remove trailing whitespace

This commit is contained in:
xaedes 2023-05-22 20:56:35 +02:00
parent d3acbf644e
commit 6d40cc3a44
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
2 changed files with 30 additions and 30 deletions

View file

@ -270,7 +270,7 @@ void init_model(struct my_llama_model * model) {
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
@ -1019,7 +1019,7 @@ struct ggml_tensor * forward_batch_wo_cache(
// Vcur shape [N, n_batch, n_embd/n_head, n_head]
// V shape [N, n_embd/n_head, n_head, n_batch]
struct ggml_tensor * V =
struct ggml_tensor * V =
ggml_permute(ctx0,
Vcur,
0, 3, 1, 2);
@ -1430,7 +1430,7 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
out.resize(buf.size());
int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false);
if (n_tokens >= 0) {
if (n_tokens >= 0) {
out.resize(n_tokens);
}
@ -1470,7 +1470,7 @@ void shuffle_ints(int * begin, int * end) {
for (int i=0; i<max+1; ++i) {
vals[i] = frand();
}
std::sort(begin, end, [&vals](auto a, auto b){
std::sort(begin, end, [&vals](auto a, auto b){
return vals.at(a) < vals.at(b);
});
}
@ -1494,7 +1494,7 @@ struct my_llama_sampler_params {
struct my_llama_sampler {
struct llama_context * ctx = NULL;
my_llama_sampler_params params;
int n_vocab = 0;
int n_ctx = 0;
@ -1538,17 +1538,17 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx);
llama_sample_repetition_penalty(
ctx,
ctx,
candidates_p,
last_tokens + n_last_tokens - n_last,
n_last,
params.repeat_penalty);
llama_sample_frequency_and_presence_penalties(
ctx,
ctx,
candidates_p,
last_tokens + n_last_tokens - n_last,
n_last,
params.alpha_frequency,
n_last,
params.alpha_frequency,
params.alpha_presence);
if (!params.penalize_nl) {
@ -1572,7 +1572,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
llama_sample_top_k (ctx, candidates_p, params.top_k, 1);
llama_sample_tail_free (ctx, candidates_p, params.tfs_z, 1);
llama_sample_typical (ctx, candidates_p, params.typical_p, 1);
llama_sample_top_p (ctx, candidates_p, params.top_p, 1);
llama_sample_temperature (ctx, candidates_p, params.temp);
token = llama_sample_token(ctx, candidates_p);
@ -1809,7 +1809,7 @@ bool load_checkpoint(struct my_llama_model * model, struct ggml_opt_context * op
model->hparams.n_rot = file.read_u32();
print_params(&model->hparams);
}
if (init) {
init_model(model);
}
@ -1872,7 +1872,7 @@ int main(int argc, char ** argv) {
const char * default_chkpt_in = "checkpoint.bin";
const char * default_chkpt_out = "checkpoint.bin";
const char * default_argv[5] = {argv[0], default_model, default_train, default_chkpt_in, default_chkpt_out};
if (argc < 5) {
fprintf(stderr, "usage: %s model training_data chkpt_in chkpt_out\n", argv[0]);
//return 1;
@ -1979,13 +1979,13 @@ int main(int argc, char ** argv) {
printf("%s: init model\n", __func__);
bool existed = load_checkpoint(&model, opt, fn_chkpt_in, true);
set_param_model(&model);
opt->iter = model.train_its;
printf("%s: opt iter %d\n", __func__, opt->iter);
bool from_scratch = !existed;
if (from_scratch) {
randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
if (from_scratch) {
randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
}
init_kv_cache(&kv_self, &model, 1);
@ -2041,8 +2041,8 @@ int main(int argc, char ** argv) {
get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs);
struct ggml_tensor * logits =
(n_past == 0)
struct ggml_tensor * logits =
(n_past == 0)
? forward_batch_wo_cache(&model, ctx0, &gf, tokens_input, n_tokens, n_batch)
: forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch);
@ -2054,9 +2054,9 @@ int main(int argc, char ** argv) {
size_t used_mem_before_opt = ggml_used_mem(ctx0);
float error_before_opt = ggml_get_f32_1d(e, 0);
opt->params.adam.sched = (opt->iter < warmup)
? (float) opt->iter / (float) warmup
opt->params.adam.sched = (opt->iter < warmup)
? (float) opt->iter / (float) warmup
: cosine_decay_restart(cos_decay_steps, cos_decay_alpha, opt->iter - warmup, cos_decay_restart);
printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched);
@ -2088,9 +2088,9 @@ int main(int argc, char ** argv) {
for (int i=0; i<n_batch; ++i) {
init_sampler(&sampler, lctx);
for (int k=0; k<n_tokens; ++k) {
int32_t token = sample(&sampler,
(float *) ((char *) logits->data + i*logits->nb[2] + k*logits->nb[1]),
(llama_token *) ((char *) tokens_input->data + i*tokens_input->nb[1]),
int32_t token = sample(&sampler,
(float *) ((char *) logits->data + i*logits->nb[2] + k*logits->nb[1]),
(llama_token *) ((char *) tokens_input->data + i*tokens_input->nb[1]),
k);
* ((int32_t *) ((char *) after_opt_best_samples->data + i*after_opt_best_samples->nb[1] + k*after_opt_best_samples->nb[0])) = token;
}
@ -2118,7 +2118,7 @@ int main(int argc, char ** argv) {
{
int n_gen = 1024;
int sample_ctx = n_tokens - n_tokens/8;
sampler.params.temp = 0.2;
sampler.params.repeat_penalty = 1.1;
sampler.params.mirostat = 2;
@ -2161,9 +2161,9 @@ int main(int argc, char ** argv) {
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
// set_logits_masked(logits, token_notavail, -1e9);
int token = sample(&sampler,
(float *) ((char *) logits->data + (sample_ctx-1)*logits->nb[1]),
(llama_token *) tokens_input->data,
int token = sample(&sampler,
(float *) ((char *) logits->data + (sample_ctx-1)*logits->nb[1]),
(llama_token *) tokens_input->data,
sample_ctx-1);
//int token = ggml_get_i32_1d(best_samples, sample_ctx-1);
@ -2175,7 +2175,7 @@ int main(int argc, char ** argv) {
ggml_set_i32_1d(tokens_input, sample_ctx-1, token);
ggml_free(ctx0);
}
}
}
free(compute_addr);

4
ggml.c
View file

@ -9940,7 +9940,7 @@ static void ggml_compute_forward_out_prod_f32(
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2;
const int64_t i03 = i3;
@ -15296,7 +15296,7 @@ enum ggml_opt_result ggml_opt_resume(
// build forward + backward compute graphs
struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;