 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
}
vocab->id_to_token.resize(n_vocab); vocab->id_to_token.resize(n_vocab);
@ -595,7 +574,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
gguf_free(ctx); gguf_free(ctx);
} else { } else {
// assume llama2.c vocabulary // assume llama2.c vocabulary
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename); LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
llama_file file(filename, "rb"); llama_file file(filename, "rb");
if (!file.fp) { if (!file.fp) {
die_fmt("%s: %s", strerror(errno), filename); die_fmt("%s: %s", strerror(errno), filename);
@ -638,38 +617,15 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
} }
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
int ct; int size = 1;
switch (ggml_n_dims(gg_weights)) { for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
case 1: size *= gg_weights->ne[dim];
ct = 0; }
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){ for (int ct = 0; ct < size; ++ct) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]); int64_t i0 = 0; int64_t i1 = 0;
*ptr = karpathy_weights[ct]; int64_t i2 = 0; int64_t i3 = 0;
ct++; ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
} ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
break;
case 2:
ct = 0;
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
*ptr = karpathy_weights[ct];
ct++;
}
}
break;
case 3:
ct = 0;
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
*ptr = karpathy_weights[ct];
ct++;
}
}
}
break;
} }
} }
@ -679,16 +635,18 @@ static void save_as_llama_model(
// convert AK weights into GG weights one by one. // convert AK weights into GG weights one by one.
// w->token_embedding_table -> model->tok_embeddings // w->token_embedding_table -> model->tok_embeddings
// float* -> struct ggml_tensor // float* -> struct ggml_tensor
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table); convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table); convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
convert_weights_ak_to_gg(model->norm, w->rms_final_weight); convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
//print_row(model->norm, 0); //print_row(model->norm, 0);
// for rms-att-weight // for rms-att-weight
int row_length = model->hparams.n_embd; int row_length = model->hparams.n_embd;
int n_ff = model->hparams.n_ff; int n_ff = model->hparams.n_ff;
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
auto & layer = model->layers[i]; auto & layer = model->layers[i];
// 1d // 1d
@ -697,9 +655,10 @@ static void save_as_llama_model(
// from 3d matrix layer x dim x dim to 2d matrix dim x dim // from 3d matrix layer x dim x dim to 2d matrix dim x dim
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]); convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]); convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]); convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]); convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
@ -736,8 +695,8 @@ static void save_as_llama_model(
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd); gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff); gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
// n_head_kv is optional, default to n_head gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...); gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer); gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot); gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f); gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
@ -789,12 +748,12 @@ static void save_as_llama_model(
static struct train_params get_default_train_params() { static struct train_params get_default_train_params() {
struct train_params params; struct train_params params;
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
params.fn_llama2c_output_model = "ak_llama_model.bin"; params.fn_llama2c_output_model = "ak_llama_model.bin";
params.fn_train_data = "shakespeare.txt"; params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin"; params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin";
params.seed = -1; params.seed = -1;
@ -829,8 +788,8 @@ static struct train_params get_default_train_params() {
params.adam_alpha = 1e-3f; params.adam_alpha = 1e-3f;
params.adam_decay = 1e-3f; params.adam_decay = 1e-3f;
params.mem_model_gb = 2; params.mem_model_gb = 2;
params.mem_compute_gb = 24; params.mem_compute_gb = 24;
params.mem_compute0_gb = 8; params.mem_compute0_gb = 8;
params.mem_compute1_gb = 2; params.mem_compute1_gb = 2;
@ -916,19 +875,30 @@ int main(int argc, char ** argv) {
if (!params_parse(argc, argv, &params)) { if (!params_parse(argc, argv, &params)) {
return 1; return 1;
} }
log_set_target(stdout);
Config config; Config config;
TransformerWeights weights = {}; TransformerWeights weights = {};
{ {
FILE *file = fopen(params.fn_llama2c_model, "rb"); LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; } FILE * file = fopen(params.fn_llama2c_model, "rb");
if (!file) {
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
return 1;
}
// read in the config header // read in the config header
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; } if (fread(&config, sizeof(Config), 1, file) != 1) {
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
return 1;
}
auto shared_weights = config.vocab_size > 0; auto shared_weights = config.vocab_size > 0;
config.vocab_size = abs(config.vocab_size); config.vocab_size = abs(config.vocab_size);
// read in the Transformer weights // read in the Transformer weights
malloc_weights(&weights, &config, shared_weights); alloc_weights(&weights, &config, shared_weights);
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; } if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
return 1;
}
fclose(file); fclose(file);
} }
@ -936,15 +906,18 @@ int main(int argc, char ** argv) {
load_vocab(params.fn_vocab_model, &config, &vocab); load_vocab(params.fn_vocab_model, &config, &vocab);
struct my_llama_model model; struct my_llama_model model;
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx; model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd; model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_ff = config.hidden_dim; model.hparams.n_ff = config.hidden_dim;
model.hparams.n_mult = 32;//params.n_mult; model.hparams.n_mult = 32;//params.n_mult;
model.hparams.n_head = config.n_heads; //params.n_head; model.hparams.n_head = config.n_heads; //params.n_head;
model.hparams.n_layer = config.n_layers; //params.n_layer; model.hparams.n_head_kv = config.n_kv_heads;
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); model.hparams.n_layer = config.n_layers; //params.n_layer;
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
print_params(&model.hparams); print_params(&model.hparams);
struct ggml_init_params lcparams; struct ggml_init_params lcparams;
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
lcparams.mem_buffer = NULL; lcparams.mem_buffer = NULL;
@ -956,7 +929,7 @@ int main(int argc, char ** argv) {
model.name = basename(params.fn_llama2c_model); model.name = basename(params.fn_llama2c_model);
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model); LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
ggml_free(model.ctx); ggml_free(model.ctx);
return 0; return 0;

View file

@ -61,6 +61,8 @@ int main(int argc, char ** argv) {
} }
params.embedding = true; params.embedding = true;
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
print_build_info(); print_build_info();
@ -114,7 +116,9 @@ int main(int argc, char ** argv) {
for (const auto & prompt : prompts) { for (const auto & prompt : prompts) {
auto inp = ::llama_tokenize(ctx, prompt, true, false); auto inp = ::llama_tokenize(ctx, prompt, true, false);
if (inp.size() > n_batch) { if (inp.size() > n_batch) {
inp.resize(n_batch); fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
return 1;
} }
inputs.push_back(inp); inputs.push_back(inp);
} }
@ -174,25 +178,27 @@ int main(int argc, char ** argv) {
float * out = emb + p * n_embd; float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd); batch_decode(ctx, batch, out, s, n_embd);
// print the first part of the embeddings // print the first part of the embeddings or for a single prompt, the full embedding
fprintf(stdout, "\n"); fprintf(stdout, "\n");
for (int j = 0; j < n_prompts; j++) { for (int j = 0; j < n_prompts; j++) {
fprintf(stdout, "embedding %d: ", j); fprintf(stdout, "embedding %d: ", j);
for (int i = 0; i < std::min(16, n_embd); i++) { for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]); fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
} }
fprintf(stdout, "\n"); fprintf(stdout, "\n");
} }
// print cosine similarity matrix // print cosine similarity matrix
fprintf(stdout, "\n"); if (n_prompts > 1) {
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "\n"); fprintf(stdout, "\n");
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "\n");
}
} }
// clean up // clean up

View file

@ -0,0 +1,5 @@
set(TARGET gguf-split)
add_executable(${TARGET} gguf-split.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,9 @@
## GGUF split Example
CLI to split / merge GGUF files.
**Command line options:**
- `--split`: split GGUF to multiple GGUF, default operation.
- `--split-max-tensors`: maximum tensors in each split: default(128)
- `--merge`: merge multiple GGUF to a single GGUF.

View file

@ -0,0 +1,468 @@
#include "llama.h"
#include "common.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <string>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <climits>
#include <stdexcept>
#if defined(_WIN32)
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
enum split_operation : uint8_t {
SPLIT_OP_SPLIT,
SPLIT_OP_MERGE,
};
struct split_params {
split_operation operation = SPLIT_OP_SPLIT;
int n_split_tensors = 128;
std::string input;
std::string output;
};
static void split_print_usage(const char * executable) {
const split_params default_params;
printf("\n");
printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
printf("\n");
printf("Apply a GGUF operation on IN to OUT.");
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n");
printf(" --split split GGUF to multiple GGUF (default)\n");
printf(" --split-max-tensors max tensors in each split: default(%d)\n", default_params.n_split_tensors);
printf(" --merge merge multiple GGUF to a single GGUF\n");
printf("\n");
}
static bool split_params_parse_ex(int argc, const char ** argv, split_params & params) {
std::string arg;
const std::string arg_prefix = "--";
bool invalid_param = false;
int arg_idx = 1;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
arg = argv[arg_idx];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
bool arg_found = false;
if (arg == "-h" || arg == "--help") {
split_print_usage(argv[0]);
exit(0);
}
if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
}
if (arg == "--merge") {
arg_found = true;
params.operation = SPLIT_OP_MERGE;
}
if (arg == "--split") {
arg_found = true;
params.operation = SPLIT_OP_SPLIT;
}
if (arg == "--split-max-tensors") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
params.n_split_tensors = atoi(argv[arg_idx]);
}
if (!arg_found) {
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (argc - arg_idx < 2) {
printf("%s: bad arguments\n", argv[0]);
split_print_usage(argv[0]);
return false;
}
params.input = argv[arg_idx++];
params.output = argv[arg_idx++];
return true;
}
static bool split_params_parse(int argc, const char ** argv, split_params & params) {
bool result = true;
try {
if (!split_params_parse_ex(argc, argv, params)) {
split_print_usage(argv[0]);
exit(EXIT_FAILURE);
}
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
split_print_usage(argv[0]);
exit(EXIT_FAILURE);
}
return result;
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
struct split_strategy {
const split_params params;
std::ifstream & f_input;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_meta = NULL;
const int n_tensors;
const int n_split;
int i_split = 0;
int i_tensor = 0;
std::vector<uint8_t> read_data;
struct gguf_context * ctx_out;
std::ofstream fout;
split_strategy(const split_params & params,
std::ifstream & f_input,
struct gguf_context * ctx_gguf,
struct ggml_context * ctx_meta) :
params(params),
f_input(f_input),
ctx_gguf(ctx_gguf),
ctx_meta(ctx_meta),
n_tensors(gguf_get_n_tensors(ctx_gguf)),
n_split(std::ceil(1. * n_tensors / params.n_split_tensors)) {
}
bool should_split() const {
return i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
}
void split_start() {
ctx_out = gguf_init_empty();
// Save all metadata in first split only
if (i_split == 0) {
gguf_set_kv(ctx_out, ctx_gguf);
}
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, n_split);
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
// populate the original tensors, so we get an initial metadata
for (int i = i_split * params.n_split_tensors; i < n_tensors && i < (i_split + 1) * params.n_split_tensors; ++i) {
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
gguf_add_tensor(ctx_out, meta);
}
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
fprintf(stderr, "%s: %s ...", __func__, split_path);
fout = std::ofstream(split_path, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
auto meta_size = gguf_get_meta_size(ctx_out);
// placeholder for the meta data
::zeros(fout, meta_size);
i_split++;
}
void next_tensor() {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
auto n_bytes = ggml_nbytes(t);
if (read_data.size() < n_bytes) {
read_data.resize(n_bytes);
}
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
t->data = read_data.data();
// write tensor data + padding
fout.write((const char *)t->data, n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
i_tensor++;
}
void split_end() {
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
fprintf(stderr, "\033[3Ddone\n");
}
};
static void gguf_split(const split_params & split_params) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
if (!f_input.is_open()) {
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
exit(EXIT_FAILURE);
}
auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
exit(EXIT_FAILURE);
}
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
char first_split_path[PATH_MAX] = {0};
llama_split_path(first_split_path, sizeof(first_split_path),
split_params.output.c_str(), strategy.i_split, strategy.n_split);
fprintf(stderr, "%s: %s -> %s (%d tensors per file)\n",
__func__, split_params.input.c_str(),
first_split_path,
split_params.n_split_tensors);
strategy.split_start();
while (strategy.i_tensor < strategy.n_tensors) {
strategy.next_tensor();
if (strategy.should_split()) {
strategy.split_end();
strategy.split_start();
}
}
strategy.split_end();
gguf_free(ctx_gguf);
f_input.close();
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
__func__, strategy.n_split, strategy.n_tensors);
}
static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "%s: %s -> %s\n",
__func__, split_params.input.c_str(),
split_params.output.c_str());
int n_split = 1;
int total_tensors = 0;
auto * ctx_out = gguf_init_empty();
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
std::vector<uint8_t> read_data;
std::vector<ggml_context *> ctx_metas;
std::vector<gguf_context *> ctx_ggufs;
char split_path[PATH_MAX] = {0};
strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1);
char split_prefix[PATH_MAX] = {0};
// First pass to find KV and tensors metadata
for (int i_split = 0; i_split < n_split; i_split++) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
if (i_split > 0) {
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
}
fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path);
auto * ctx_gguf = gguf_init_from_file(split_path, params);
if (!ctx_gguf) {
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
exit(EXIT_FAILURE);
}
ctx_ggufs.push_back(ctx_gguf);
ctx_metas.push_back(ctx_meta);
if (i_split == 0) {
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split < 0) {
fprintf(stderr,
"\n%s: input file does not contain %s metadata\n",
__func__,
LLM_KV_SPLIT_COUNT);
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
if (n_split < 1) {
fprintf(stderr,
"\n%s: input file does not contain a valid split count %d\n",
__func__,
n_split);
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
// Verify the file naming and extract split_prefix
if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) {
fprintf(stderr, "\n%s: unexpected input file name: %s"
" i_split=%d"
" n_split=%d\n", __func__,
split_path, i_split, n_split);
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
// Do not trigger merge if we try to merge again the output
gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0);
// Set metadata from the first split
gguf_set_kv(ctx_out, ctx_gguf);
}
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
gguf_add_tensor(ctx_out, t);
}
total_tensors += n_tensors;
fprintf(stderr, "\033[3Ddone\n");
}
// placeholder for the meta data
{
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
// Write tensors data
for (int i_split = 0; i_split < n_split; i_split++) {
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
std::ifstream f_input(split_path, std::ios::binary);
if (!f_input.is_open()) {
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_path);
for (uint32_t i = 0; i < ctx_ggufs.size(); i++) {
gguf_free(ctx_ggufs[i]);
ggml_free(ctx_metas[i]);
}
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
auto * ctx_gguf = ctx_ggufs[i_split];
auto * ctx_meta = ctx_metas[i_split];
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
auto n_bytes = ggml_nbytes(t);
if (read_data.size() < n_bytes) {
read_data.resize(n_bytes);
}
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
f_input.close();
fprintf(stderr, "\033[3Ddone\n");
}
{
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);
}
int main(int argc, const char ** argv) {
if (argc < 3) {
split_print_usage(argv[0]);
}
split_params params;
split_params_parse(argc, argv, params);
switch (params.operation) {
case SPLIT_OP_SPLIT: gguf_split(params);
break;
case SPLIT_OP_MERGE: gguf_merge(params);
break;
default: split_print_usage(argv[0]);
exit(EXIT_FAILURE);
}
return 0;
}

View file

@ -22,7 +22,7 @@ For faster computation, make sure to use GPU offloading via the `-ngl` argument
## Example ## Example
```bash ```bash
LLAMA_CUBLAS=1 make -j LLAMA_CUDA=1 make -j
# generate importance matrix (imatrix.dat) # generate importance matrix (imatrix.dat)
./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99 ./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99

View file

@ -50,29 +50,31 @@ private:
void keep_imatrix(int ncall) const; void keep_imatrix(int ncall) const;
}; };
// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
static std::string filter_tensor_name(const char * name) {
std::string wname;
const char * p = strchr(name, '#');
if (p != NULL) {
p = p + 1;
const char * q = strchr(p, '#');
if (q != NULL) {
wname = std::string(p, q - p);
} else {
wname = p;
}
} else {
wname = name;
}
return wname;
}
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
GGML_UNUSED(user_data); GGML_UNUSED(user_data);
const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1]; const struct ggml_tensor * src1 = t->src[1];
std::string wname = filter_tensor_name(src0->name);
std::string wname;
{
// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
const char * p = strchr(src0->name, '#');
if (p != NULL) {
p = p + 1;
const char * q = strchr(p, '#');
if (q != NULL) {
wname = std::string(p, q - p);
} else {
wname = p;
}
} else {
wname = src0->name;
}
}
// when ask is true, the scheduler wants to know if we are interested in data from this tensor // when ask is true, the scheduler wants to know if we are interested in data from this tensor
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
@ -112,6 +114,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// this is necessary to guarantee equal number of "ncall" for each tensor // this is necessary to guarantee equal number of "ncall" for each tensor
for (int ex = 0; ex < n_as; ++ex) { for (int ex = 0; ex < n_as; ++ex) {
src0 = t->src[2 + ex]; src0 = t->src[2 + ex];
wname = filter_tensor_name(src0->name);
auto& e = m_stats[wname]; auto& e = m_stats[wname];
if (e.values.empty()) { if (e.values.empty()) {
e.values.resize(src1->ne[0], 0); e.values.resize(src1->ne[0], 0);
@ -421,6 +424,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
} }
// TODO: use batch.logits to save computations instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__); fprintf(stderr, "%s : failed to eval\n", __func__);
return false; return false;

View file

@ -0,0 +1,74 @@
# Usage:
#! ./server -m some-model.gguf &
#! pip install pydantic
#! python json-schema-pydantic-example.py
from pydantic import BaseModel, TypeAdapter
from annotated_types import MinLen
from typing import Annotated, List, Optional
import json, requests
if True:
def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
'''
Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
(llama.cpp server, llama-cpp-python, Anyscale / Together...)
The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
'''
if response_model:
type_adapter = TypeAdapter(response_model)
schema = type_adapter.json_schema()
messages = [{
"role": "system",
"content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
}] + messages
response_format={"type": "json_object", "schema": schema}
data = requests.post(endpoint, headers={"Content-Type": "application/json"},
json=dict(messages=messages, response_format=response_format, **kwargs)).json()
if 'error' in data:
raise Exception(data['error']['message'])
content = data["choices"][0]["message"]["content"]
return type_adapter.validate_json(content) if type_adapter else content
else:
# This alternative branch uses Instructor + OpenAI client lib.
# Instructor support streamed iterable responses, retry & more.
# (see https://python.useinstructor.com/)
#! pip install instructor openai
import instructor, openai
client = instructor.patch(
openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
mode=instructor.Mode.JSON_SCHEMA)
create_completion = client.chat.completions.create
if __name__ == '__main__':
class QAPair(BaseModel):
question: str
concise_answer: str
justification: str
class PyramidalSummary(BaseModel):
title: str
summary: str
question_answers: Annotated[List[QAPair], MinLen(2)]
sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
print("# Summary\n", create_completion(
model="...",
response_model=PyramidalSummary,
messages=[{
"role": "user",
"content": f"""
You are a highly efficient corporate document summarizer.
Create a pyramidal summary of an imaginary internal document about our company processes
(starting high-level, going down to each sub sections).
Keep questions short, and answers even shorter (trivia / quizz style).
"""
}]))

View file

@ -1,8 +1,10 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import argparse import argparse
import itertools
import json import json
import re import re
import sys import sys
from typing import Any, Dict, List, Set, Tuple, Union
# whitespace is constrained to a single space char to prevent model "running away" in # whitespace is constrained to a single space char to prevent model "running away" in
# whitespace. Also maybe improves generation quality? # whitespace. Also maybe improves generation quality?
@ -12,26 +14,54 @@ PRIMITIVE_RULES = {
'boolean': '("true" | "false") space', 'boolean': '("true" | "false") space',
'number': '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space', 'number': '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
'integer': '("-"? ([0-9] | [1-9] [0-9]*)) space', 'integer': '("-"? ([0-9] | [1-9] [0-9]*)) space',
'value' : 'object | array | string | number | boolean',
'object' : '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space',
'array' : '"[" space ( value ("," space value)* )? "]" space',
'uuid' : '"\\"" ' + ' "-" '.join('[0-9a-fA-F]' * n for n in [8, 4, 4, 4, 12]) + ' "\\"" space',
'string': r''' "\"" ( 'string': r''' "\"" (
[^"\\] | [^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" space ''', )* "\"" space''',
'null': '"null" space', 'null': '"null" space',
} }
OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value']
# TODO: support "uri", "email" string formats
DATE_RULES = {
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )',
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )',
'date-time': 'date "T" time',
'date-string': '"\\"" date "\\"" space',
'time-string': '"\\"" time "\\"" space',
'date-time-string': '"\\"" date-time "\\"" space',
}
RESERVED_NAMES = set(["root", *PRIMITIVE_RULES.keys(), *DATE_RULES.keys()])
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+') INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]') GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'} GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
NON_LITERAL_SET = set('|.()[]{}*+?')
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?')
DATE_PATTERN = '[0-9]{4}-(0[1-9]|1[0-2])-([0-2][0-9]|3[0-1])'
TIME_PATTERN = '([01][0-9]|2[0-3])(:[0-5][0-9]){2}(\\.[0-9]{1,3})?(Z|[+-](([01][0-9]|2[0-3]):[0-5][0-9]))' # Cap millisecond precision w/ 3 digits
class SchemaConverter: class SchemaConverter:
def __init__(self, prop_order): def __init__(self, *, prop_order, allow_fetch, dotall, raw_pattern):
self._prop_order = prop_order self._prop_order = prop_order
self._allow_fetch = allow_fetch
self._dotall = dotall
self._raw_pattern = raw_pattern
self._rules = {'space': SPACE_RULE} self._rules = {'space': SPACE_RULE}
self._refs = {}
self._refs_being_resolved = set()
def _format_literal(self, literal): def _format_literal(self, literal):
escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub( escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub(
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), json.dumps(literal) lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), literal
) )
return f'"{escaped}"' return f'"{escaped}"'
@ -41,78 +71,420 @@ class SchemaConverter:
key = esc_name key = esc_name
else: else:
i = 0 i = 0
while f'{esc_name}{i}' in self._rules: while f'{esc_name}{i}' in self._rules and self._rules[f'{esc_name}{i}'] != rule:
i += 1 i += 1
key = f'{esc_name}{i}' key = f'{esc_name}{i}'
self._rules[key] = rule self._rules[key] = rule
return key return key
def resolve_refs(self, schema: dict, url: str):
'''
Resolves all $ref fields in the given schema, fetching any remote schemas,
replacing $ref with absolute reference URL and populating self._refs with the
respective referenced (sub)schema dictionaries.
'''
def visit(n: dict):
if isinstance(n, list):
return [visit(x) for x in n]
elif isinstance(n, dict):
ref = n.get('$ref')
if ref is not None and ref not in self._refs:
if ref.startswith('https://'):
assert self._allow_fetch, 'Fetching remote schemas is not allowed (use --allow-fetch for force)'
import requests
frag_split = ref.split('#')
base_url = frag_split[0]
target = self._refs.get(base_url)
if target is None:
target = self.resolve_refs(requests.get(ref).json(), base_url)
self._refs[base_url] = target
if len(frag_split) == 1 or frag_split[-1] == '':
return target
elif ref.startswith('#/'):
target = schema
ref = f'{url}{ref}'
n['$ref'] = ref
else:
raise ValueError(f'Unsupported ref {ref}')
for sel in ref.split('#')[-1].split('/')[1:]:
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel]
self._refs[ref] = target
else:
for v in n.values():
visit(v)
return n
return visit(schema)
def _generate_union_rule(self, name, alt_schemas):
return ' | '.join((
self.visit(alt_schema, f'{name}{"-" if name else "alternative-"}{i}')
for i, alt_schema in enumerate(alt_schemas)
))
def _visit_pattern(self, pattern, name):
'''
Transforms a regular expression pattern into a GBNF rule.
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.
Mostly a 1:1 translation, except for {x} / {x,} / {x,y} quantifiers for which
we define sub-rules to keep the output lean.
'''
assert pattern.startswith('^') and pattern.endswith('$'), 'Pattern must start with "^" and end with "$"'
pattern = pattern[1:-1]
sub_rule_ids = {}
i = 0
length = len(pattern)
def to_rule(s: Tuple[str, bool]) -> str:
(txt, is_literal) = s
return "\"" + txt + "\"" if is_literal else txt
def transform() -> Tuple[str, bool]:
'''
Parse a unit at index i (advancing it), and return its string representation + whether it's a literal.
'''
nonlocal i
nonlocal pattern
nonlocal sub_rule_ids
start = i
# For each component of this sequence, store its string representation and whether it's a literal.
# We only need a flat structure here to apply repetition operators to the last item, and
# to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
# (GBNF's syntax is luckily very close to regular expressions!)
seq: list[Tuple[str, bool]] = []
def get_dot():
if self._dotall:
rule = '[\\U00000000-\\U0010FFFF]'
else:
# Accept any character... except \n and \r line break chars (\x0A and \xOD)
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]'
return self._add_rule(f'dot', rule)
def join_seq():
nonlocal seq
ret = []
for is_literal, g in itertools.groupby(seq, lambda x: x[1]):
if is_literal:
ret.append((''.join(x[0] for x in g), True))
else:
ret.extend(g)
if len(ret) == 1:
return ret[0]
return (' '.join(to_rule(x) for x in seq), False)
while i < length:
c = pattern[i]
if c == '.':
seq.append((get_dot(), False))
i += 1
elif c == '(':
i += 1
if i < length:
assert pattern[i] != '?', f'Unsupported pattern syntax "{pattern[i]}" at index {i} of /{pattern}/'
seq.append((f'({to_rule(transform())})', False))
elif c == ')':
i += 1
assert start > 0 and pattern[start-1] == '(', f'Unbalanced parentheses; start = {start}, i = {i}, pattern = {pattern}'
return join_seq()
elif c == '[':
square_brackets = c
i += 1
while i < length and pattern[i] != ']':
if pattern[i] == '\\':
square_brackets += pattern[i:i+2]
i += 2
else:
square_brackets += pattern[i]
i += 1
assert i < length, f'Unbalanced square brackets; start = {start}, i = {i}, pattern = {pattern}'
square_brackets += ']'
i += 1
seq.append((square_brackets, False))
elif c == '|':
seq.append(('|', False))
i += 1
elif c in ('*', '+', '?'):
seq[-1] = (to_rule(seq[-1]) + c, False)
i += 1
elif c == '{':
curly_brackets = c
i += 1
while i < length and pattern[i] != '}':
curly_brackets += pattern[i]
i += 1
assert i < length, f'Unbalanced curly brackets; start = {start}, i = {i}, pattern = {pattern}'
curly_brackets += '}'
i += 1
nums = [s.strip() for s in curly_brackets[1:-1].split(',')]
min_times = 0
max_times = None
try:
if len(nums) == 1:
min_times = int(nums[0])
max_times = min_times
else:
assert len(nums) == 2
min_times = int(nums[0]) if nums[0] else 0
max_times = int(nums[1]) if nums[1] else None
except ValueError:
raise ValueError(f'Invalid quantifier {curly_brackets} in /{pattern}/')
(sub, sub_is_literal) = seq[-1]
if min_times == 0 and max_times is None:
seq[-1] = (f'{sub}*', False)
elif min_times == 0 and max_times == 1:
seq[-1] = (f'{sub}?', False)
elif min_times == 1 and max_times is None:
seq[-1] = (f'{sub}+', False)
else:
if not sub_is_literal:
id = sub_rule_ids.get(sub)
if id is None:
id = self._add_rule(f'{name}-{len(sub_rule_ids) + 1}', sub)
sub_rule_ids[sub] = id
sub = id
seq[-1] = (
' '.join(
([f'"{sub[1:-1] * min_times}"'] if sub_is_literal else [sub] * min_times) +
([f'{sub}?'] * (max_times - min_times) if max_times is not None else [f'{sub}*'])),
False
)
else:
literal = ''
while i < length:
if pattern[i] == '\\' and i < length - 1:
next = pattern[i + 1]
if next in ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS:
i += 1
literal += pattern[i]
i += 1
else:
literal += pattern[i:i+2]
i += 2
elif pattern[i] == '"' and not self._raw_pattern:
literal += '\\"'
i += 1
elif pattern[i] not in NON_LITERAL_SET and \
(i == length - 1 or literal == '' or pattern[i+1] == '.' or pattern[i+1] not in NON_LITERAL_SET):
literal += pattern[i]
i += 1
else:
break
if literal:
seq.append((literal, True))
return join_seq()
return self._add_rule(
name,
to_rule(transform()) if self._raw_pattern \
else "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space")
def _resolve_ref(self, ref):
ref_name = ref.split('/')[-1]
if ref_name not in self._rules and ref not in self._refs_being_resolved:
self._refs_being_resolved.add(ref)
resolved = self._refs[ref]
ref_name = self.visit(resolved, ref_name)
self._refs_being_resolved.remove(ref)
return ref_name
def _generate_constant_rule(self, value):
return self._format_literal(json.dumps(value))
def visit(self, schema, name): def visit(self, schema, name):
schema_type = schema.get('type') schema_type = schema.get('type')
rule_name = name or 'root' schema_format = schema.get('format')
rule_name = name + '-' if name in RESERVED_NAMES else name or 'root'
if 'oneOf' in schema or 'anyOf' in schema: if (ref := schema.get('$ref')) is not None:
rule = ' | '.join(( return self._add_rule(rule_name, self._resolve_ref(ref))
self.visit(alt_schema, f'{name}{"-" if name else ""}{i}')
for i, alt_schema in enumerate(schema.get('oneOf') or schema['anyOf']) elif 'oneOf' in schema or 'anyOf' in schema:
)) return self._add_rule(rule_name, self._generate_union_rule(name, schema.get('oneOf') or schema['anyOf']))
return self._add_rule(rule_name, rule)
elif isinstance(schema_type, list):
return self._add_rule(rule_name, self._generate_union_rule(name, [{'type': t} for t in schema_type]))
elif 'const' in schema: elif 'const' in schema:
return self._add_rule(rule_name, self._format_literal(schema['const'])) return self._add_rule(rule_name, self._generate_constant_rule(schema['const']))
elif 'enum' in schema: elif 'enum' in schema:
rule = ' | '.join((self._format_literal(v) for v in schema['enum'])) rule = ' | '.join((self._generate_constant_rule(v) for v in schema['enum']))
return self._add_rule(rule_name, rule) return self._add_rule(rule_name, rule)
elif schema_type == 'object' and 'properties' in schema: elif schema_type in (None, 'object') and \
# TODO: `required` keyword ('properties' in schema or \
prop_order = self._prop_order ('additionalProperties' in schema and schema['additionalProperties'] is not True)):
prop_pairs = sorted( required = set(schema.get('required', []))
schema['properties'].items(), properties = list(schema.get('properties', {}).items())
# sort by position in prop_order (if specified) then by key return self._add_rule(rule_name, self._build_object_rule(properties, required, name, schema.get('additionalProperties')))
key=lambda kv: (prop_order.get(kv[0], len(prop_order)), kv[0]),
elif schema_type in (None, 'object') and 'allOf' in schema:
required = set()
properties = []
hybrid_name = name
def add_component(comp_schema, is_required):
if (ref := comp_schema.get('$ref')) is not None:
comp_schema = self._refs[ref]
if 'properties' in comp_schema:
for prop_name, prop_schema in comp_schema['properties'].items():
properties.append((prop_name, prop_schema))
if is_required:
required.add(prop_name)
for t in schema['allOf']:
if 'anyOf' in t:
for tt in t['anyOf']:
add_component(tt, is_required=False)
else:
add_component(t, is_required=True)
return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=[]))
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):
items = schema.get('items') or schema['prefixItems']
if isinstance(items, list):
return self._add_rule(
rule_name,
'"[" space ' +
' "," space '.join(
self.visit(item, f'{name}{"-" if name else ""}tuple-{i}')
for i, item in enumerate(items)) +
' "]" space')
else:
item_rule_name = self.visit(items, f'{name}{"-" if name else ""}item')
list_item_operator = f'( "," space {item_rule_name} )'
successive_items = ""
min_items = schema.get("minItems", 0)
max_items = schema.get("maxItems")
if min_items > 0:
successive_items = list_item_operator * (min_items - 1)
min_items -= 1
if max_items is not None and max_items > min_items:
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
else:
successive_items += list_item_operator + "*"
if min_items == 0:
rule = f'"[" space ( {item_rule_name} {successive_items} )? "]" space'
else:
rule = f'"[" space {item_rule_name} {successive_items} "]" space'
return self._add_rule(rule_name, rule)
elif schema_type in (None, 'string') and 'pattern' in schema:
return self._visit_pattern(schema['pattern'], rule_name)
elif schema_type in (None, 'string') and re.match(r'^uuid[1-5]?$', schema_format or ''):
return self._add_rule(
'root' if rule_name == 'root' else schema_format,
PRIMITIVE_RULES['uuid']
) )
rule = '"{" space' elif schema_type in (None, 'string') and schema_format in DATE_RULES:
for i, (prop_name, prop_schema) in enumerate(prop_pairs): for t, r in DATE_RULES.items():
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}') self._add_rule(t, r)
if i > 0: return schema_format + '-string'
rule += ' "," space'
rule += fr' {self._format_literal(prop_name)} space ":" space {prop_rule_name}'
rule += ' "}" space'
return self._add_rule(rule_name, rule) elif (schema_type == 'object') or (len(schema) == 0):
for n in OBJECT_RULE_NAMES:
elif schema_type == 'array' and 'items' in schema: self._add_rule(n, PRIMITIVE_RULES[n])
# TODO `prefixItems` keyword return self._add_rule(rule_name, 'object')
item_rule_name = self.visit(schema['items'], f'{name}{"-" if name else ""}item')
list_item_operator = f'("," space {item_rule_name})'
successive_items = ""
min_items = schema.get("minItems", 0)
if min_items > 0:
first_item = f"({item_rule_name})"
successive_items = list_item_operator * (min_items - 1)
min_items -= 1
else:
first_item = f"({item_rule_name})?"
max_items = schema.get("maxItems")
if max_items is not None and max_items > min_items:
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
else:
successive_items += list_item_operator + "*"
rule = f'"[" space {first_item} {successive_items} "]" space'
return self._add_rule(rule_name, rule)
else: else:
assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}' assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}'
# TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return self._add_rule( return self._add_rule(
'root' if rule_name == 'root' else schema_type, 'root' if rule_name == 'root' else schema_type,
PRIMITIVE_RULES[schema_type] PRIMITIVE_RULES[schema_type]
) )
def _build_object_rule(self, properties: List[Tuple[str, Any]], required: Set[str], name: str, additional_properties: Union[bool, Any]):
prop_order = self._prop_order
# sort by position in prop_order (if specified) then by original order
sorted_props = [kv[0] for _, kv in sorted(enumerate(properties), key=lambda ikv: (prop_order.get(ikv[1][0], len(prop_order)), ikv[0]))]
prop_kv_rule_names = {}
for prop_name, prop_schema in properties:
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}')
prop_kv_rule_names[prop_name] = self._add_rule(
f'{name}{"-" if name else ""}{prop_name}-kv',
fr'{self._format_literal(json.dumps(prop_name))} space ":" space {prop_rule_name}'
)
required_props = [k for k in sorted_props if k in required]
optional_props = [k for k in sorted_props if k not in required]
if additional_properties == True or isinstance(additional_properties, dict):
sub_name = f'{name}{"-" if name else ""}additional'
value_rule = self.visit({} if additional_properties == True else additional_properties, f'{sub_name}-value')
prop_kv_rule_names["*"] = self._add_rule(
f'{sub_name}-kv',
self._add_rule('string', PRIMITIVE_RULES['string']) + f' ":" space {value_rule}'
)
optional_props.append("*")
rule = '"{" space '
rule += ' "," space '.join(prop_kv_rule_names[k] for k in required_props)
if optional_props:
rule += ' ('
if required_props:
rule += ' "," space ( '
def get_recursive_refs(ks, first_is_optional):
[k, *rest] = ks
kv_rule_name = prop_kv_rule_names[k]
if k == '*':
res = self._add_rule(
f'{name}{"-" if name else ""}additional-kvs',
f'{kv_rule_name} ( "," space ' + kv_rule_name + ' )*'
)
elif first_is_optional:
res = f'( "," space {kv_rule_name} )?'
else:
res = kv_rule_name
if len(rest) > 0:
res += ' ' + self._add_rule(
f'{name}{"-" if name else ""}{k}-rest',
get_recursive_refs(rest, first_is_optional=True)
)
return res
rule += ' | '.join(
get_recursive_refs(optional_props[i:], first_is_optional=False)
for i in range(len(optional_props))
)
if required_props:
rule += ' )'
rule += ' )?'
rule += ' "}" space'
return rule
def format_grammar(self): def format_grammar(self):
return '\n'.join((f'{name} ::= {rule}' for name, rule in self._rules.items())) return '\n'.join(
f'{name} ::= {rule}'
for name, rule in sorted(self._rules.items(), key=lambda kv: kv[0])
)
def main(args_in = None): def main(args_in = None):
@ -129,16 +501,47 @@ def main(args_in = None):
type=lambda s: s.split(','), type=lambda s: s.split(','),
help=''' help='''
comma-separated property names defining the order of precedence for object properties; comma-separated property names defining the order of precedence for object properties;
properties not specified here are given lower precedence than those that are, and are properties not specified here are given lower precedence than those that are, and
sorted alphabetically are kept in their original order from the schema. Required properties are always
given precedence over optional properties.
''' '''
) )
parser.add_argument(
'--allow-fetch',
action='store_true',
default=False,
help='Whether to allow fetching referenced schemas over HTTPS')
parser.add_argument(
'--dotall',
action='store_true',
default=False,
help='Whether to treat dot (".") as matching all chars including line breaks in regular expression patterns')
parser.add_argument(
'--raw-pattern',
action='store_true',
default=False,
help='Treats string patterns as raw patterns w/o quotes (or quote escapes)')
parser.add_argument('schema', help='file containing JSON schema ("-" for stdin)') parser.add_argument('schema', help='file containing JSON schema ("-" for stdin)')
args = parser.parse_args(args_in) args = parser.parse_args(args_in)
schema = json.load(sys.stdin if args.schema == '-' else open(args.schema)) if args.schema.startswith('https://'):
prop_order = {name: idx for idx, name in enumerate(args.prop_order)} url = args.schema
converter = SchemaConverter(prop_order) import requests
schema = requests.get(url).json()
elif args.schema == '-':
url = 'stdin'
schema = json.load(sys.stdin)
else:
url = f'file://{args.schema}'
with open(args.schema) as f:
schema = json.load(f)
converter = SchemaConverter(
prop_order={name: idx for idx, name in enumerate(args.prop_order)},
allow_fetch=args.allow_fetch,
dotall=args.dotall,
raw_pattern=args.raw_pattern)
schema = converter.resolve_refs(schema, url)
converter.visit(schema, '') converter.visit(schema, '')
print(converter.format_grammar()) print(converter.format_grammar())

View file

@ -113,7 +113,7 @@ static std::string get_cpu_info() {
static std::string get_gpu_info() { static std::string get_gpu_info() {
std::string id; std::string id;
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUDA
int count = ggml_backend_cuda_get_device_count(); int count = ggml_backend_cuda_get_device_count();
for (int i = 0; i < count; i++) { for (int i = 0; i < count; i++) {
char buf[128]; char buf[128];
@ -249,6 +249,9 @@ static ggml_type ggml_type_from_name(const std::string & s) {
if (s == "q5_1") { if (s == "q5_1") {
return GGML_TYPE_Q5_1; return GGML_TYPE_Q5_1;
} }
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
return GGML_TYPE_COUNT; return GGML_TYPE_COUNT;
} }
@ -805,7 +808,7 @@ struct test {
const std::string test::build_commit = LLAMA_COMMIT; const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER; const int test::build_number = LLAMA_BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cublas(); const bool test::cuda = !!ggml_cpu_has_cuda();
const bool test::opencl = !!ggml_cpu_has_clblast(); const bool test::opencl = !!ggml_cpu_has_clblast();
const bool test::vulkan = !!ggml_cpu_has_vulkan(); const bool test::vulkan = !!ggml_cpu_has_vulkan();
const bool test::kompute = !!ggml_cpu_has_kompute(); const bool test::kompute = !!ggml_cpu_has_kompute();

View file

@ -1,11 +1,13 @@
# MobileVLM # MobileVLM
Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants. Currently this implementation supports [MobileVLM-1.7B](https://huggingface.co/mtgv/MobileVLM-1.7B) / [MobileVLM_V2-1.7B](https://huggingface.co/mtgv/MobileVLM_V2-1.7B) variants.
for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM) for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM)
The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava. The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using MobiVLM as an example, the different conversion step will be shown.
## Usage ## Usage
Build with cmake or run `make llava-cli` to build it. Build with cmake or run `make llava-cli` to build it.
@ -34,7 +36,7 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
``` ```
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF: 3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** the arg is `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
```sh ```sh
python ./examples/llava/convert-image-encoder-to-gguf \ python ./examples/llava/convert-image-encoder-to-gguf \
@ -44,6 +46,14 @@ python ./examples/llava/convert-image-encoder-to-gguf \
--projector-type ldp --projector-type ldp
``` ```
```sh
python ./examples/llava/convert-image-encoder-to-gguf \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
--output-dir path/to/MobileVLM-1.7B_V2 \
--projector-type ldpv2
```
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: 4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
```sh ```sh
@ -114,7 +124,7 @@ llama_print_timings: total time = 34570.79 ms
## Orin compile and run ## Orin compile and run
### compile ### compile
```sh ```sh
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32 make LLAMA_CUDA=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
``` ```
### run on Orin ### run on Orin

View file

@ -7,7 +7,7 @@
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUDA
#include "ggml-cuda.h" #include "ggml-cuda.h"
#endif #endif
@ -119,6 +119,7 @@ static std::string format(const char * fmt, ...) {
#define TN_LLAVA_PROJ "mm.%d.%s" #define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline" #define TN_IMAGE_NEWLINE "model.image_newline"
@ -126,12 +127,14 @@ enum projector_type {
PROJECTOR_TYPE_MLP, PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM, PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_UNKNOWN, PROJECTOR_TYPE_UNKNOWN,
}; };
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = { static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" }, { PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
}; };
@ -475,6 +478,14 @@ struct clip_vision_model {
struct ggml_tensor * mm_model_block_2_block_2_0_w; struct ggml_tensor * mm_model_block_2_block_2_0_w;
struct ggml_tensor * mm_model_block_2_block_2_1_w; struct ggml_tensor * mm_model_block_2_block_2_1_w;
struct ggml_tensor * mm_model_block_2_block_2_1_b; struct ggml_tensor * mm_model_block_2_block_2_1_b;
// MobileVLM_V2 projection
struct ggml_tensor * mm_model_mlp_0_w;
struct ggml_tensor * mm_model_mlp_0_b;
struct ggml_tensor * mm_model_mlp_2_w;
struct ggml_tensor * mm_model_mlp_2_b;
struct ggml_tensor * mm_model_peg_0_w;
struct ggml_tensor * mm_model_peg_0_b;
}; };
struct clip_ctx { struct clip_ctx {
@ -497,7 +508,6 @@ struct clip_ctx {
// memory buffers to evaluate the model // memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_buffer_t compute_buffer = NULL;
ggml_backend_t backend = NULL; ggml_backend_t backend = NULL;
ggml_gallocr_t compute_alloc = NULL; ggml_gallocr_t compute_alloc = NULL;
@ -808,6 +818,29 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
} }
embeddings = block_1; embeddings = block_1;
} }
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
{
int n_patch = 24;
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
mlp_0 = ggml_gelu(ctx0, mlp_0);
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
// mlp_2 ne = [2048, 576, 1, 1]
// // AVG Pool Layer 2*2, strides = 2
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
// mlp_2 ne = [576, 2048, 1, 1]
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
// mlp_2 ne [24, 24, 2048, 1]
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
// weight ne = [3, 3, 2048, 1]
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
embeddings = peg_0;
}
else { else {
GGML_ASSERT(false); GGML_ASSERT(false);
} }
@ -935,7 +968,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
} }
} }
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0); new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__); printf("%s: CLIP using CUDA backend\n", __func__);
#endif #endif
@ -1178,7 +1211,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
} else { }
else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
{
// MobilVLM_V2 projection
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
}
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
} }
@ -1676,6 +1720,9 @@ void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx_data); ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf); gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx; delete ctx;
} }
@ -1964,6 +2011,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_LDP) { if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
} }
if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
return ctx->vision_model.mm_model_peg_0_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
return ctx->vision_model.mm_2_b->ne[0]; return ctx->vision_model.mm_2_b->ne[0];
} }

View file

@ -1,6 +1,7 @@
import argparse import argparse
import os import os
import json import json
import re
import torch import torch
import numpy as np import numpy as np
@ -38,9 +39,11 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
def get_tensor_name(name: str) -> str: def get_tensor_name(name: str) -> str:
if "projection" in name: if "projection" in name:
return name return name
if "mm_projector" in name: if "mm_projector" in name:
return name.replace("model.mm_projector", "mm") name = name.replace("model.mm_projector", "mm")
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
return name
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
@ -83,7 +86,7 @@ ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))") help="The clip model is from openclip (for ViT-SO400M type))")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp") ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5

View file

@ -3,3 +3,21 @@ add_executable(${TARGET} lookup.cpp)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TARGET lookup-create)
add_executable(${TARGET} lookup-create.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TARGET lookup-merge)
add_executable(${TARGET} lookup-merge.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TARGET lookup-stats)
add_executable(${TARGET} lookup-stats.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,43 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "ngram-cache.h"
#include <cstdint>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
GGML_ASSERT(model != nullptr);
// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
fprintf(stderr, "%s: tokenization done\n", __func__);
llama_ngram_cache ngram_cache;
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
}

View file

@ -0,0 +1,47 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "ngram-cache.h"
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
static void print_usage() {
fprintf(stderr, "Merges multiple lookup cache files into a single one.\n");
fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n");
}
int main(int argc, char ** argv){
if (argc < 3) {
print_usage();
exit(1);
}
std::vector<std::string> args;
args.resize(argc-1);
for (int i = 0; i < argc-1; ++i) {
args[i] = argv[i+1];
if (args[i] == "-h" || args[i] == "--help") {
print_usage();
exit(0);
}
}
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
for (size_t i = 1; i < args.size()-1; ++i) {
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
}
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
llama_ngram_cache_save(ngram_cache_merged, args.back());
}

View file

@ -0,0 +1,163 @@
#include "ggml.h"
#include "common.h"
#include "llama.h"
#include "log.h"
#include "ngram-cache.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>
#include <unordered_map>
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
const int n_draft = params.n_draft;
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_set_rng_seed(ctx, params.seed);
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
llama_ngram_cache ngram_cache_context;
llama_ngram_cache ngram_cache_dynamic;
llama_ngram_cache ngram_cache_static;
int64_t t_draft_flat_us = 0;
int64_t t_draft_us = 0;
{
const int64_t t_start_draft_us = ggml_time_us();
if (!params.lookup_cache_static.empty()) {
try {
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
} catch (std::ifstream::failure const &) {
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
exit(1);
}
}
if (!params.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
}
const int n_input = inp.size();
const int n_ctx = params.n_ctx;
int n_drafted = 0;
int n_accept = 0;
const int64_t t_start_ms = ggml_time_ms();
// Iterate over input tokens in chunks of size n_ctx.
// Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
std::vector<llama_token> pseudo_output;
pseudo_output.push_back(inp_slice[0]);
while ((int) pseudo_output.size() < n_ctx) {
// Simulate drafting and decoding from draft:
std::vector<llama_token> draft;
draft.push_back(pseudo_output.back());
{
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
n_drafted += draft.size() - 1;
for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
const llama_token ground_truth = inp_slice[pseudo_output.size()];
const llama_token drafted = draft[j];
if (ground_truth != drafted) {
break;
}
++n_accept;
pseudo_output.push_back(ground_truth);
{
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
}
// After each simulated batch decoding simulate the sampling of a single token:
if ((int) pseudo_output.size() < n_ctx) {
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
{
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
}
draft.erase(draft.begin());
}
if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
const int64_t t_now_ms = ggml_time_ms();
const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
const int64_t eta_min = eta_ms / (60*1000);
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
}
// After each chunk, update the dynamic ngram cache with the context ngram cache:
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
ngram_cache_context.clear();
}
LOG_TEE("\n");
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

View file

@ -1,12 +1,15 @@
#include "common.h"
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#include "common.h"
#include "ngram-cache.h"
#include <cmath> #include <cmath>
#include <cstdint> #include <cstdint>
#include <cstdio> #include <cstdio>
#include <fstream>
#include <string> #include <string>
#include <vector> #include <vector>
#include <unordered_map>
int main(int argc, char ** argv){ int main(int argc, char ** argv){
gpt_params params; gpt_params params;
@ -15,11 +18,7 @@ int main(int argc, char ** argv){
return 1; return 1;
} }
// max/min n-grams size to search for in prompt // max. number of additional tokens to draft if match is found
const int ngram_max = 4;
const int ngram_min = 1;
// length of the candidate / draft sequence, if match is found
const int n_draft = params.n_draft; const int n_draft = params.n_draft;
const bool dump_kv_cache = params.dump_kv_cache; const bool dump_kv_cache = params.dump_kv_cache;
@ -39,6 +38,8 @@ int main(int argc, char ** argv){
// load the model // load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_set_rng_seed(ctx, params.seed);
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
// tokenize the prompt // tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model); const bool add_bos = llama_should_add_bos_token(model);
@ -47,6 +48,35 @@ int main(int argc, char ** argv){
std::vector<llama_token> inp; std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
llama_ngram_cache ngram_cache_context;
llama_ngram_cache ngram_cache_dynamic;
llama_ngram_cache ngram_cache_static;
int64_t t_draft_flat_us = 0;
int64_t t_draft_us = 0;
{
// Fill up context ngram cache with tokens from user input:
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
if (!params.lookup_cache_static.empty()) {
try {
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
} catch (std::ifstream::failure const &) {
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
exit(1);
}
}
if (!params.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
}
const int max_context_size = llama_n_ctx(ctx); const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4; const int max_tokens_list_size = max_context_size - 4;
@ -76,8 +106,6 @@ int main(int argc, char ** argv){
int n_drafted = 0; int n_drafted = 0;
int n_accept = 0; int n_accept = 0;
int64_t t_draft_us = 0;
int n_past = inp.size(); int n_past = inp.size();
bool has_eos = false; bool has_eos = false;
@ -129,6 +157,12 @@ int main(int argc, char ** argv){
++n_past; ++n_past;
++i_dft; ++i_dft;
inp.push_back(id); inp.push_back(id);
{
// Update context ngram cache with the newly accepted token:
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
if (params.use_color) { if (params.use_color) {
// color accepted draft token // color accepted draft token
@ -149,6 +183,12 @@ int main(int argc, char ** argv){
draft.clear(); draft.clear();
draft.push_back(id); draft.push_back(id);
inp.push_back(id); inp.push_back(id);
{
// Update context ngram cache with the newly accepted token:
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
break; break;
} }
@ -163,44 +203,19 @@ int main(int argc, char ** argv){
llama_batch_clear(batch_tgt); llama_batch_clear(batch_tgt);
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
// generate n_pred tokens through prompt lookup // Draft already contains a single token sampled from the model:
auto prompt_lookup = [&]() -> void { GGML_ASSERT(draft.size() == 1);
const int inp_size = inp.size(); GGML_ASSERT(draft[0] == inp.back());
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
const llama_token * ngram = &inp[inp_size - ngram_size];
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
bool match = true;
for (int j = 0; j < ngram_size; ++j) {
if (inp[i + j] != ngram[j]) {
match = false;
break;
}
}
if (match) {
const int startIdx = i + ngram_size;
const int endIdx = startIdx + n_draft;
if (endIdx < inp_size) {
for (int j = startIdx; j < endIdx; ++j) {
LOG(" - draft candidate %d: %d\n", j, inp[j]);
draft.push_back(inp[j]);
llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
++n_drafted;
}
return;
}
}
}
}
return;
};
const int64_t t_start_draft_us = ggml_time_us(); const int64_t t_start_draft_us = ggml_time_us();
prompt_lookup(); llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
for (size_t i = 1; i < draft.size(); ++i) {
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
}
t_draft_us += ggml_time_us() - t_start_draft_us; t_draft_us += ggml_time_us() - t_start_draft_us;
n_drafted += draft.size() - 1;
llama_decode(ctx, batch_tgt); llama_decode(ctx, batch_tgt);
++n_past; ++n_past;
@ -210,19 +225,24 @@ int main(int argc, char ** argv){
auto t_dec_end = ggml_time_us(); auto t_dec_end = ggml_time_us();
// Update dynamic ngram cache with context ngram cache and save it to disk:
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
LOG_TEE("\n\n"); LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted); LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
LOG_TEE("n_accept = %d\n", n_accept); LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ntarget:\n"); LOG_TEE("\ntarget:\n");
llama_print_timings(ctx); llama_print_timings(ctx);

View file

@ -8,7 +8,7 @@ Because this example is "outside of the source tree", it is important to first b
### Considerations ### Considerations
When hardware acceleration libraries are used (e.g. CUBlas, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_. When hardware acceleration libraries are used (e.g. CUDA, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_.
### Build llama.cpp and install to C:\LlamaCPP directory ### Build llama.cpp and install to C:\LlamaCPP directory

View file

@ -316,8 +316,8 @@ These options provide extra functionality and customization when running the LLa
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated. - `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
- `--verbose-prompt`: Print the prompt before generating text. - `--verbose-prompt`: Print the prompt before generating text.
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.

View file

@ -132,7 +132,6 @@ int main(int argc, char ** argv) {
llama_context * ctx = NULL; llama_context * ctx = NULL;
// load the target model // load the target model
params.logits_all = true;
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
// load the prompts from an external file if there are any // load the prompts from an external file if there are any

View file

@ -380,6 +380,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
const int batch_size = std::min(end - batch_start, n_batch); const int batch_size = std::min(end - batch_start, n_batch);
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
// TODO: use llama_batch.logits instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
//fprintf(stderr, "%s : failed to eval\n", __func__); //fprintf(stderr, "%s : failed to eval\n", __func__);
return {tokens, -1, logit_history, prob_history}; return {tokens, -1, logit_history, prob_history};
@ -552,6 +553,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
const int batch_start = start + j * n_batch; const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch); const int batch_size = std::min(end - batch_start, n_batch);
int n_outputs = 0;
batch.n_tokens = 0; batch.n_tokens = 0;
for (int seq = 0; seq < n_seq_batch; seq++) { for (int seq = 0; seq < n_seq_batch; seq++) {
int seq_start = batch_start + seq*n_ctx; int seq_start = batch_start + seq*n_ctx;
@ -566,11 +569,13 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
for (int k = 0; k < batch_size; ++k) { for (int k = 0; k < batch_size; ++k) {
const int idx = seq*n_ctx + k; const int idx = seq*n_ctx + k;
batch.token[idx] = tokens[seq_start + k]; batch.token [idx] = tokens[seq_start + k];
batch.pos[idx] = j*n_batch + k; batch.pos [idx] = j*n_batch + k;
batch.n_seq_id[idx] = 1; batch.n_seq_id[idx] = 1;
batch.seq_id[idx][0] = seq; batch.seq_id [idx][0] = seq;
batch.logits[idx] = batch.pos[idx] >= first ? 1 : 0; batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
n_outputs += batch.logits[idx] != 0;
} }
batch.n_tokens += batch_size; batch.n_tokens += batch_size;
@ -583,9 +588,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
return {tokens, -1, logit_history, prob_history}; return {tokens, -1, logit_history, prob_history};
} }
if (num_batches > 1) { if (num_batches > 1 && n_outputs > 0) {
const auto * batch_logits = llama_get_logits(ctx); const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab);
} }
} }
@ -604,14 +609,15 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
} }
for (int seq = 0; seq < n_seq_batch; seq++) { for (int seq = 0; seq < n_seq_batch; seq++) {
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx); const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
if (!params.logits_file.empty()) { if (!params.logits_file.empty()) {
process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, process_logits(logits_stream, n_vocab, all_logits,
tokens_data, n_ctx - 1 - first, tokens_data, n_ctx - 1 - first,
workers, log_probs, nll, nll2); workers, log_probs, nll, nll2);
} else { } else {
process_logits(n_vocab, all_logits + first*n_vocab, process_logits(n_vocab, all_logits,
tokens_data, n_ctx - 1 - first, tokens_data, n_ctx - 1 - first,
workers, nll, nll2, workers, nll, nll2,
logit_history.data() + start + seq*n_ctx + first, logit_history.data() + start + seq*n_ctx + first,
@ -652,6 +658,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
} }
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) { static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
int prev_outputs = 0;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
@ -672,7 +679,14 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
return false; return false;
} }
memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float)); int n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
n_outputs += batch_view.logits[i] != 0;
}
memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float));
prev_outputs += n_outputs;
} }
return true; return true;
@ -779,7 +793,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
size_t ending_logprob_count[4]; size_t ending_logprob_count[4];
double ending_logprob[4]; double ending_logprob[4];
size_t i_batch; // starting index in the llama_batch size_t i_logits; // starting index of logits in the llama_batch
size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t common_prefix; // max number of initial tokens that are the same in all sentences
size_t required_tokens; // needed number of tokens to evaluate all 4 endings size_t required_tokens; // needed number of tokens to evaluate all 4 endings
std::vector<llama_token> seq_tokens[4]; std::vector<llama_token> seq_tokens[4];
@ -844,9 +858,10 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
const int max_tasks_per_batch = 32; const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); llama_batch batch = llama_batch_init(n_ctx, 0, 4);
std::vector<float> tok_logits(n_vocab); std::vector<float> tok_logits(n_vocab);
// TODO: this could be made smaller; it's currently the worst-case size
std::vector<float> batch_logits(n_vocab*n_ctx); std::vector<float> batch_logits(n_vocab*n_ctx);
std::vector<std::pair<size_t, llama_token>> eval_pairs; std::vector<std::pair<size_t, llama_token>> eval_pairs;
@ -857,16 +872,17 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
int n_cur = 0; int n_cur = 0;
size_t i1 = i0; size_t i1 = i0;
size_t i_batch = 0; // this tells us where in `llama_batch` we are currently size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
llama_batch_clear(batch); llama_batch_clear(batch);
// batch as much tasks as possible into the available context // batch as much tasks as possible into the available context
// each task has 4 unique seuqnce ids - one for each ending // each task has 4 unique sequence ids - one for each ending
// the common prefix is shared among the 4 sequences to save tokens // the common prefix is shared among the 4 sequences to save tokens
// we extract logits only from the last common token and from all ending tokens of each sequence // we extract logits only from the last common token and from all ending tokens of each sequence
while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) { while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
auto & hs_cur = hs_data[i1]; auto & hs_cur = hs_data[i1];
int n_logits = 0;
const int s0 = 4*(i1 - i0); const int s0 = 4*(i1 - i0);
if (s0 + 4 > max_seq) { if (s0 + 4 > max_seq) {
@ -874,18 +890,23 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
} }
for (size_t i = 0; i < hs_cur.common_prefix; ++i) { for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
} }
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
n_logits += 1;
for (int s = 0; s < 4; ++s) { for (int s = 0; s < 4; ++s) {
for (size_t i = hs_cur.common_prefix; i < hs_cur.seq_tokens[s].size(); ++i) { const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, true); // TODO: don't evaluate the last token of each sequence
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
const bool needs_logits = i < seq_tokens_size - 1;
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
n_logits += needs_logits;
} }
} }
hs_cur.i_batch = i_batch; hs_cur.i_logits = i_logits;
i_batch += hs_cur.required_tokens; i_logits += n_logits;
n_cur += hs_data[i1].required_tokens; n_cur += hs_data[i1].required_tokens;
if (++i1 == hs_task_count) { if (++i1 == hs_task_count) {
@ -911,12 +932,11 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
eval_pairs.clear(); eval_pairs.clear();
for (size_t i = i0; i < i1; ++i) { for (size_t i = i0; i < i1; ++i) {
auto & hs_cur = hs_data[i]; auto & hs_cur = hs_data[i];
size_t li = hs_cur.common_prefix; size_t li = 1; // skip the last logit of the common prefix (computed separately below)
for (int s = 0; s < 4; ++s) { for (int s = 0; s < 4; ++s) {
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]); eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
} }
++li;
} }
} }
// Then we do the actual calculation // Then we do the actual calculation
@ -928,7 +948,8 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
for (size_t i = i0; i < i1; ++i) { for (size_t i = i0; i < i1; ++i) {
auto & hs_cur = hs_data[i]; auto & hs_cur = hs_data[i];
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + hs_cur.common_prefix - 1), n_vocab*sizeof(float)); // get the logits of the last token of the common prefix
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float));
const auto first_probs = softmax(tok_logits); const auto first_probs = softmax(tok_logits);
@ -978,7 +999,7 @@ struct winogrande_entry {
std::array<std::string, 2> choices; std::array<std::string, 2> choices;
int answer; int answer;
size_t i_batch; size_t i_logits;
size_t common_prefix; size_t common_prefix;
size_t required_tokens; size_t required_tokens;
size_t n_base1; // number of tokens for context + choice 1 size_t n_base1; // number of tokens for context + choice 1
@ -1104,6 +1125,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
task.common_prefix++; task.common_prefix++;
} }
// TODO: the last token of each of the sequences don't need to be evaluated
task.required_tokens = task.common_prefix + task.required_tokens = task.common_prefix +
task.seq_tokens[0].size() - task.common_prefix + task.seq_tokens[0].size() - task.common_prefix +
task.seq_tokens[1].size() - task.common_prefix; task.seq_tokens[1].size() - task.common_prefix;
@ -1121,9 +1143,10 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
const int max_tasks_per_batch = 128; const int max_tasks_per_batch = 128;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); llama_batch batch = llama_batch_init(n_ctx, 0, 2);
std::vector<float> tok_logits(n_vocab); std::vector<float> tok_logits(n_vocab);
// TODO: this could be made smaller; it's currently the worst-case size
std::vector<float> batch_logits(n_vocab*n_ctx); std::vector<float> batch_logits(n_vocab*n_ctx);
std::vector<std::pair<size_t, llama_token>> eval_pairs; std::vector<std::pair<size_t, llama_token>> eval_pairs;
@ -1137,29 +1160,33 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
int n_cur = 0; int n_cur = 0;
size_t i1 = i0; size_t i1 = i0;
size_t i_batch = 0; size_t i_logits = 0;
llama_batch_clear(batch); llama_batch_clear(batch);
while (n_cur + (int) data[i1].required_tokens <= n_ctx) { while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
int n_logits = 0;
const int s0 = 2*(i1 - i0); const int s0 = 2*(i1 - i0);
if (s0 + 2 > max_seq) { if (s0 + 2 > max_seq) {
break; break;
} }
for (size_t i = 0; i < data[i1].common_prefix; ++i) { for (size_t i = 0; i < data[i1].common_prefix; ++i) {
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false); llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
} }
batch.logits[batch.n_tokens - 1] = true; batch.logits[batch.n_tokens - 1] = true;
n_logits += 1;
for (int s = 0; s < 2; ++s) { for (int s = 0; s < 2; ++s) {
// TODO: end before the last token, no need to predict past the end of the sequences
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) { for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true); llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
n_logits += 1;
} }
} }
data[i1].i_batch = i_batch; data[i1].i_logits = i_logits;
i_batch += data[i1].required_tokens; i_logits += n_logits;
n_cur += data[i1].required_tokens; n_cur += data[i1].required_tokens;
if (++i1 == data.size()) { if (++i1 == data.size()) {
@ -1190,15 +1217,16 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
size_t li = n_base1 - 1; size_t li = n_base1 - task.common_prefix;
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]); eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
} }
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1; // FIXME: this uses the wrong first logits when not skipping the choice word
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]); eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
} }
} }
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
@ -1287,7 +1315,7 @@ struct multiple_choice_task {
} }
// For evaluation // For evaluation
size_t i_batch; // starting index in the llama_batch size_t i_logits; // starting index of logits in the llama_batch
size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t common_prefix; // max number of initial tokens that are the same in all sentences
size_t required_tokens; // needed number of tokens to evaluate all answers size_t required_tokens; // needed number of tokens to evaluate all answers
std::vector<std::vector<llama_token>> seq_tokens; std::vector<std::vector<llama_token>> seq_tokens;
@ -1366,7 +1394,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
std::vector<uint32_t> task_pos(n_task); std::vector<uint32_t> task_pos(n_task);
strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t)); strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
if (strstream.fail()) { if (strstream.fail()) {
printf("%s: failed to raad task positions from prompt\n", __func__); printf("%s: failed to read task positions from prompt\n", __func__);
return; return;
} }
@ -1447,7 +1475,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
return; return;
} }
} else { } else {
int n_dot = n_task/100; int n_dot = std::max((int) n_task/100, 1);
int i_task = 0; int i_task = 0;
for (auto& task : tasks) { for (auto& task : tasks) {
++i_task; ++i_task;
@ -1491,17 +1519,18 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
int n_cur = 0; int n_cur = 0;
size_t i1 = i0; size_t i1 = i0;
size_t i_batch = 0; // this tells us where in `llama_batch` we are currently size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
llama_batch_clear(batch); llama_batch_clear(batch);
// batch as much tasks as possible into the available context // batch as much tasks as possible into the available context
// each task has 4 unique seuqnce ids - one for each ending // each task has 4 unique sequence ids - one for each ending
// the common prefix is shared among the 4 sequences to save tokens // the common prefix is shared among the 4 sequences to save tokens
// we extract logits only from the last common token and from all ending tokens of each sequence // we extract logits only from the last common token and from all ending tokens of each sequence
int s0 = 0; int s0 = 0;
while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) { while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
auto& cur_task = tasks[i1]; auto& cur_task = tasks[i1];
int n_logits = 0;
int num_answers = cur_task.seq_tokens.size(); int num_answers = cur_task.seq_tokens.size();
if (s0 + num_answers > max_seq) { if (s0 + num_answers > max_seq) {
@ -1518,17 +1547,22 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false); llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
} }
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
n_logits += 1;
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) { const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true); // TODO: don't evaluate the last token of each sequence
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
const bool needs_logits = i < seq_tokens_size - 1;
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
n_logits += needs_logits;
} }
} }
s0 += num_answers; s0 += num_answers;
cur_task.i_batch = i_batch; cur_task.i_logits = i_logits;
i_batch += cur_task.required_tokens; i_logits += n_logits;
n_cur += cur_task.required_tokens; n_cur += cur_task.required_tokens;
if (++i1 == tasks.size()) { if (++i1 == tasks.size()) {
@ -1554,12 +1588,11 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
eval_pairs.clear(); eval_pairs.clear();
for (size_t i = i0; i < i1; ++i) { for (size_t i = i0; i < i1; ++i) {
auto& cur_task = tasks[i]; auto& cur_task = tasks[i];
size_t li = cur_task.common_prefix; size_t li = 1; // skip the last logit of the common prefix (computed separately below)
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]); eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
} }
++li;
} }
} }
// Then we do the actual calculation // Then we do the actual calculation
@ -1578,7 +1611,8 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
//} //}
//printf("\n common_prefix: %zu\n", cur_task.common_prefix); //printf("\n common_prefix: %zu\n", cur_task.common_prefix);
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float)); // get the logits of the last token of the common prefix
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
const auto first_probs = softmax(tok_logits); const auto first_probs = softmax(tok_logits);
@ -1730,6 +1764,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
} }
// TODO: use llama_batch.logits instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__); fprintf(stderr, "%s : failed to eval\n", __func__);
return; return;

View file

@ -26,6 +26,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", }, { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", }, { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
@ -87,13 +88,17 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
// //
[[noreturn]] [[noreturn]]
static void usage(const char * executable) { static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n");
printf("\nAllowed quantization types:\n"); printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) { for (auto & it : QUANT_OPTIONS) {
@ -107,14 +112,14 @@ static void usage(const char * executable) {
exit(1); exit(1);
} }
static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) { static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
std::ifstream in(imatrix_file.c_str(), std::ios::binary); std::ifstream in(imatrix_file.c_str(), std::ios::binary);
if (!in) { if (!in) {
printf("%s: failed to open %s\n",__func__,imatrix_file.c_str()); printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
return; return;
} }
int n_entries; int n_entries;
in.read((char*)&n_entries, sizeof(n_entries)); in.read((char *)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) { if (in.fail() || n_entries < 1) {
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str()); printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
return; return;
@ -124,25 +129,25 @@ static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std
std::vector<char> name_as_vec(len+1); std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len); in.read((char *)name_as_vec.data(), len);
if (in.fail()) { if (in.fail()) {
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str()); printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
return; return;
} }
name_as_vec[len] = 0; name_as_vec[len] = 0;
std::string name{name_as_vec.data()}; std::string name{name_as_vec.data()};
auto& e = imatrix_data[std::move(name)]; auto & e = imatrix_data[std::move(name)];
int ncall; int ncall;
in.read((char*)&ncall, sizeof(ncall)); in.read((char *)&ncall, sizeof(ncall));
int nval; int nval;
in.read((char *)&nval, sizeof(nval)); in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) { if (in.fail() || nval < 1) {
printf("%s: failed reading number of values for entry %d\n",__func__,i); printf("%s: failed reading number of values for entry %d\n", __func__, i);
imatrix_data = {}; imatrix_data = {};
return; return;
} }
e.resize(nval); e.resize(nval);
in.read((char*)e.data(), nval*sizeof(float)); in.read((char *)e.data(), nval*sizeof(float));
if (in.fail()) { if (in.fail()) {
printf("%s: failed reading data for entry %d\n",__func__,i); printf("%s: failed reading data for entry %d\n", __func__, i);
imatrix_data = {}; imatrix_data = {};
return; return;
} }
@ -150,13 +155,13 @@ static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std
for (auto& v : e) v /= ncall; for (auto& v : e) v /= ncall;
} }
} }
printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str()); printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
} }
static void prepare_imatrix(const std::string& imatrix_file, static void prepare_imatrix(const std::string & imatrix_file,
const std::vector<std::string>& included_weights, const std::vector<std::string> & included_weights,
const std::vector<std::string>& excluded_weights, const std::vector<std::string> & excluded_weights,
std::unordered_map<std::string, std::vector<float>>& imatrix_data) { std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
if (!imatrix_file.empty()) { if (!imatrix_file.empty()) {
load_imatrix(imatrix_file, imatrix_data); load_imatrix(imatrix_file, imatrix_data);
} }
@ -189,6 +194,55 @@ static void prepare_imatrix(const std::string& imatrix_file,
} }
} }
static ggml_type parse_ggml_type(const char * arg) {
ggml_type result = GGML_TYPE_COUNT;
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
auto type = ggml_type(j);
const auto * name = ggml_type_name(type);
if (name && strcmp(arg, name) == 0) {
result = type; break;
}
}
return result;
}
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char* sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else {
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
if (argc < 3) { if (argc < 3) {
usage(argv[0]); usage(argv[0]);
@ -199,10 +253,27 @@ int main(int argc, char ** argv) {
int arg_idx = 1; int arg_idx = 1;
std::string imatrix_file; std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights; std::vector<std::string> included_weights, excluded_weights;
std::vector<llama_model_kv_override> kv_overrides;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
params.quantize_output_tensor = false; params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
if (arg_idx < argc-1) {
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
if (arg_idx < argc-1) {
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true; params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) { } else if (strcmp(argv[arg_idx], "--pure") == 0) {
@ -243,6 +314,11 @@ int main(int argc, char ** argv) {
if (!imatrix_data.empty()) { if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data; params.imatrix = &imatrix_data;
} }
if (!kv_overrides.empty()) {
kv_overrides.emplace_back();
kv_overrides.back().key[0] = 0;
params.kv_overrides = &kv_overrides;
}
llama_backend_init(); llama_backend_init();
@ -264,8 +340,7 @@ int main(int argc, char ** argv) {
if (ftype_str == "COPY") { if (ftype_str == "COPY") {
params.only_copy = true; params.only_copy = true;
} }
} } else {
else {
fname_out = argv[arg_idx]; fname_out = argv[arg_idx];
arg_idx++; arg_idx++;
@ -296,10 +371,12 @@ int main(int argc, char ** argv) {
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) { params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
fprintf(stderr, "\n===============================================================================================\n"); params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n"); params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
fprintf(stderr, "===============================================================================================\n\n\n"); fprintf(stderr, "\n==========================================================================================================\n");
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
fprintf(stderr, "==========================================================================================================\n\n\n");
return 1; return 1;
} }

View file

@ -0,0 +1,20 @@
import json, subprocess, sys, os
assert len(sys.argv) >= 2
[_, pattern, *rest] = sys.argv
print(subprocess.check_output(
[
"python",
os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"json-schema-to-grammar.py"),
*rest,
"-",
"--raw-pattern",
],
text=True,
input=json.dumps({
"type": "string",
"pattern": pattern,
}, indent=2)))

View file

@ -0,0 +1,5 @@
set(TARGET retrieval)
add_executable(${TARGET} retrieval.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,69 @@
# llama.cpp/examples/retrieval
Demonstration of simple retrieval technique based on cosine similarity
More info:
https://github.com/ggerganov/llama.cpp/pull/6193
### How to use
`retieval.cpp` has parameters of its own:
- `--context-file`: file to be embedded - state this option multiple times to embed multiple files
- `--chunk-size`: minimum size of each text chunk to be embedded
- `--chunk-separator`: STRING to divide chunks by. newline by default
`retrieval` example can be tested as follows:
```bash
make -j && ./retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .
```
This chunks and embeds all given files and starts a loop requesting query inputs:
```
Enter query:
```
On each query input, top k chunks are shown along with file name, chunk position within file and original text:
```
Enter query: describe the mit license
batch_decode: n_tokens = 6, n_seq = 1
Top 3 similar chunks:
filename: README.md
filepos: 119
similarity: 0.762334
textdata:
png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[Roadmap](https://github.
--------------------
filename: License
filepos: 0
similarity: 0.725146
textdata:
MIT License
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
--------------------
filename: README.md
filepos: 9178
similarity: 0.621722
textdata:
com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.
--------------------
```

View file

@ -0,0 +1,350 @@
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <fstream>
struct retrieval_params {
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
};
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
gpt_print_usage(argc, argv, gpt_params);
printf("retrieval options:\n");
printf(" --context-file FNAME file containing context to embed.\n");
printf(" specify multiple files by providing --context-file option multiple times.\n");
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
printf(" --chunk-separator STRING\n");
printf(" string to separate chunks (default: \"\\n\")\n");
printf("\n");
}
static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
int i = 1;
std::string arg;
while (i < argc) {
arg = argv[i];
bool invalid_gpt_param = false;
if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
if (invalid_gpt_param) {
fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
// option was parsed by gpt_params_find_arg
} else if (arg == "--context-file") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --context-file\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
// store the external file name in params
retrieval_params.context_files.push_back(argv[i]);
} else if (arg == "--chunk-size") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --chunk-size\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
retrieval_params.chunk_size = std::stoi(argv[i]);
} else if (arg == "--chunk-separator") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --chunk-separator\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
retrieval_params.chunk_separator = argv[i];
} else {
// unknown argument
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
i++;
}
}
struct chunk {
// filename
std::string filename;
// original file position
size_t filepos;
// original text data
std::string textdata = "";
// tokenized text data
std::vector<llama_token> tokens;
// embedding
std::vector<float> embedding;
};
// chunk file data to chunks of size >= chunk_size
// chunk_separator is the separator between chunks
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
std::vector<chunk> chunks;
std::ifstream f(filename.c_str());
if (!f.is_open()) {
fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
return chunks;
}
chunk current_chunk;
char buffer[1024];
int64_t filepos = 0;
std::string current = "";
while (f.read(buffer, 1024)) {
current += std::string(buffer, f.gcount());
size_t pos;
while ((pos = current.find(chunk_separator)) != std::string::npos) {
current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
if ((int) current_chunk.textdata.size() > chunk_size) {
// save chunk
current_chunk.filepos = filepos;
current_chunk.filename = filename;
chunks.push_back(current_chunk);
// update filepos
filepos += (int) current_chunk.textdata.size();
// reset current_chunk
current_chunk = chunk();
}
current = current.substr(pos + chunk_separator.size());
}
}
// add leftover data to last chunk
if (current_chunk.textdata.size() > 0) {
if (chunks.empty()) {
current_chunk.filepos = filepos;
current_chunk.filename = filename;
chunks.push_back(current_chunk);
} else {
chunks.back().textdata += current_chunk.textdata;
}
}
f.close();
return chunks;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
// run model
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
fprintf(stderr, "%s : failed to decode\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
continue;
}
// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
}
float * out = output + batch.seq_id[i][0] * n_embd;
llama_embd_normalize(embd, out, n_embd);
}
}
int main(int argc, char ** argv) {
gpt_params params;
retrieval_params retrieval_params;
retrieval_params_parse(argc, argv, params, retrieval_params);
// For BERT models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
if (retrieval_params.chunk_size <= 0) {
fprintf(stderr, "chunk_size must be positive\n");
return 1;
}
if (retrieval_params.context_files.empty()) {
fprintf(stderr, "context_files must be specified\n");
return 1;
}
params.embedding = true;
print_build_info();
printf("processing files:\n");
for (auto & context_file : retrieval_params.context_files) {
printf("%s\n", context_file.c_str());
}
std::vector<chunk> chunks;
for (auto & context_file : retrieval_params.context_files) {
std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator);
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
}
printf("Number of chunks: %ld\n", chunks.size());
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
if (n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx);
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);
// tokenize the prompts and trim
for (auto & chunk : chunks) {
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
if (inp.size() > n_batch) {
fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
return 1;
}
// add eos if not present
if (inp.empty() || inp.back() != llama_token_eos(model)) {
inp.push_back(llama_token_eos(model));
}
chunk.tokens = inp;
}
// tokenization stats
if (params.verbose_prompt) {
for (int i = 0; i < (int) chunks.size(); i++) {
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
}
fprintf(stderr, "\n\n");
}
}
// initialize batch
const int n_chunks = chunks.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// allocate output
const int n_embd = llama_n_embd(model);
std::vector<float> embeddings(n_chunks * n_embd, 0);
float * emb = embeddings.data();
// break into batches
int p = 0; // number of prompts processed already
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_chunks; k++) {
// clamp to n_batch tokens
auto & inp = chunks[k].tokens;
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
llama_batch_clear(batch);
p += s;
s = 0;
}
// add to batch
batch_add_seq(batch, inp, s);
s += 1;
}
// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
// save embeddings to chunks
for (int i = 0; i < n_chunks; i++) {
chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
// clear tokens as they are no longer needed
chunks[i].tokens.clear();
}
// start loop, receive query and return top k similar chunks based on cosine similarity
std::string query;
while (true) {
printf("Enter query: ");
std::getline(std::cin, query);
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
batch_add_seq(query_batch, query_tokens, 0);
std::vector<float> query_emb(n_embd, 0);
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
llama_batch_clear(query_batch);
// compute cosine similarities
{
std::vector<std::pair<int, float>> similarities;
for (int i = 0; i < n_chunks; i++) {
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
similarities.push_back(std::make_pair(i, sim));
}
// sort similarities
std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
return a.second > b.second;
});
printf("Top %d similar chunks:\n", params.sparams.top_k);
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
printf("similarity: %f\n", similarities[i].second);
printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
printf("--------------------\n");
}
}
}
// clean up
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
}

View file

@ -2,12 +2,16 @@ set(TARGET server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON) option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF) option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}) include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h) add_executable(${TARGET}
server.cpp
utils.hpp
httplib.h
)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}> SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
) )
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common json-schema-to-grammar ${CMAKE_THREAD_LIBS_INIT})
if (LLAMA_SERVER_SSL) if (LLAMA_SERVER_SSL)
find_package(OpenSSL REQUIRED) find_package(OpenSSL REQUIRED)
target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto)

View file

@ -16,17 +16,20 @@ The project is under active development, and we are [looking for feedback and co
**Command line options:** **Command line options:**
- `--threads N`, `-t N`: Set the number of threads to use during generation. - `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching, this parameter is used only if one token is to be processed on CPU backend.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. - `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. Not used if model layers are offloaded to GPU.
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`) - `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`). - `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf). - `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (default: unused).
- `-hfr REPO, --hf-repo REPO`: Hugging Face model repository (default: unused).
- `-hff FILE, --hf-file FILE`: Hugging Face model file (default: unused).
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. - `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096. - `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-ngl N`, `--n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`. - `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `2048`.
- `-ub N`, `--ubatch-size N`: physical maximum batch size. Default: `512`.
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended. - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped. - `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. - `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
@ -57,7 +60,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included. - `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled) - `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) - `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- `--log-disable`: Output logs to stdout only, default: enabled. - `--log-disable`: Output logs to stdout only, not to `llama.log`. default: enabled.
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json) - `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
**If compiled with `LLAMA_SERVER_SSL=ON`** **If compiled with `LLAMA_SERVER_SSL=ON`**
@ -260,7 +263,7 @@ node index.js
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA. `image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1) `id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false) `cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false)
@ -357,7 +360,7 @@ Notice that each `probs` is an array of length `n_probs`.
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint. - `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option) - `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. - **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only model with [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, ChatML template will be used.
*Options:* *Options:*

View file

@ -26,8 +26,9 @@ const propOrder = grammarJsonSchemaPropOrder
let grammar = null let grammar = null
if (grammarJsonSchemaFile) { if (grammarJsonSchemaFile) {
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8')) let schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
const converter = new SchemaConverter(propOrder) const converter = new SchemaConverter({prop_order: propOrder, allow_fetch: true})
schema = await converter.resolveRefs(schema, grammarJsonSchemaFile)
converter.visit(schema, '') converter.visit(schema, '')
grammar = converter.formatGrammar() grammar = converter.formatGrammar()
} }

View file

@ -43,444 +43,454 @@ unsigned char completion_js[] = {
0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20,
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x73, 0x74, 0x20, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d,
0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a,
0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43,
0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b,
0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75,
0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61,
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6d, 0x73, 0x2c, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d,
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2c, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a, 0x20, 0x27,
0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62,
0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f, 0x6d, 0x70,
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65,
0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x27,
0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76,
0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x43,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70, 0x65, 0x27,
0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70, 0x74, 0x27,
0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x20,
0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42, 0x65, 0x61,
0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60, 0x7d, 0x20,
0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x3a,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x29,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x70, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77,
0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e, 0x67, 0x65, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60, 0x24,
0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x63, 0x6f,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x60, 0x2c, 0x20, 0x7b,
0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54, 0x65, 0x78, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a,
0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20,
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x6c, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f,
0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42, 0x75, 0x66, 0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61,
0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61, 0x72, 0x74, 0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64, 0x20, 0x6c, 0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f,
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x0a, 0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70,
0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x63, 0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61,
0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70,
0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x72, 0x65, 0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76,
0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28, 0x29, 0x3b, 0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65, 0x29, 0x20, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x79, 0x20, 0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72,
0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x41, 0x65, 0x61, 0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61,
0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60,
0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74, 0x6f, 0x20, 0x7d, 0x20, 0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20,
0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x65, 0x66, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65,
0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x28, 0x72, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29, 0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63,
0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74, 0x68, 0x65, 0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54,
0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72, 0x61, 0x63, 0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29,
0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x73, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72, 0x65, 0x61, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42,
0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65, 0x6e, 0x64, 0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61,
0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b, 0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x53, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72,
0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20,
0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x49, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x64, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28,
0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x20, 0x77, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65,
0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e, 0x20, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66,
0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74,
0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74, 0x6f, 0x20, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e,
0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64,
0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63, 0x68, 0x75, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x65, 0x6e, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65,
0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75,
0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74,
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72,
0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e,
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65,
0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27,
0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74,
0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e,
0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d, 0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74,
0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65, 0x73, 0x65, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78,
0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x69, 0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27,
0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20, 0x61, 0x20, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x61, 0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74,
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65,
0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20, 0x61, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e,
0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69,
0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74, 0x68, 0x65, 0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70,
0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x0a, 0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69,
0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e, 0x28, 0x5c, 0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74,
0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74,
0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63,
0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61,
0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x29, 0x20, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20, 0x3d, 0x20, 0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63, 0x28, 0x6c, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x29, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61, 0x74, 0x63, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65,
0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20,
0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a,
0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20,
0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74, 0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74,
0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e,
0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29,
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20,
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x79, 0x69, 0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63,
0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x72, 0x65, 0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x69, 0x66, 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61,
0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, 0x73, 0x74, 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, 0x72, 0x6f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63,
0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, 0x77, 0x65, 0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68,
0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f, 0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64,
0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a,
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20,
0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66,
0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20,
0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61,
0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73,
0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74,
0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20,
0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65,
0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a,
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73,
0x61, 0x67, 0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77,
0x20, 0x61, 0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f,
0x20, 0x62, 0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62,
0x79, 0x20, 0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63,
0x61, 0x6c, 0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74,
0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72,
0x6f, 0x72, 0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61,
0x76, 0x61, 0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24,
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x2e, 0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x2e, 0x74, 0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28,
0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e,
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62,
0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22,
0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c,
0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72,
0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61,
0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61,
0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75,
0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69,
0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61,
0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65,
0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65,
0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74,
0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72,
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e,
0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79,
0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f,
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c,
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64,
0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x66, 0x61, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f,
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73, 0x28, 0x27,
0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c,
0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x61,
0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f, 0x20, 0x62,
0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62, 0x79, 0x20,
0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6c,
0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72,
0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72,
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24, 0x7b, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x74,
0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65,
0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x65, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20,
0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20,
0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61,
0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72,
0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20,
0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20,
0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20,
0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x73,
0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a,
0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70,
0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d,
0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70,
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61,
0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65,
0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c,
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f,
0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65,
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69,
0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65,
0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20,
0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77,
0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63,
0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66,
0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73,
0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e,
0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22,
0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72,
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d,
0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65,
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74,
0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67,
0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69,
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c,
0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e,
0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70,
0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66,
0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e,
0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22,
0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a,
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77,
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20,
0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65,
0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d,
0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64,
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20,
0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d,
0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64,
0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e,
0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74,
0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61,
0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78,
0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66,
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x63,
0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x61, 0x70, 0x69,
0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c,
0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20, 0x3d, 0x20, 0x61,
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x24, 0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x70,
0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x72, 0x6f, 0x70, 0x73, 0x60, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28,
0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e,
0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65,
0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72,
0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20,
0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70,
0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65,
0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x22,
0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20,
0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d,
0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75,
0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
}; };
unsigned int completion_js_len = 5796; unsigned int completion_js_len = 5909;

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -21,6 +21,7 @@ let generation_settings = null;
// //
export async function* llama(prompt, params = {}, config = {}) { export async function* llama(prompt, params = {}, config = {}) {
let controller = config.controller; let controller = config.controller;
const api_url = config.api_url || "";
if (!controller) { if (!controller) {
controller = new AbortController(); controller = new AbortController();
@ -28,7 +29,7 @@ export async function* llama(prompt, params = {}, config = {}) {
const completionParams = { ...paramDefaults, ...params, prompt }; const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch("/completion", { const response = await fetch(`${api_url}/completion`, {
method: 'POST', method: 'POST',
body: JSON.stringify(completionParams), body: JSON.stringify(completionParams),
headers: { headers: {
@ -193,9 +194,10 @@ export const llamaComplete = async (params, controller, callback) => {
} }
// Get the model info from the server. This is useful for getting the context window and so on. // Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async () => { export const llamaModelInfo = async (config = {}) => {
if (!generation_settings) { if (!generation_settings) {
const props = await fetch("/props").then(r => r.json()); const api_url = config.api_url || "";
const props = await fetch(`${api_url}/props`).then(r => r.json());
generation_settings = props.default_generation_settings; generation_settings = props.default_generation_settings;
} }
return generation_settings; return generation_settings;

View file

@ -199,10 +199,10 @@
<script type="module"> <script type="module">
import { import {
html, h, signal, effect, computed, render, useSignal, useEffect, useRef, Component html, h, signal, effect, computed, render, useSignal, useEffect, useRef, Component
} from '/index.js'; } from './index.js';
import { llama } from '/completion.js'; import { llama } from './completion.js';
import { SchemaConverter } from '/json-schema-to-grammar.mjs'; import { SchemaConverter } from './json-schema-to-grammar.mjs';
let selected_image = false; let selected_image = false;
var slot_id = -1; var slot_id = -1;
@ -405,7 +405,7 @@
throw new Error("already running"); throw new Error("already running");
} }
controller.value = new AbortController(); controller.value = new AbortController();
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) { for await (const chunk of llama(prompt, llamaParams, { controller: controller.value, api_url: document.baseURI.replace(/\/+$/, '') })) {
const data = chunk.data; const data = chunk.data;
if (data.stop) { if (data.stop) {
@ -630,14 +630,16 @@
const grammarJsonSchemaPropOrder = signal('') const grammarJsonSchemaPropOrder = signal('')
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
const convertJSONSchemaGrammar = () => { const convertJSONSchemaGrammar = async () => {
try { try {
const schema = JSON.parse(params.value.grammar) let schema = JSON.parse(params.value.grammar)
const converter = new SchemaConverter( const converter = new SchemaConverter({
grammarJsonSchemaPropOrder.value prop_order: grammarJsonSchemaPropOrder.value
.split(',') .split(',')
.reduce((acc, cur, i) => ({ ...acc, [cur.trim()]: i }), {}) .reduce((acc, cur, i) => ({ ...acc, [cur.trim()]: i }), {}),
) allow_fetch: true,
})
schema = await converter.resolveRefs(schema, 'input')
converter.visit(schema, '') converter.visit(schema, '')
params.value = { params.value = {
...params.value, ...params.value,

File diff suppressed because one or more lines are too long

View file

@ -1,112 +1,538 @@
// WARNING: This file was ported from json-schema-to-grammar.py, please fix bugs / add features there first.
const SPACE_RULE = '" "?'; const SPACE_RULE = '" "?';
const PRIMITIVE_RULES = { const PRIMITIVE_RULES = {
boolean: '("true" | "false") space', boolean: '("true" | "false") space',
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space', number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space', integer: '("-"? ([0-9] | [1-9] [0-9]*)) space',
value: 'object | array | string | number | boolean',
object: '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space',
array: '"[" space ( value ("," space value)* )? "]" space',
uuid: '"\\"" ' + [8, 4, 4, 4, 12].map(n => [...new Array(n)].map(_ => '[0-9a-fA-F]').join('')).join(' "-" ') + ' "\\"" space',
string: ` "\\"" ( string: ` "\\"" (
[^"\\\\] | [^"\\\\] |
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) "\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\\"" space`, )* "\\"" space`,
null: '"null" space', null: '"null" space',
}; };
const OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value'];
// TODO: support "uri", "email" string formats
const DATE_RULES = {
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )',
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )',
'date-time': 'date "T" time',
'date-string': '"\\"" date "\\"" space',
'time-string': '"\\"" time "\\"" space',
'date-time-string': '"\\"" date-time "\\"" space',
};
const RESERVED_NAMES = {'root': true, ...PRIMITIVE_RULES, ...DATE_RULES};
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g; const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g; const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
const GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'}; const GRAMMAR_RANGE_LITERAL_ESCAPE_RE = /[\n\r"\]\-\\]/g;
const GRAMMAR_LITERAL_ESCAPES = { '\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]' };
const NON_LITERAL_SET = new Set('|.()[]{}*+?');
const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('[]()|{}*+?');
export class SchemaConverter { export class SchemaConverter {
constructor(propOrder) { constructor(options) {
this._propOrder = propOrder || {}; this._propOrder = options.prop_order || {};
this._rules = new Map(); this._allowFetch = options.allow_fetch || false;
this._rules.set('space', SPACE_RULE); this._dotall = options.dotall || false;
this._rules = {'space': SPACE_RULE};
this._refs = {};
this._refsBeingResolved = new Set();
} }
_formatLiteral(literal) { _formatLiteral(literal) {
const escaped = JSON.stringify(literal).replace( const escaped = literal.replace(
GRAMMAR_LITERAL_ESCAPE_RE, GRAMMAR_LITERAL_ESCAPE_RE,
m => GRAMMAR_LITERAL_ESCAPES[m] m => GRAMMAR_LITERAL_ESCAPES[m]
); );
return `"${escaped}"`; return `"${escaped}"`;
} }
_formatRangeChar(literal) {
return JSON.stringify(literal).slice(1, -1).replace(
GRAMMAR_RANGE_LITERAL_ESCAPE_RE,
m => GRAMMAR_LITERAL_ESCAPES[m]
);
}
_addRule(name, rule) { _addRule(name, rule) {
let escName = name.replace(INVALID_RULE_CHARS_RE, '-'); let escName = name.replace(INVALID_RULE_CHARS_RE, '-');
let key = escName; let key = escName;
if (this._rules.has(escName)) { if (escName in this._rules) {
if (this._rules.get(escName) === rule) { if (this._rules[escName] === rule) {
return key; return key;
} }
let i = 0; let i = 0;
while (this._rules.has(`${escName}${i}`)) { while ((`${escName}${i}` in this._rules) && (this._rules[`${escName}${i}`] !== rule)) {
i += 1; i += 1;
} }
key = `${escName}${i}`; key = `${escName}${i}`;
} }
this._rules.set(key, rule); this._rules[key] = rule;
return key; return key;
} }
async resolveRefs(schema, url) {
const visit = async (n) => {
if (Array.isArray(n)) {
return Promise.all(n.map(visit));
} else if (typeof n === 'object' && n !== null) {
let ref = n.$ref;
let target;
if (ref !== undefined && !this._refs[ref]) {
if (ref.startsWith('https://')) {
if (!this._allowFetch) {
throw new Error('Fetching remote schemas is not allowed (use --allow-fetch for force)');
}
const fetch = (await import('node-fetch')).default;
const fragSplit = ref.split('#');
const baseUrl = fragSplit[0];
target = this._refs[baseUrl];
if (!target) {
target = await this.resolveRefs(await fetch(ref).then(res => res.json()), baseUrl);
this._refs[baseUrl] = target;
}
if (fragSplit.length === 1 || fragSplit[fragSplit.length - 1] === '') {
return target;
}
} else if (ref.startsWith('#/')) {
target = schema;
ref = `${url}${ref}`;
n.$ref = ref;
} else {
throw new Error(`Unsupported ref ${ref}`);
}
const selectors = ref.split('#')[1].split('/').slice(1);
for (const sel of selectors) {
if (!target || !(sel in target)) {
throw new Error(`Error resolving ref ${ref}: ${sel} not in ${JSON.stringify(target)}`);
}
target = target[sel];
}
this._refs[ref] = target;
} else {
await Promise.all(Object.values(n).map(visit));
}
}
return n;
};
return visit(schema);
}
_generateUnionRule(name, altSchemas) {
return altSchemas
.map((altSchema, i) => this.visit(altSchema, `${name ?? ''}${name ? '-' : 'alternative-'}${i}`))
.join(' | ');
}
_visitPattern(pattern, name) {
if (!pattern.startsWith('^') || !pattern.endsWith('$')) {
throw new Error('Pattern must start with "^" and end with "$"');
}
pattern = pattern.slice(1, -1);
const subRuleIds = {};
let i = 0;
const length = pattern.length;
const getDot = () => {
let rule;
if (this._dotall) {
rule = '[\\U00000000-\\U0010FFFF]';
} else {
// Accept any character... except \n and \r line break chars (\x0A and \xOD)
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]';
}
return this._addRule('dot', rule);
};
const toRule = ([s, isLiteral]) => isLiteral ? "\"" + s + "\"" : s;
const transform = () => {
const start = i;
// For each component of this sequence, store its string representation and whether it's a literal.
// We only need a flat structure here to apply repetition operators to the last item, and
// to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
// (GBNF's syntax is luckily very close to regular expressions!)
const seq = [];
const joinSeq = () => {
const ret = [];
for (const [isLiteral, g] of groupBy(seq, x => x[1])) {
if (isLiteral) {
ret.push([[...g].map(x => x[0]).join(''), true]);
} else {
ret.push(...g);
}
}
if (ret.length === 1) {
return ret[0];
}
return [ret.map(x => toRule(x)).join(' '), false];
};
while (i < length) {
const c = pattern[i];
if (c === '.') {
seq.push([getDot(), false]);
i += 1;
} else if (c === '(') {
i += 1;
if (i < length) {
if (pattern[i] === '?') {
throw new Error(`Unsupported pattern syntax "${pattern[i]}" at index ${i} of /${pattern}/`);
}
}
seq.push([`(${toRule(transform())})`, false]);
} else if (c === ')') {
i += 1;
if (start <= 0 || pattern[start - 1] !== '(') {
throw new Error(`Unbalanced parentheses; start = ${start}, i = ${i}, pattern = ${pattern}`);
}
return joinSeq();
} else if (c === '[') {
let squareBrackets = c;
i += 1;
while (i < length && pattern[i] !== ']') {
if (pattern[i] === '\\') {
squareBrackets += pattern.slice(i, i + 2);
i += 2;
} else {
squareBrackets += pattern[i];
i += 1;
}
}
if (i >= length) {
throw new Error(`Unbalanced square brackets; start = ${start}, i = ${i}, pattern = ${pattern}`);
}
squareBrackets += ']';
i += 1;
seq.push([squareBrackets, false]);
} else if (c === '|') {
seq.push(['|', false]);
i += 1;
} else if (c === '*' || c === '+' || c === '?') {
seq[seq.length - 1] = [toRule(seq[seq.length - 1]) + c, false];
i += 1;
} else if (c === '{') {
let curlyBrackets = c;
i += 1;
while (i < length && pattern[i] !== '}') {
curlyBrackets += pattern[i];
i += 1;
}
if (i >= length) {
throw new Error(`Unbalanced curly brackets; start = ${start}, i = ${i}, pattern = ${pattern}`);
}
curlyBrackets += '}';
i += 1;
const nums = curlyBrackets.slice(1, -1).split(',').map(s => s.trim());
let minTimes, maxTimes;
if (nums.length === 1) {
minTimes = parseInt(nums[0], 10);
maxTimes = minTimes;
} else {
if (nums.length !== 2) {
throw new Error(`Invalid quantifier ${curlyBrackets}`);
}
minTimes = nums[0] ? parseInt(nums[0], 10) : 0;
maxTimes = nums[1] ? parseInt(nums[1], 10) : Infinity;
}
let [sub, subIsLiteral] = seq[seq.length - 1];
if (minTimes === 0 && maxTimes === Infinity) {
seq[seq.length - 1] = [`${sub}*`, false];
} else if (minTimes === 0 && maxTimes === 1) {
seq[seq.length - 1] = [`${sub}?`, false];
} else if (minTimes === 1 && maxTimes === Infinity) {
seq[seq.length - 1] = [`${sub}+`, false];
} else {
if (!subIsLiteral) {
let id = subRuleIds[sub];
if (id === undefined) {
id = this._addRule(`${name}-${Object.keys(subRuleIds).length + 1}`, sub);
subRuleIds[sub] = id;
}
sub = id;
}
const repeatedSub = Array.from({ length: minTimes }, () => subIsLiteral ? `"${sub.slice(1, -1).repeat(minTimes)}"` : sub);
const optionalSub = maxTimes !== undefined ? Array.from({ length: maxTimes - minTimes }, () => `${sub}?`) : [`${sub}*`];
seq[seq.length - 1] = [repeatedSub.concat(optionalSub).join(' '), false];
}
} else {
let literal = '';
while (i < length) {
if (pattern[i] === '\\' && i < length - 1) {
const next = pattern[i + 1];
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.has(next)) {
i += 1;
literal += pattern[i];
i += 1;
} else {
literal += pattern.slice(i, i + 2);
i += 2;
}
} else if (pattern[i] === '"') {
literal += '\\"';
i += 1;
} else if (!NON_LITERAL_SET.has(pattern[i]) &&
(i === length - 1 || literal === '' || pattern[i + 1] === '.' || !NON_LITERAL_SET.has(pattern[i+1]))) {
literal += pattern[i];
i += 1;
} else {
break;
}
}
if (literal !== '') {
seq.push([literal, true]);
}
}
}
return joinSeq();
};
return this._addRule(name, "\"\\\"\" " + toRule(transform()) + " \"\\\"\" space")
}
_resolveRef(ref) {
let refName = ref.split('/').pop();
if (!(refName in this._rules) && !this._refsBeingResolved.has(ref)) {
this._refsBeingResolved.add(ref);
const resolved = this._refs[ref];
refName = this.visit(resolved, refName);
this._refsBeingResolved.delete(ref);
}
return refName;
}
_generateConstantRule(value) {
return this._formatLiteral(JSON.stringify(value));
}
visit(schema, name) { visit(schema, name) {
const schemaType = schema.type; const schemaType = schema.type;
const ruleName = name || 'root'; const schemaFormat = schema.format;
const ruleName = name in RESERVED_NAMES ? name + '-' : name == '' ? 'root' : name;
if (schema.oneOf || schema.anyOf) { const ref = schema.$ref;
const rule = (schema.oneOf || schema.anyOf).map((altSchema, i) => if (ref !== undefined) {
this.visit(altSchema, `${name}${name ? "-" : ""}${i}`) return this._addRule(ruleName, this._resolveRef(ref));
).join(' | '); } else if (schema.oneOf || schema.anyOf) {
return this._addRule(ruleName, this._generateUnionRule(name, schema.oneOf || schema.anyOf));
return this._addRule(ruleName, rule); } else if (Array.isArray(schemaType)) {
return this._addRule(ruleName, this._generateUnionRule(name, schemaType.map(t => ({ type: t }))));
} else if ('const' in schema) { } else if ('const' in schema) {
return this._addRule(ruleName, this._formatLiteral(schema.const)); return this._addRule(ruleName, this._generateConstantRule(schema.const));
} else if ('enum' in schema) { } else if ('enum' in schema) {
const rule = schema.enum.map(v => this._formatLiteral(v)).join(' | '); const rule = schema.enum.map(v => this._generateConstantRule(v)).join(' | ');
return this._addRule(ruleName, rule); return this._addRule(ruleName, rule);
} else if (schemaType === 'object' && 'properties' in schema) { } else if ((schemaType === undefined || schemaType === 'object') &&
// TODO: `required` keyword (from python implementation) ('properties' in schema ||
const propOrder = this._propOrder; ('additionalProperties' in schema && schema.additionalProperties !== true))) {
const propPairs = Object.entries(schema.properties).sort((a, b) => { const required = new Set(schema.required || []);
// sort by position in prop_order (if specified) then by key const properties = Object.entries(schema.properties ?? {});
const orderA = typeof propOrder[a[0]] === 'number' ? propOrder[a[0]] : Infinity; return this._addRule(ruleName, this._buildObjectRule(properties, required, name, schema.additionalProperties));
const orderB = typeof propOrder[b[0]] === 'number' ? propOrder[b[0]] : Infinity; } else if ((schemaType === undefined || schemaType === 'object') && 'allOf' in schema) {
return orderA - orderB || a[0].localeCompare(b[0]); const required = new Set();
}); const properties = [];
const addComponent = (compSchema, isRequired) => {
let rule = '"{" space'; const ref = compSchema.$ref;
propPairs.forEach(([propName, propSchema], i) => { if (ref !== undefined) {
const propRuleName = this.visit(propSchema, `${name}${name ? "-" : ""}${propName}`); compSchema = this._refs[ref];
if (i > 0) {
rule += ' "," space';
} }
rule += ` ${this._formatLiteral(propName)} space ":" space ${propRuleName}`;
});
rule += ' "}" space';
return this._addRule(ruleName, rule); if ('properties' in compSchema) {
} else if (schemaType === 'array' && 'items' in schema) { for (const [propName, propSchema] of Object.entries(compSchema.properties)) {
// TODO `prefixItems` keyword (from python implementation) properties.push([propName, propSchema]);
const itemRuleName = this.visit(schema.items, `${name}${name ? "-" : ""}item`); if (isRequired) {
const rule = `"[" space (${itemRuleName} ("," space ${itemRuleName})*)? "]" space`; required.add(propName);
return this._addRule(ruleName, rule); }
}
}
};
for (const t of schema.allOf) {
if ('anyOf' in t) {
for (const tt of t.anyOf) {
addComponent(tt, false);
}
} else {
addComponent(t, true);
}
}
return this._addRule(ruleName, this._buildObjectRule(properties, required, name, /* additionalProperties= */ false));
} else if ((schemaType === undefined || schemaType === 'array') && ('items' in schema || 'prefixItems' in schema)) {
const items = schema.items ?? schema.prefixItems;
if (Array.isArray(items)) {
return this._addRule(
ruleName,
'"[" space ' +
items.map((item, i) => this.visit(item, `${name ?? ''}${name ? '-' : ''}tuple-${i}`)).join(' "," space ') +
' "]" space'
);
} else {
const itemRuleName = this.visit(items, `${name ?? ''}${name ? '-' : ''}item`);
const listItemOperator = `( "," space ${itemRuleName} )`;
let successiveItems = '';
let minItems = schema.minItems || 0;
const maxItems = schema.maxItems;
if (minItems > 0) {
successiveItems = listItemOperator.repeat(minItems - 1);
minItems--;
}
if (maxItems !== undefined && maxItems > minItems) {
successiveItems += `${listItemOperator}?`.repeat(maxItems - minItems - 1);
} else {
successiveItems += `${listItemOperator}*`;
}
const rule = minItems === 0
? `"[" space ( ${itemRuleName} ${successiveItems} )? "]" space`
: `"[" space ${itemRuleName} ${successiveItems} "]" space`;
return this._addRule(ruleName, rule);
}
} else if ((schemaType === undefined || schemaType === 'string') && 'pattern' in schema) {
return this._visitPattern(schema.pattern, ruleName);
} else if ((schemaType === undefined || schemaType === 'string') && /^uuid[1-5]?$/.test(schema.format || '')) {
return this._addRule(
ruleName === 'root' ? 'root' : schemaFormat,
PRIMITIVE_RULES['uuid'])
} else if ((schemaType === undefined || schemaType === 'string') && schema.format in DATE_RULES) {
for (const [t, r] of Object.entries(DATE_RULES)) {
this._addRule(t, r);
}
return schemaFormat + '-string';
} else if ((schemaType === 'object') || (Object.keys(schema).length === 0)) {
for (const n of OBJECT_RULE_NAMES) {
this._addRule(n, PRIMITIVE_RULES[n]);
}
return this._addRule(ruleName, 'object');
} else { } else {
if (!PRIMITIVE_RULES[schemaType]) { if (!(schemaType in PRIMITIVE_RULES)) {
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`); throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
} }
return this._addRule( // TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
ruleName === 'root' ? 'root' : schemaType, return this._addRule(ruleName === 'root' ? 'root' : schemaType, PRIMITIVE_RULES[schemaType]);
PRIMITIVE_RULES[schemaType] }
}
_buildObjectRule(properties, required, name, additionalProperties) {
const propOrder = this._propOrder;
// sort by position in prop_order (if specified) then by original order
const sortedProps = properties.map(([k]) => k).sort((a, b) => {
const orderA = propOrder[a] || Infinity;
const orderB = propOrder[b] || Infinity;
return orderA - orderB || properties.findIndex(([k]) => k === a) - properties.findIndex(([k]) => k === b);
});
const propKvRuleNames = {};
for (const [propName, propSchema] of properties) {
const propRuleName = this.visit(propSchema, `${name ?? ''}${name ? '-' : ''}${propName}`);
propKvRuleNames[propName] = this._addRule(
`${name ?? ''}${name ? '-' : ''}${propName}-kv`,
`${this._formatLiteral(JSON.stringify(propName))} space ":" space ${propRuleName}`
); );
} }
const requiredProps = sortedProps.filter(k => required.has(k));
const optionalProps = sortedProps.filter(k => !required.has(k));
if (typeof additionalProperties === 'object' || additionalProperties === true) {
const subName = `${name ?? ''}${name ? '-' : ''}additional`;
const valueRule = this.visit(additionalProperties === true ? {} : additionalProperties, `${subName}-value`);
propKvRuleNames['*'] = this._addRule(
`${subName}-kv`,
`${this._addRule('string', PRIMITIVE_RULES['string'])} ":" space ${valueRule}`);
optionalProps.push('*');
}
let rule = '"{" space ';
rule += requiredProps.map(k => propKvRuleNames[k]).join(' "," space ');
if (optionalProps.length > 0) {
rule += ' (';
if (requiredProps.length > 0) {
rule += ' "," space ( ';
}
const getRecursiveRefs = (ks, firstIsOptional) => {
const [k, ...rest] = ks;
const kvRuleName = propKvRuleNames[k];
let res;
if (k === '*') {
res = this._addRule(
`${name ?? ''}${name ? '-' : ''}additional-kvs`,
`${kvRuleName} ( "," space ` + kvRuleName + ` )*`
)
} else if (firstIsOptional) {
res = `( "," space ${kvRuleName} )?`;
} else {
res = kvRuleName;
}
if (rest.length > 0) {
res += ' ' + this._addRule(
`${name ?? ''}${name ? '-' : ''}${k}-rest`,
getRecursiveRefs(rest, true)
);
}
return res;
};
rule += optionalProps.map((_, i) => getRecursiveRefs(optionalProps.slice(i), false)).join(' | ');
if (requiredProps.length > 0) {
rule += ' )';
}
rule += ' )?';
}
rule += ' "}" space';
return rule;
} }
formatGrammar() { formatGrammar() {
let grammar = ''; let grammar = '';
this._rules.forEach((rule, name) => { for (const [name, rule] of Object.entries(this._rules).sort(([a], [b]) => a.localeCompare(b))) {
grammar += `${name} ::= ${rule}\n`; grammar += `${name} ::= ${rule}\n`;
}); }
return grammar; return grammar;
} }
} }
// Helper function to group elements by a key function
function* groupBy(iterable, keyFn) {
let lastKey = null;
let group = [];
for (const element of iterable) {
const key = keyFn(element);
if (lastKey !== null && key !== lastKey) {
yield [lastKey, group];
group = [];
}
group.push(element);
lastKey = key;
}
if (group.length > 0) {
yield [lastKey, group];
}
}

View file

@ -1,6 +1,7 @@
#include "utils.hpp" #include "utils.hpp"
#include "common.h" #include "common.h"
#include "json-schema-to-grammar.h"
#include "llama.h" #include "llama.h"
#include "grammar-parser.h" #include "grammar-parser.h"
@ -29,7 +30,7 @@
#include <signal.h> #include <signal.h>
#include <memory> #include <memory>
using json = nlohmann::json; using json = nlohmann::ordered_json;
bool server_verbose = false; bool server_verbose = false;
bool server_log_json = true; bool server_log_json = true;
@ -98,6 +99,7 @@ struct slot_params {
uint32_t seed = -1; // RNG seed uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt; std::vector<std::string> antiprompt;
@ -178,6 +180,7 @@ struct server_slot {
llama_token sampled; llama_token sampled;
struct llama_sampling_params sparams; struct llama_sampling_params sparams;
llama_sampling_context * ctx_sampling = nullptr; llama_sampling_context * ctx_sampling = nullptr;
json json_schema;
int32_t ga_i = 0; // group-attention state int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor int32_t ga_n = 1; // group-attention factor
@ -744,7 +747,8 @@ struct server_context {
{ {
const int32_t n_batch = llama_n_batch(ctx); const int32_t n_batch = llama_n_batch(ctx);
batch = llama_batch_init(n_batch, 0, params.n_parallel); // only a single seq_id per token is needed
batch = llama_batch_init(n_batch, 0, 1);
} }
metrics.init(); metrics.init();
@ -844,11 +848,27 @@ struct server_context {
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep); slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
slot.params.seed = json_value(data, "seed", default_params.seed); slot.params.seed = json_value(data, "seed", default_params.seed);
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
// process "json_schema" and "grammar"
if (data.contains("json_schema") && data.contains("grammar")) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false;
} else if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
} catch (const std::exception & e) {
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
return false;
}
} else {
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
}
if (slot.params.cache_prompt && slot.ga_n != 1) { if (slot.params.cache_prompt && slot.ga_n != 1) {
LOG_WARNING("cache_prompt is not supported with group-attention", {}); LOG_WARNING("cache_prompt is not supported with group-attention", {});
slot.params.cache_prompt = false; slot.params.cache_prompt = false;
@ -1235,7 +1255,8 @@ struct server_context {
{"penalize_nl", slot.sparams.penalize_nl}, {"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt}, {"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict {"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
{"n_keep", params.n_keep}, {"n_keep", slot.params.n_keep},
{"n_discard", slot.params.n_discard},
{"ignore_eos", ignore_eos}, {"ignore_eos", ignore_eos},
{"stream", slot.params.stream}, {"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias}, {"logit_bias", slot.sparams.logit_bias},
@ -1679,7 +1700,7 @@ struct server_context {
// Shift context // Shift context
const int n_keep = slot.params.n_keep + add_bos_token; const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep; const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = n_left / 2; const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
LOG_INFO("slot context shift", { LOG_INFO("slot context shift", {
{"id_slot", slot.id}, {"id_slot", slot.id},
@ -1746,7 +1767,7 @@ struct server_context {
} }
// process in chunks of params.n_batch // process in chunks of params.n_batch
int32_t n_batch = llama_n_batch(ctx); int32_t n_batch = llama_n_batch(ctx);
int32_t n_ubatch = llama_n_ubatch(ctx); int32_t n_ubatch = llama_n_ubatch(ctx);
// next, batch any pending prompts without exceeding n_batch // next, batch any pending prompts without exceeding n_batch
@ -2196,7 +2217,11 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" -m FNAME, --model FNAME\n"); printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str()); printf(" model path (default: %s)\n", params.model.c_str());
printf(" -mu MODEL_URL, --model-url MODEL_URL\n"); printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: %s)\n", params.model_url.c_str()); printf(" model download url (default: unused)\n");
printf(" -hfr REPO, --hf-repo REPO\n");
printf(" Hugging Face model repository (default: unused)\n");
printf(" -hff FILE, --hf-file FILE\n");
printf(" Hugging Face model file (default: unused)\n");
printf(" -a ALIAS, --alias ALIAS\n"); printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n"); printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
@ -2213,7 +2238,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel); printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
printf(" -spf FNAME, --system-prompt-file FNAME\n"); printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n"); printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n"); printf(" -ctk TYPE, --cache-type-k TYPE\n");
@ -2325,6 +2350,18 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
break; break;
} }
params.model_url = argv[i]; params.model_url = argv[i];
} else if (arg == "-hfr" || arg == "--hf-repo") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hf_repo = argv[i];
} else if (arg == "-hff" || arg == "--hf-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hf_file = argv[i];
} else if (arg == "-a" || arg == "--alias") { } else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -2477,15 +2514,15 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
invalid_param = true; invalid_param = true;
break; break;
} }
#ifndef GGML_USE_CUBLAS #ifndef GGML_USE_CUDA
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n"); fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUDA
} else if (arg == "--tensor-split" || arg == "-ts") { } else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
std::string arg_next = argv[i]; std::string arg_next = argv[i];
// split string by , and / // split string by , and /
@ -2502,17 +2539,17 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
} }
} }
#else #else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUDA
} else if (arg == "--main-gpu" || arg == "-mg") { } else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
params.main_gpu = std::stoi(argv[i]); params.main_gpu = std::stoi(argv[i]);
#else #else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a main GPU.", {});
#endif #endif
} else if (arg == "--lora") { } else if (arg == "--lora") {
if (++i >= argc) { if (++i >= argc) {

View file

@ -5,15 +5,14 @@ import sys
import time import time
import traceback import traceback
from contextlib import closing from contextlib import closing
from subprocess import TimeoutExpired
import psutil
def before_scenario(context, scenario): def before_scenario(context, scenario):
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON' context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
if context.debug: if context.debug:
print("DEBUG=ON\n") print("DEBUG=ON")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n") print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
port = 8080 port = 8080
if 'PORT' in os.environ: if 'PORT' in os.environ:
port = int(os.environ['PORT']) port = int(os.environ['PORT'])
@ -27,60 +26,40 @@ def after_scenario(context, scenario):
return return
if scenario.status == "failed": if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ: if 'GITHUB_ACTIONS' in os.environ:
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n") print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n")
if os.path.isfile('llama.log'): if os.path.isfile('llama.log'):
with closing(open('llama.log', 'r')) as f: with closing(open('llama.log', 'r')) as f:
for line in f: for line in f:
print(line) print(line)
if not is_server_listening(context.server_fqdn, context.server_port): if not is_server_listening(context.server_fqdn, context.server_port):
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m\n") print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
if not pid_exists(context.server_process.pid): if context.server_process.poll() is not None:
assert False, f"Server not running pid={context.server_process.pid} ..." assert False, f"Server not running pid={context.server_process.pid} ..."
server_graceful_shutdown(context) server_graceful_shutdown(context) # SIGINT
# Wait few for socket to free up try:
time.sleep(0.05) context.server_process.wait(0.5)
except TimeoutExpired:
print(f"server still alive after 500ms, force-killing pid={context.server_process.pid} ...")
context.server_process.kill() # SIGKILL
context.server_process.wait()
attempts = 0 while is_server_listening(context.server_fqdn, context.server_port):
while pid_exists(context.server_process.pid) or is_server_listening(context.server_fqdn, context.server_port):
server_kill(context)
time.sleep(0.1) time.sleep(0.1)
attempts += 1 except Exception:
if attempts > 5: print("ignoring error in after_scenario:")
server_kill_hard(context) traceback.print_exc(file=sys.stdout)
except:
exc = sys.exception()
print("error in after scenario: \n")
print(exc)
print("*** print_tb: \n")
traceback.print_tb(exc.__traceback__, file=sys.stdout)
def server_graceful_shutdown(context): def server_graceful_shutdown(context):
print(f"shutting down server pid={context.server_process.pid} ...\n") print(f"shutting down server pid={context.server_process.pid} ...")
if os.name == 'nt': if os.name == 'nt':
os.kill(context.server_process.pid, signal.CTRL_C_EVENT) interrupt = signal.CTRL_C_EVENT
else: else:
os.kill(context.server_process.pid, signal.SIGINT) interrupt = signal.SIGINT
context.server_process.send_signal(interrupt)
def server_kill(context):
print(f"killing server pid={context.server_process.pid} ...\n")
context.server_process.kill()
def server_kill_hard(context):
pid = context.server_process.pid
path = context.server_path
print(f"Server dangling exits, hard killing force {pid}={path}...\n")
try:
psutil.Process(pid).kill()
except psutil.NoSuchProcess:
return False
return True
def is_server_listening(server_fqdn, server_port): def is_server_listening(server_fqdn, server_port):
@ -88,14 +67,5 @@ def is_server_listening(server_fqdn, server_port):
result = sock.connect_ex((server_fqdn, server_port)) result = sock.connect_ex((server_fqdn, server_port))
_is_server_listening = result == 0 _is_server_listening = result == 0
if _is_server_listening: if _is_server_listening:
print(f"server is listening on {server_fqdn}:{server_port}...\n") print(f"server is listening on {server_fqdn}:{server_port}...")
return _is_server_listening return _is_server_listening
def pid_exists(pid):
try:
psutil.Process(pid)
except psutil.NoSuchProcess:
return False
return True

View file

@ -4,7 +4,8 @@ Feature: Parallel
Background: Server startup Background: Server startup
Given a server listening on localhost:8080 Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 42 as server seed And 42 as server seed
And 128 as batch size And 128 as batch size
And 256 KV cache size And 256 KV cache size

View file

@ -37,6 +37,22 @@ Feature: Security
| llama.cpp | no | | llama.cpp | no |
| hackme | raised | | hackme | raised |
Scenario Outline: OAI Compatibility (invalid response formats)
Given a system prompt test
And a user prompt test
And a response format <response_format>
And a model test
And 2 max tokens to predict
And streaming is disabled
Given an OAI compatible chat completions request with raised api error
Examples: Prompts
| response_format |
| {"type": "sound"} |
| {"type": "json_object", "schema": 123} |
| {"type": "json_object", "schema": {"type": 123}} |
| {"type": "json_object", "schema": {"type": "hiccup"}} |
Scenario Outline: CORS Options Scenario Outline: CORS Options
Given a user api key llama.cpp Given a user api key llama.cpp

View file

@ -4,8 +4,8 @@ Feature: llama.cpp server
Background: Server startup Background: Server startup
Given a server listening on localhost:8080 Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories260K.gguf And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file stories260K.gguf And a model file test-model.gguf
And a model alias tinyllama-2 And a model alias tinyllama-2
And 42 as server seed And 42 as server seed
# KV Cache corresponds to the total amount of tokens # KV Cache corresponds to the total amount of tokens
@ -35,9 +35,9 @@ Feature: llama.cpp server
And metric llamacpp:tokens_predicted is <n_predicted> And metric llamacpp:tokens_predicted is <n_predicted>
Examples: Prompts Examples: Prompts
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated | | prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not | | I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids)+ | 46 | 64 | not | | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
Scenario: Completion prompt truncated Scenario: Completion prompt truncated
Given a prompt: Given a prompt:
@ -48,7 +48,7 @@ Feature: llama.cpp server
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
""" """
And a completion request with no api error And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
And the completion is truncated And the completion is truncated
And 109 prompt tokens are processed And 109 prompt tokens are processed
@ -65,9 +65,25 @@ Feature: llama.cpp server
And the completion is <truncated> truncated And the completion is <truncated> truncated
Examples: Prompts Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated | | model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not | | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird)+ | -1 | 64 | enabled | | | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
Scenario Outline: OAI Compatibility w/ response format
Given a model test
And a system prompt test
And a user prompt test
And a response format <response_format>
And 10 max tokens to predict
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples: Prompts
| response_format | n_predicted | re_content |
| {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" |
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
| {"type": "json_object"} | 10 | \{ " Jacky. |
Scenario: Tokenize / Detokenize Scenario: Tokenize / Detokenize

View file

@ -16,7 +16,6 @@ import numpy as np
import openai import openai
from behave import step from behave import step
from behave.api.async_step import async_run_until_complete from behave.api.async_step import async_run_until_complete
from huggingface_hub import hf_hub_download
from prometheus_client import parser from prometheus_client import parser
@ -24,24 +23,29 @@ from prometheus_client import parser
def step_server_config(context, server_fqdn, server_port): def step_server_config(context, server_fqdn, server_port):
context.server_fqdn = server_fqdn context.server_fqdn = server_fqdn
context.server_port = int(server_port) context.server_port = int(server_port)
context.n_gpu_layer = None
if 'PORT' in os.environ: if 'PORT' in os.environ:
context.server_port = int(os.environ['PORT']) context.server_port = int(os.environ['PORT'])
print(f"$PORT set, overriding server port with to {context.server_port}") print(f"$PORT set, overriding server port with to {context.server_port}")
if 'FQDN' in os.environ: if 'FQDN' in os.environ:
context.server_fqdn = os.environ['FQDN'] context.server_fqdn = os.environ['FQDN']
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}") print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
if 'N_GPU_LAYERS' in os.environ:
context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
context.base_url = f'http://{context.server_fqdn}:{context.server_port}' context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
context.model_alias = None context.model_alias = None
context.model_file = None context.model_file = None
context.model_hf_repo = None
context.model_hf_file = None
context.model_url = None context.model_url = None
context.n_batch = None context.n_batch = None
context.n_ubatch = None context.n_ubatch = None
context.n_ctx = None context.n_ctx = None
context.n_ga = None context.n_ga = None
context.n_ga_w = None context.n_ga_w = None
context.n_gpu_layer = None
context.n_predict = None context.n_predict = None
context.n_prompts = 0 context.n_prompts = 0
context.n_server_predict = None context.n_server_predict = None
@ -56,6 +60,7 @@ def step_server_config(context, server_fqdn, server_port):
context.seed = None context.seed = None
context.server_seed = None context.server_seed = None
context.user_api_key = None context.user_api_key = None
context.response_format = None
context.tasks_result = [] context.tasks_result = []
context.concurrent_tasks = [] context.concurrent_tasks = []
@ -64,9 +69,9 @@ def step_server_config(context, server_fqdn, server_port):
@step('a model file {hf_file} from HF repo {hf_repo}') @step('a model file {hf_file} from HF repo {hf_repo}')
def step_download_hf_model(context, hf_file, hf_repo): def step_download_hf_model(context, hf_file, hf_repo):
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file) context.model_hf_repo = hf_repo
if context.debug: context.model_hf_file = hf_file
print(f"model file: {context.model_file}\n") context.model_file = os.path.basename(hf_file)
@step('a model file {model_file}') @step('a model file {model_file}')
@ -137,9 +142,12 @@ def step_start_server(context):
if 'GITHUB_ACTIONS' in os.environ: if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2 max_attempts *= 2
addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
family, typ, proto, _, sockaddr = addrs[0]
while True: while True:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: with closing(socket.socket(family, typ, proto)) as sock:
result = sock.connect_ex((context.server_fqdn, context.server_port)) result = sock.connect_ex(sockaddr)
if result == 0: if result == 0:
print("\x1b[33;46mserver started!\x1b[0m") print("\x1b[33;46mserver started!\x1b[0m")
return return
@ -209,7 +217,7 @@ async def step_request_completion(context, api_error):
user_api_key=context.user_api_key) user_api_key=context.user_api_key)
context.tasks_result.append(completion) context.tasks_result.append(completion)
if context.debug: if context.debug:
print(f"Completion response: {completion}\n") print(f"Completion response: {completion}")
if expect_api_error: if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}" assert completion == 401, f"completion must be an 401 status code: {completion}"
@ -263,6 +271,11 @@ def step_max_tokens(context, max_tokens):
context.n_predict = max_tokens context.n_predict = max_tokens
@step('a response format {response_format}')
def step_response_format(context, response_format):
context.response_format = json.loads(response_format)
@step('streaming is {enable_streaming}') @step('streaming is {enable_streaming}')
def step_streaming(context, enable_streaming): def step_streaming(context, enable_streaming):
context.enable_streaming = enable_streaming == 'enabled' context.enable_streaming = enable_streaming == 'enabled'
@ -354,7 +367,7 @@ def step_prompt_passkey(context, passkey, i_pos):
prompt += context.prompt_junk_suffix prompt += context.prompt_junk_suffix
if context.debug: if context.debug:
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m" passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n") print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix) context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
context.n_prompts = len(context.prompts) context.n_prompts = len(context.prompts)
@ -363,7 +376,7 @@ def step_prompt_passkey(context, passkey, i_pos):
@async_run_until_complete @async_run_until_complete
async def step_oai_chat_completions(context, api_error): async def step_oai_chat_completions(context, api_error):
if context.debug: if context.debug:
print(f"Submitting OAI compatible completions request...\n") print(f"Submitting OAI compatible completions request...")
expect_api_error = api_error == 'raised' expect_api_error = api_error == 'raised'
completion = await oai_chat_completions(context.prompts.pop(), completion = await oai_chat_completions(context.prompts.pop(),
context.system_prompt, context.system_prompt,
@ -378,6 +391,9 @@ async def step_oai_chat_completions(context, api_error):
enable_streaming=context.enable_streaming enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None, if hasattr(context, 'enable_streaming') else None,
response_format=context.response_format
if hasattr(context, 'response_format') else None,
seed=await completions_seed(context), seed=await completions_seed(context),
user_api_key=context.user_api_key user_api_key=context.user_api_key
@ -437,6 +453,8 @@ async def step_oai_chat_completions(context):
if hasattr(context, 'n_predict') else None, if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None, if hasattr(context, 'enable_streaming') else None,
response_format=context.response_format
if hasattr(context, 'response_format') else None,
seed=await completions_seed(context), seed=await completions_seed(context),
user_api_key=context.user_api_key user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None) if hasattr(context, 'user_api_key') else None)
@ -457,6 +475,8 @@ async def step_oai_chat_completions(context):
if hasattr(context, 'n_predict') else None, if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None, if hasattr(context, 'enable_streaming') else None,
response_format=context.response_format
if hasattr(context, 'response_format') else None,
seed=context.seed seed=context.seed
if hasattr(context, 'seed') else if hasattr(context, 'seed') else
context.server_seed context.server_seed
@ -508,12 +528,12 @@ async def step_all_embeddings_are_the_same(context):
embedding1 = np.array(embeddings[i]) embedding1 = np.array(embeddings[i])
embedding2 = np.array(embeddings[j]) embedding2 = np.array(embeddings[j])
if context.debug: if context.debug:
print(f"embedding1: {embedding1[-8:]}\n") print(f"embedding1: {embedding1[-8:]}")
print(f"embedding2: {embedding2[-8:]}\n") print(f"embedding2: {embedding2[-8:]}")
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
msg = f"Similarity between {i} and {j}: {similarity:.10f}" msg = f"Similarity between {i} and {j}: {similarity:.10f}"
if context.debug: if context.debug:
print(f"{msg}\n") print(f"{msg}")
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
@ -630,7 +650,7 @@ async def step_prometheus_metrics_exported(context):
metrics_raw = await metrics_response.text() metrics_raw = await metrics_response.text()
metric_exported = False metric_exported = False
if context.debug: if context.debug:
print(f"/metrics answer:\n{metrics_raw}\n") print(f"/metrics answer:\n{metrics_raw}")
context.metrics = {} context.metrics = {}
for metric in parser.text_string_to_metric_families(metrics_raw): for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name: match metric.name:
@ -739,6 +759,7 @@ async def oai_chat_completions(user_prompt,
model=None, model=None,
n_predict=None, n_predict=None,
enable_streaming=None, enable_streaming=None,
response_format=None,
seed=None, seed=None,
user_api_key=None, user_api_key=None,
expect_api_error=None): expect_api_error=None):
@ -764,6 +785,8 @@ async def oai_chat_completions(user_prompt,
"stream": enable_streaming, "stream": enable_streaming,
"seed": seed "seed": seed
} }
if response_format is not None:
payload['response_format'] = response_format
completion_response = { completion_response = {
'content': '', 'content': '',
'timings': { 'timings': {
@ -824,6 +847,7 @@ async def oai_chat_completions(user_prompt,
model=model, model=model,
max_tokens=n_predict, max_tokens=n_predict,
stream=enable_streaming, stream=enable_streaming,
response_format=payload.get('response_format'),
seed=seed seed=seed
) )
except openai.error.AuthenticationError as e: except openai.error.AuthenticationError as e:
@ -932,7 +956,7 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
last_match = end last_match = end
highlighted += content[last_match:] highlighted += content[last_match:]
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"Checking completion response: {highlighted}\n") print(f"Checking completion response: {highlighted}")
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```' assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
if expected_predicted_n and expected_predicted_n > 0: if expected_predicted_n and expected_predicted_n > 0:
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:' assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
@ -942,7 +966,7 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
async def gather_tasks_results(context): async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks) n_tasks = len(context.concurrent_tasks)
if context.debug: if context.debug:
print(f"Waiting for all {n_tasks} tasks results...\n") print(f"Waiting for all {n_tasks} tasks results...")
for task_no in range(n_tasks): for task_no in range(n_tasks):
context.tasks_result.append(await context.concurrent_tasks.pop()) context.tasks_result.append(await context.concurrent_tasks.pop())
n_completions = len(context.tasks_result) n_completions = len(context.tasks_result)
@ -959,7 +983,7 @@ async def wait_for_health_status(context,
slots_processing=None, slots_processing=None,
expected_slots=None): expected_slots=None):
if context.debug: if context.debug:
print(f"Starting checking for health for expected_health_status={expected_health_status}\n") print(f"Starting checking for health for expected_health_status={expected_health_status}")
interval = 0.5 interval = 0.5
counter = 0 counter = 0
if 'GITHUB_ACTIONS' in os.environ: if 'GITHUB_ACTIONS' in os.environ:
@ -1048,8 +1072,6 @@ def start_server_background(context):
if 'LLAMA_SERVER_BIN_PATH' in os.environ: if 'LLAMA_SERVER_BIN_PATH' in os.environ:
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH'] context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_listen_addr = context.server_fqdn server_listen_addr = context.server_fqdn
if os.name == 'nt':
server_listen_addr = '0.0.0.0'
server_args = [ server_args = [
'--host', server_listen_addr, '--host', server_listen_addr,
'--port', context.server_port, '--port', context.server_port,
@ -1058,6 +1080,10 @@ def start_server_background(context):
server_args.extend(['--model', context.model_file]) server_args.extend(['--model', context.model_file])
if context.model_url: if context.model_url:
server_args.extend(['--model-url', context.model_url]) server_args.extend(['--model-url', context.model_url])
if context.model_hf_repo:
server_args.extend(['--hf-repo', context.model_hf_repo])
if context.model_hf_file:
server_args.extend(['--hf-file', context.model_hf_file])
if context.n_batch: if context.n_batch:
server_args.extend(['--batch-size', context.n_batch]) server_args.extend(['--batch-size', context.n_batch])
if context.n_ubatch: if context.n_ubatch:
@ -1088,7 +1114,7 @@ def start_server_background(context):
server_args.append('--verbose') server_args.append('--verbose')
if 'SERVER_LOG_FORMAT_JSON' not in os.environ: if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
server_args.extend(['--log-format', "text"]) server_args.extend(['--log-format', "text"])
print(f"starting server with: {context.server_path} {server_args}\n") print(f"starting server with: {context.server_path} {server_args}")
flags = 0 flags = 0
if 'nt' == os.name: if 'nt' == os.name:
flags |= subprocess.DETACHED_PROCESS flags |= subprocess.DETACHED_PROCESS

View file

@ -3,5 +3,4 @@ behave~=1.2.6
huggingface_hub~=0.20.3 huggingface_hub~=0.20.3
numpy~=1.24.4 numpy~=1.24.4
openai~=0.25.0 openai~=0.25.0
psutil~=5.9.8
prometheus-client~=0.20.0 prometheus-client~=0.20.0

View file

@ -12,7 +12,7 @@
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613" #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json; using json = nlohmann::ordered_json;
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11 // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type { enum error_type {
@ -95,8 +95,8 @@ static inline void server_log(const char *level, const char *function, int line,
const std::string str = ss.str(); const std::string str = ss.str();
printf("%.*s\n", (int)str.size(), str.data()); printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
} }
fflush(stdout);
} }
// //
@ -352,39 +352,71 @@ static json oaicompat_completion_params_parse(
// https://platform.openai.com/docs/api-reference/chat/create // https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams; llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown")); llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false); llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat); llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau); llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) { // Apply chat template to the list of messages
llama_params["grammar"] = json_value(body, "grammar", json::object()); llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
}
// Handle 'stop' field // Handle "stop" field
if (body.contains("stop") && body["stop"].is_string()) { if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()}); llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else { } else {
llama_params["stop"] = json_value(body, "stop", json::array()); llama_params["stop"] = json_value(body, "stop", json::array());
} }
// Some chat templates don't use EOS token to stop generation
// We must add their end sequences to list of stop words
llama_params["stop"].push_back("<|im_end|>"); // chatml
llama_params["stop"].push_back("<end_of_turn>"); // gemma
// Ensure there is ChatML-specific end sequence among stop words // Handle "response_format" field
llama_params["stop"].push_back("<|im_end|>"); if (body.contains("response_format")) {
json response_format = json_value(body, "response_format", json::object());
std::string response_type = json_value(response_format, "type", std::string());
if (response_type == "json_object") {
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
} else if (!response_type.empty() && response_type != "text") {
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
}
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::runtime_error("Only one completion choice is allowed");
}
// Handle "logprobs" field
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
if (body.contains("logprobs")) {
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
} else if (body.contains("top_logprobs")) {
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
for (auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);
}
}
// Copy remaining properties to llama_params
// This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
for (const auto & item : body.items()) {
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
llama_params[item.key()] = item.value();
}
}
return llama_params; return llama_params;
} }

View file

@ -65,7 +65,6 @@ int main(int argc, char ** argv) {
llama_context * ctx_dft = NULL; llama_context * ctx_dft = NULL;
// load the target model // load the target model
params.logits_all = true;
std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
// load the draft model // load the draft model
@ -219,7 +218,8 @@ int main(int argc, char ** argv) {
if (params.sparams.temp > 0) { if (params.sparams.temp > 0) {
// stochastic verification // stochastic verification
llama_token_data_array dist_tgt = llama_sampling_probability_distribution(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]); llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
llama_sample_softmax(ctx_tgt, &dist_tgt);
float p_tgt = 0, p_dft = 0; float p_tgt = 0, p_dft = 0;
// GGML_ASSERT(dist_tgt.size() == dist_dft.size()); // GGML_ASSERT(dist_tgt.size() == dist_dft.size());

View file

@ -3,9 +3,13 @@
:: Copyright (C) 2024 Intel Corporation :: Copyright (C) 2024 Intel Corporation
:: SPDX-License-Identifier: MIT :: SPDX-License-Identifier: MIT
mkdir -p build
IF not exist build (mkdir build)
cd build cd build
if %errorlevel% neq 0 goto ERROR
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
if %errorlevel% neq 0 goto ERROR
:: for FP16 :: for FP16
:: faster for long-prompt inference :: faster for long-prompt inference
@ -13,11 +17,18 @@ cd build
:: for FP32 :: for FP32
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
if %errorlevel% neq 0 goto ERROR
:: build example/main only :: build example/main only
:: make main :: make main
:: build all binary :: build all binary
make -j make -j
if %errorlevel% neq 0 goto ERROR
cd .. cd ..
exit /B 0
:ERROR
echo comomand error: %errorlevel%
exit /B %errorlevel%

View file

@ -6,8 +6,6 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
set GGML_SYCL_DEVICE=0
rem set GGML_SYCL_DEBUG=1
.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0 .\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0

28
examples/ts-type-to-grammar.sh Executable file
View file

@ -0,0 +1,28 @@
#!/bin/bash
#
# ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}"
# python examples/json-schema-to-grammar.py https://json.schemastore.org/tsconfig.json
#
set -euo pipefail
readonly type="$1"
# Create a temporary directory
TMPDIR=""
trap 'rm -fR "$TMPDIR"' EXIT
TMPDIR=$(mktemp -d)
DTS_FILE="$TMPDIR/type.d.ts"
SCHEMA_FILE="$TMPDIR/schema.json"
echo "export type MyType = $type" > "$DTS_FILE"
# This is a fork of typescript-json-schema, actively maintained as of March 2024:
# https://github.com/vega/ts-json-schema-generator
npx ts-json-schema-generator --unstable --no-top-ref --path "$DTS_FILE" --type MyType -e none > "$SCHEMA_FILE"
# Alternative, not actively maintained as of March 2024:
# https://github.com/YousefED/typescript-json-schema
# npx typescript-json-schema --defaultProps --required "$DTS_FILE" MyType | tee "$SCHEMA_FILE" >&2
./examples/json-schema-to-grammar.py "$SCHEMA_FILE"

6
flake.lock generated
View file

@ -20,11 +20,11 @@
}, },
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1709703039, "lastModified": 1711163522,
"narHash": "sha256-6hqgQ8OK6gsMu1VtcGKBxKQInRLHtzulDo9Z5jxHEFY=", "narHash": "sha256-YN/Ciidm+A0fmJPWlHBGvVkcarYWSC+s3NTPk/P+q3c=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "9df3e30ce24fd28c7b3e2de0d986769db5d6225d", "rev": "44d0940ea560dee511026a53f0e2e2cde489b4d4",
"type": "github" "type": "github"
}, },
"original": { "original": {

View file

@ -420,7 +420,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL); ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
// add forward decls here to avoid including the backend headers // add forward decls here to avoid including the backend headers
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUDA
extern GGML_CALL void ggml_backend_cuda_reg_devices(void); extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
ggml_backend_cuda_reg_devices(); ggml_backend_cuda_reg_devices();
#endif #endif
@ -1015,7 +1015,7 @@ static bool ggml_is_view_op(enum ggml_op op) {
#endif #endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS 4 #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#endif #endif
#ifndef GGML_SCHED_MAX_COPIES #ifndef GGML_SCHED_MAX_COPIES

View file

@ -377,6 +377,27 @@ typedef struct {
} block_iq1_s; } block_iq1_s;
static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
// 1.75 bpw
typedef struct {
uint8_t qs[QK_K/8]; // grid index, low 8 bits
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
#if QK_K == 64
ggml_half d;
#endif
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
} block_iq1_m;
#if QK_K == 64
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
#else
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
#endif
// Used by IQ1_M quants
typedef union {
ggml_half f16;
uint16_t u16;
} iq1m_scale_t;
// Non-linear quants // Non-linear quants
#define QK4_NL 32 #define QK4_NL 32
typedef struct { typedef struct {
@ -1050,6 +1071,7 @@ GGML_TABLE_END()
#define NGRID_IQ1S 2048 #define NGRID_IQ1S 2048
#define IQ1S_DELTA 0.125f #define IQ1S_DELTA 0.125f
#define IQ1M_DELTA 0.125f
#if defined(GGML_COMMON_IMPL_C) #if defined(GGML_COMMON_IMPL_C)
GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S) GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S)
0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff, 0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff,

10921
ggml-cuda.cu

File diff suppressed because it is too large Load diff

47
ggml-cuda/acc.cu Normal file
View file

@ -0,0 +1,47 @@
#include "acc.cuh"
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, int offset) {
const int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
int src1_idx = i - offset;
int oz = src1_idx / nb2;
int oy = (src1_idx - (oz * nb2)) / nb1;
int ox = src1_idx % nb1;
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
} else {
dst[i] = x[i];
}
}
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
}
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
}

5
ggml-cuda/acc.cuh Normal file
View file

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_ACC_BLOCK_SIZE 256
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

63
ggml-cuda/alibi.cu Normal file
View file

@ -0,0 +1,63 @@
#include "alibi.cuh"
static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
const int n_heads_log2_floor, const float m0, const float m1) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
if (col >= ncols) {
return;
}
const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col;
const int k = row/k_rows;
float m_k;
if (k < n_heads_log2_floor) {
m_k = powf(m0, k + 1);
} else {
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
dst[i] = col * m_k + x[i];
}
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
const int k_rows, const int n_heads_log2_floor, const float m0,
const float m1, cudaStream_t stream) {
const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
const dim3 block_nums(num_blocks_x, nrows, 1);
alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
}
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t nrows = ggml_nrows(src0);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
//GGML_ASSERT(ne01 + n_past == ne00);
GGML_ASSERT(n_head == ne02);
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
}

5
ggml-cuda/alibi.cuh Normal file
View file

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_ALIBI_BLOCK_SIZE 32
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

Some files were not shown because too many files have changed in this diff Show more