Merge branch 'master' into convert-split
This commit is contained in:
commit
6e4182c42d
133 changed files with 56726 additions and 50465 deletions
|
@ -28,4 +28,5 @@ indent_size = 2
|
|||
indent_style = tab
|
||||
|
||||
[examples/cvector-generator/*.txt]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
|
1
.github/labeler.yml
vendored
1
.github/labeler.yml
vendored
|
@ -42,7 +42,6 @@ build:
|
|||
- cmake/**
|
||||
- CMakeLists.txt
|
||||
- CMakePresets.json
|
||||
- codecov.yml
|
||||
examples:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/**
|
||||
|
|
12
.github/pull_request_template.md
vendored
12
.github/pull_request_template.md
vendored
|
@ -1,5 +1,7 @@
|
|||
- Self Reported Review Complexity:
|
||||
- [ ] Review Complexity : Low
|
||||
- [ ] Review Complexity : Medium
|
||||
- [ ] Review Complexity : High
|
||||
- [ ] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
|
||||
|
||||
|
||||
- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
|
||||
- Self-reported review complexity:
|
||||
- [ ] Low
|
||||
- [ ] Medium
|
||||
- [ ] High
|
||||
|
|
40
.github/workflows/code-coverage.yml
vendored
40
.github/workflows/code-coverage.yml
vendored
|
@ -1,40 +0,0 @@
|
|||
name: Code Coverage
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8 lcov
|
||||
|
||||
- name: Build
|
||||
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
|
||||
|
||||
- name: Run tests
|
||||
run: CC=gcc-8 make test
|
||||
|
||||
- name: Generate coverage report
|
||||
run: |
|
||||
make coverage
|
||||
make lcov-report
|
||||
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
env:
|
||||
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
with:
|
||||
files: lcov-report/coverage.info
|
6
.github/workflows/docker.yml
vendored
6
.github/workflows/docker.yml
vendored
|
@ -33,15 +33,13 @@ jobs:
|
|||
- { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
|
||||
# have disabled them for now until the reason why
|
||||
# is understood.
|
||||
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
# Note: the full-rocm image is failing due to a "no space left on device" error. It is disabled for now to allow the workflow to complete.
|
||||
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
steps:
|
||||
|
|
16
.github/workflows/server.yml
vendored
16
.github/workflows/server.yml
vendored
|
@ -30,7 +30,7 @@ jobs:
|
|||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
|
||||
build_type: [RelWithDebInfo]
|
||||
include:
|
||||
- build_type: Release
|
||||
|
@ -87,8 +87,22 @@ jobs:
|
|||
exit 1
|
||||
fi
|
||||
|
||||
- name: Build (no OpenMP)
|
||||
id: cmake_build_no_openmp
|
||||
if: ${{ matrix.sanitizer == 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DLLAMA_OPENMP=OFF ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
|
|
113
.gitignore
vendored
113
.gitignore
vendored
|
@ -1,90 +1,123 @@
|
|||
*.o
|
||||
# Extensions
|
||||
|
||||
*.a
|
||||
*.so
|
||||
*.bat
|
||||
*.bin
|
||||
*.dll
|
||||
*.dot
|
||||
*.etag
|
||||
*.exe
|
||||
*.gcda
|
||||
*.gcno
|
||||
*.gcov
|
||||
*.gguf
|
||||
*.gguf.json
|
||||
*.bin
|
||||
*.exe
|
||||
*.dll
|
||||
*.log
|
||||
*.gcov
|
||||
*.gcno
|
||||
*.gcda
|
||||
*.dot
|
||||
*.bat
|
||||
*.tmp
|
||||
*.metallib
|
||||
*.etag
|
||||
*.lastModified
|
||||
.DS_Store
|
||||
.build/
|
||||
*.log
|
||||
*.metallib
|
||||
*.o
|
||||
*.so
|
||||
*.tmp
|
||||
|
||||
# IDE / OS
|
||||
|
||||
.cache/
|
||||
.ccls-cache/
|
||||
.direnv/
|
||||
.DS_Store
|
||||
.envrc
|
||||
.idea/
|
||||
.swiftpm
|
||||
.venv
|
||||
.clang-tidy
|
||||
.vs/
|
||||
.vscode/
|
||||
.idea/
|
||||
nppBackup
|
||||
|
||||
ggml-metal-embed.metal
|
||||
|
||||
lcov-report/
|
||||
# Coverage
|
||||
|
||||
gcovr-report/
|
||||
lcov-report/
|
||||
|
||||
# Build Artifacts
|
||||
|
||||
tags
|
||||
.build/
|
||||
build*
|
||||
!build-info.cmake
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
!build.zig
|
||||
cmake-build-*
|
||||
/libllama.so
|
||||
/llama-*
|
||||
android-ndk-*
|
||||
arm_neon.h
|
||||
cmake-build-*
|
||||
CMakeSettings.json
|
||||
compile_commands.json
|
||||
ggml-metal-embed.metal
|
||||
llama-batched-swift
|
||||
out/
|
||||
tmp/
|
||||
|
||||
# CI
|
||||
|
||||
!.github/workflows/*.yml
|
||||
|
||||
# Models
|
||||
|
||||
models/*
|
||||
models-mnt
|
||||
!models/.editorconfig
|
||||
!models/ggml-vocab-*.gguf*
|
||||
|
||||
/Pipfile
|
||||
/libllama.so
|
||||
/llama-*
|
||||
llama-batched-swift
|
||||
/common/build-info.cpp
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
CMakeSettings.json
|
||||
|
||||
__pycache__
|
||||
dist
|
||||
# Zig
|
||||
|
||||
zig-out/
|
||||
zig-cache/
|
||||
|
||||
# Logs
|
||||
|
||||
ppl-*.txt
|
||||
qnt-*.txt
|
||||
perf-*.txt
|
||||
|
||||
# Examples
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.css.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
!examples/*/*/*.kts
|
||||
!examples/sycl/*.bat
|
||||
!examples/sycl/*.sh
|
||||
|
||||
# Python
|
||||
|
||||
__pycache__
|
||||
.venv
|
||||
/Pipfile
|
||||
dist
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
nppBackup
|
||||
|
||||
# Test binaries
|
||||
/tests/test-grammar-parser
|
||||
/tests/test-llama-grammar
|
||||
/tests/test-backend-ops
|
||||
/tests/test-double-float
|
||||
/tests/test-grad0
|
||||
/tests/test-grammar-parser
|
||||
/tests/test-llama-grammar
|
||||
/tests/test-opt
|
||||
/tests/test-quantize-fns
|
||||
/tests/test-quantize-perf
|
||||
/tests/test-rope
|
||||
/tests/test-sampling
|
||||
/tests/test-tokenizer-0
|
||||
/tests/test-tokenizer-1-spm
|
||||
/tests/test-tokenizer-1-bpe
|
||||
/tests/test-rope
|
||||
/tests/test-backend-ops
|
||||
/tests/test-tokenizer-1-spm
|
||||
|
||||
# Scripts
|
||||
!/scripts/install-oneapi.bat
|
||||
|
|
|
@ -119,6 +119,7 @@ option(LLAMA_HIP_UMA "llama: use HIP unified memory arch
|
|||
option(LLAMA_VULKAN "llama: use Vulkan" OFF)
|
||||
option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF)
|
||||
option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF)
|
||||
option(LLAMA_VULKAN_MEMORY_DEBUG "llama: enable Vulkan memory debug output" OFF)
|
||||
option(LLAMA_VULKAN_VALIDATE "llama: enable Vulkan validation" OFF)
|
||||
option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
|
@ -143,9 +144,6 @@ option(LLAMA_BUILD_SERVER "llama: build server example"
|
|||
option(LLAMA_LASX "llama: enable lasx" ON)
|
||||
option(LLAMA_LSX "llama: enable lsx" ON)
|
||||
|
||||
# add perf arguments
|
||||
option(LLAMA_PERF "llama: enable perf" OFF)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||
|
||||
|
@ -534,6 +532,10 @@ if (LLAMA_VULKAN)
|
|||
add_compile_definitions(GGML_VULKAN_DEBUG)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_MEMORY_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_VALIDATE)
|
||||
add_compile_definitions(GGML_VULKAN_VALIDATE)
|
||||
endif()
|
||||
|
@ -660,6 +662,7 @@ if (LLAMA_SYCL)
|
|||
#todo: AOT
|
||||
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
|
||||
message(STATUS "SYCL found")
|
||||
|
||||
|
@ -674,11 +677,9 @@ if (LLAMA_SYCL)
|
|||
endif()
|
||||
|
||||
add_compile_options(-I./) #include DPCT
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||
if (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
endif()
|
||||
|
@ -688,8 +689,10 @@ if (LLAMA_SYCL)
|
|||
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
|
||||
|
||||
if (WIN32)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
else()
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||
if (LLAMA_SYCL_TARGET STREQUAL "INTEL")
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
elseif (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
|
@ -864,10 +867,6 @@ if (LLAMA_CPU_HBM)
|
|||
target_link_libraries(ggml PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (LLAMA_PERF)
|
||||
add_compile_definitions(GGML_PERF)
|
||||
endif()
|
||||
|
||||
function(get_flags CCID CCVER)
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
|
|
|
@ -11,9 +11,21 @@
|
|||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "sycl-base",
|
||||
"hidden": true,
|
||||
"generator": "Ninja",
|
||||
"binaryDir": "${sourceDir}/build-${presetName}",
|
||||
"cacheVariables": {
|
||||
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
|
||||
"CMAKE_CXX_COMPILER": "icx",
|
||||
"LLAMA_SYCL": "ON",
|
||||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
|
||||
|
||||
{
|
||||
|
@ -35,15 +47,18 @@
|
|||
},
|
||||
|
||||
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "release" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "release", "static" ] }
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
|
||||
]
|
||||
}
|
||||
|
|
11
Makefile
11
Makefile
|
@ -344,9 +344,6 @@ ifdef LLAMA_GPROF
|
|||
MK_CFLAGS += -pg
|
||||
MK_CXXFLAGS += -pg
|
||||
endif
|
||||
ifdef LLAMA_PERF
|
||||
MK_CPPFLAGS += -DGGML_PERF
|
||||
endif
|
||||
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
|
@ -507,7 +504,7 @@ ifdef LLAMA_CUDA
|
|||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
OBJS += $(OBJS_CUDA_TEMP_INST)
|
||||
|
@ -608,6 +605,10 @@ ifdef LLAMA_VULKAN_DEBUG
|
|||
MK_CPPFLAGS += -DGGML_VULKAN_DEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_MEMORY_DEBUG
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_MEMORY_DEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_VALIDATE
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE
|
||||
endif
|
||||
|
@ -1047,7 +1048,7 @@ tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-integration: tests/test-grammar-integration.cpp ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
tests/test-grammar-integration: tests/test-grammar-integration.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# llama.cpp for SYCL
|
||||
|
||||
- [Background](#background)
|
||||
- [Recommended Release](#recommended-release)
|
||||
- [News](#news)
|
||||
- [OS](#os)
|
||||
- [Hardware](#hardware)
|
||||
|
@ -31,8 +32,23 @@ When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneM
|
|||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
The SYCL backend would be broken by some PRs due to no online CI.
|
||||
|
||||
The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform|
|
||||
|-|-|-|-|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Arch Linux is verified successfully.
|
||||
|
||||
- 2024.4
|
||||
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
|
||||
|
||||
|
@ -394,15 +410,9 @@ Output (example):
|
|||
|
||||
4. Install build tools
|
||||
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer)
|
||||
b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/)
|
||||
|
||||
b. Download & install mingw-w64 make for Windows provided by w64devkit
|
||||
|
||||
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
|
||||
|
||||
- Extract `w64devkit` on your pc.
|
||||
|
||||
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
|
@ -412,10 +422,10 @@ On the oneAPI command line window, step into the llama.cpp main directory and ru
|
|||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
# Option 2: Or FP16
|
||||
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
cmake --build build --config Release -j
|
||||
```
|
||||
|
@ -425,9 +435,23 @@ Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former in
|
|||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
Or, use CMake presets to build:
|
||||
```sh
|
||||
cmake --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
|
||||
cmake -DLLAMA_SYCL_F16=ON --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
|
||||
cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
|
||||
*Notes:*
|
||||
|
||||
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make llama-cli`.
|
||||
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
|
|
26
README.md
26
README.md
|
@ -195,6 +195,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||||
- [RAGNA Desktop](https://ragna.app/) (proprietary)
|
||||
- [RecurseChat](https://recurse.chat/) (proprietary)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
|
@ -208,6 +209,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||||
- [AIKit](https://github.com/sozercan/aikit) (MIT)
|
||||
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
|
@ -386,6 +388,30 @@ brew install llama.cpp
|
|||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||
|
||||
### Nix
|
||||
|
||||
On Mac and Linux, the Nix package manager can be used via
|
||||
```
|
||||
nix profile install nixpkgs#llama-cpp
|
||||
```
|
||||
For flake enabled installs.
|
||||
|
||||
Or
|
||||
```
|
||||
nix-env --file '<nixpkgs>' --install --attr llama-cpp
|
||||
```
|
||||
For non-flake enabled installs.
|
||||
|
||||
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
|
||||
|
||||
#### Flox
|
||||
|
||||
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
|
||||
```
|
||||
flox install llama-cpp
|
||||
```
|
||||
Flox follows the nixpkgs build of llama.cpp.
|
||||
|
||||
### Metal Build
|
||||
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
|
|
14
codecov.yml
14
codecov.yml
|
@ -1,14 +0,0 @@
|
|||
comment: off
|
||||
|
||||
coverage:
|
||||
status:
|
||||
project:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
||||
patch:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
File diff suppressed because it is too large
Load diff
|
@ -73,7 +73,6 @@ struct gpt_params {
|
|||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
|
@ -153,7 +152,6 @@ struct gpt_params {
|
|||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
bool embedding = false; // get only sentence embedding
|
||||
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
|
@ -180,6 +178,12 @@ struct gpt_params {
|
|||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embendings
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
|
@ -378,7 +382,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
|
|||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n);
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
|
|
|
@ -214,7 +214,7 @@ src_func = f"""
|
|||
"""
|
||||
|
||||
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
|
||||
convert_py = convert_py_pth.read_text()
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
|
@ -222,7 +222,7 @@ convert_py = re.sub(
|
|||
flags=re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
|
||||
convert_py_pth.write_text(convert_py)
|
||||
convert_py_pth.write_text(convert_py, encoding="utf-8")
|
||||
|
||||
logger.info("+++ convert-hf-to-gguf.py was updated")
|
||||
|
||||
|
|
|
@ -81,7 +81,7 @@ class Model:
|
|||
if not self.is_safetensors:
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||
self.hparams = Model.load_hparams(self.dir_model)
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
self.tensor_names = None
|
||||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||||
|
@ -971,7 +971,11 @@ class XverseModel(Model):
|
|||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
# Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
|
||||
# because vocab_size is the count of items, and indexes start at 0.
|
||||
max_vocab_index = max(tokenizer.get_vocab().values())
|
||||
if max_vocab_index >= vocab_size:
|
||||
raise ValueError("Vocabulary size exceeds expected maximum size.")
|
||||
|
||||
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
@ -1404,6 +1408,48 @@ class LlamaModel(Model):
|
|||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("BitnetForCausalLM")
|
||||
class BitnetModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BITNET
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
def weight_quant(self, weight):
|
||||
dtype = weight.dtype
|
||||
weight = weight.float()
|
||||
s = 1 / weight.abs().mean().clamp(min=1e-5)
|
||||
weight = (weight * s).round().clamp(-1, 1) / s
|
||||
scale = weight.abs().max().unsqueeze(0)
|
||||
weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
|
||||
weight = torch.sign(weight).type(dtype)
|
||||
return weight.type(dtype), scale.type(torch.float32)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if any(self.match_model_tensor_name(new_name, key, bid) for key in [
|
||||
gguf.MODEL_TENSOR.ATTN_Q,
|
||||
gguf.MODEL_TENSOR.ATTN_K,
|
||||
gguf.MODEL_TENSOR.ATTN_V,
|
||||
gguf.MODEL_TENSOR.ATTN_OUT,
|
||||
gguf.MODEL_TENSOR.FFN_UP,
|
||||
gguf.MODEL_TENSOR.FFN_DOWN,
|
||||
gguf.MODEL_TENSOR.FFN_GATE,
|
||||
]):
|
||||
# transform weight into 1/0/-1 (in fp32)
|
||||
weight_torch, scale_torch = self.weight_quant(data_torch)
|
||||
yield (new_name, weight_torch)
|
||||
yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
|
||||
else:
|
||||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@Model.register("GrokForCausalLM")
|
||||
class GrokModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GROK
|
||||
|
@ -1636,6 +1682,12 @@ class Qwen2MoeModel(Model):
|
|||
super().set_gguf_parameters()
|
||||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
|
||||
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
|
||||
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
|
@ -2723,6 +2775,124 @@ class DeepseekV2Model(Model):
|
|||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("T5ForConditionalGeneration")
|
||||
@Model.register("T5WithLMHeadModel")
|
||||
class T5Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.T5
|
||||
|
||||
def set_vocab(self):
|
||||
# to avoid TypeError: Descriptors cannot be created directly
|
||||
# exception when importing sentencepiece_model_pb2
|
||||
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
from sentencepiece import sentencepiece_model_pb2 as model
|
||||
|
||||
tokenizer_path = self.dir_model / 'spiece.model'
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
sentencepiece_model = model.ModelProto()
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
||||
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
||||
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
||||
|
||||
tokenizer = SentencePieceProcessor()
|
||||
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.GetScore(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.IsUnknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.IsControl(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.IsUnused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.IsByte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if (token_id >= vocab_size):
|
||||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("t5")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||||
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
||||
if precompiled_charsmap:
|
||||
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
self.gguf_writer.add_add_eos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name("T5")
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_heads"])
|
||||
self.gguf_writer.add_key_length(self.hparams["d_kv"])
|
||||
self.gguf_writer.add_value_length(self.hparams["d_kv"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||||
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
# Sometimes T5 and Flan-T5 based models contain "encoder.embed_tokens.weight" tensor or
|
||||
# "decoder.embed_tokens.weight" tensors that are duplicates of "shared.weight" tensor
|
||||
# To prevent errors caused by an unnecessary unmapped tensor, skip both of them and use only "shared.weight".
|
||||
if name == "decoder.embed_tokens.weight" or name == "encoder.embed_tokens.weight":
|
||||
logger.debug(f"Skipping tensor {name!r} in safetensors so that convert can end normally.")
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ Related PRs:
|
|||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99
|
||||
|
||||
# With advanced options
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100
|
||||
|
||||
# To see help message
|
||||
./cvector-generator -h
|
||||
|
|
|
@ -40,7 +40,7 @@ static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
|||
printf("\nexample usage:\n");
|
||||
printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]);
|
||||
printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]);
|
||||
printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --batch-pca 100\n", argv[0]);
|
||||
printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
@ -378,7 +378,7 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
|||
std::vector<std::string> completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false);
|
||||
auto format_template = [](std::string persona, std::string suffix) {
|
||||
// entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST] "
|
||||
return persona + " " + suffix;
|
||||
return persona + suffix;
|
||||
};
|
||||
for (size_t i = 0; i < positive_prompts.size(); ++i) {
|
||||
for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) {
|
||||
|
|
|
@ -64,15 +64,15 @@ struct pca_model {
|
|||
struct ggml_tensor * dev_eigenvector;
|
||||
|
||||
pca_model(struct ggml_tensor * t_input) {
|
||||
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||||
// #ifdef GGML_USE_CUDA
|
||||
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
// backend = ggml_backend_cuda_init(0); // init device 0
|
||||
// if (!backend) {
|
||||
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
// }
|
||||
// #endif
|
||||
#ifdef GGML_USE_CUDA
|
||||
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
backend = ggml_backend_cuda_init(0); // init device 0
|
||||
if (!backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
// TODO: enable Metal support when support for GGML_OP_SQRT is added
|
||||
// #ifdef GGML_USE_METAL
|
||||
// fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
// backend = ggml_backend_metal_init();
|
||||
|
|
|
@ -19,3 +19,43 @@ llama-embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
|
|||
```
|
||||
|
||||
The above command will output space-separated float values.
|
||||
|
||||
## extra parameters
|
||||
### --embd-normalize $integer$
|
||||
| $integer$ | description | formula |
|
||||
|-----------|---------------------|---------|
|
||||
| $-1$ | none |
|
||||
| $0$ | max absolute int16 | $\Large{{32760 * x_i} \over\max \lvert x_i\rvert}$
|
||||
| $1$ | taxicab | $\Large{x_i \over\sum \lvert x_i\rvert}$
|
||||
| $2$ | euclidean (default) | $\Large{x_i \over\sqrt{\sum x_i^2}}$
|
||||
| $>2$ | p-norm | $\Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}}$
|
||||
|
||||
### --embd-output-format $'string'$
|
||||
| $'string'$ | description | |
|
||||
|------------|------------------------------|--|
|
||||
| '' | same as before | (default)
|
||||
| 'array' | single embeddings | $[[x_1,...,x_n]]$
|
||||
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
|
||||
| 'json' | openai style |
|
||||
| 'json+' | add cosine similarity matrix |
|
||||
|
||||
### --embd-separator $"string"$
|
||||
| $"string"$ | |
|
||||
|--------------|-|
|
||||
| "\n" | (default)
|
||||
| "<#embSep#>" | for exemple
|
||||
| "<#sep#>" | other exemple
|
||||
|
||||
## examples
|
||||
### Unix-based systems (Linux, macOS, etc.):
|
||||
|
||||
```bash
|
||||
./embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
|
||||
```
|
||||
|
||||
### Windows:
|
||||
|
||||
```powershell
|
||||
embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
|
||||
```
|
||||
|
||||
|
|
|
@ -7,23 +7,30 @@
|
|||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static std::vector<std::string> split_lines(const std::string & s) {
|
||||
std::string line;
|
||||
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
|
||||
std::vector<std::string> lines;
|
||||
std::stringstream ss(s);
|
||||
while (std::getline(ss, line)) {
|
||||
lines.push_back(line);
|
||||
size_t start = 0;
|
||||
size_t end = s.find(separator);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
lines.push_back(s.substr(start, end - start));
|
||||
start = end + separator.length();
|
||||
end = s.find(separator, start);
|
||||
}
|
||||
|
||||
lines.push_back(s.substr(start)); // Add the last part
|
||||
|
||||
return lines;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
|
@ -40,22 +47,10 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
|||
|
||||
// try to get sequence embeddings - supported only when pooling_type is not NONE
|
||||
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
//TODO: I would also add a parameter here to enable normalization or not.
|
||||
/*fprintf(stdout, "unnormalized_embedding:");
|
||||
for (int hh = 0; hh < n_embd; hh++) {
|
||||
fprintf(stdout, "%9.6f ", embd[hh]);
|
||||
}
|
||||
fprintf(stdout, "\n");*/
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
llama_embd_normalize(embd, out, n_embd, embd_norm);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -97,6 +92,12 @@ int main(int argc, char ** argv) {
|
|||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
|
@ -109,7 +110,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// split the prompt into lines
|
||||
std::vector<std::string> prompts = split_lines(params.prompt);
|
||||
std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
|
||||
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
|
@ -169,7 +170,7 @@ int main(int argc, char ** argv) {
|
|||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
|
||||
llama_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
|
@ -182,15 +183,20 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// final batch
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
|
||||
|
||||
if (params.embd_out.empty()) {
|
||||
// print the first part of the embeddings or for a single prompt, the full embedding
|
||||
fprintf(stdout, "\n");
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
fprintf(stdout, "embedding %d: ", j);
|
||||
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
|
||||
if (params.embd_normalize == 0) {
|
||||
fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
|
||||
} else {
|
||||
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
|
||||
}
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
|
@ -198,14 +204,58 @@ int main(int argc, char ** argv) {
|
|||
if (n_prompts > 1) {
|
||||
fprintf(stdout, "\n");
|
||||
printf("cosine similarity matrix:\n\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
fprintf(stdout, "%6.6s ", prompts[i].c_str());
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
fprintf(stdout, "%6.2f ", sim);
|
||||
}
|
||||
fprintf(stdout, "%1.10s", prompts[i].c_str());
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
|
||||
const bool notArray = params.embd_out != "array";
|
||||
|
||||
fprintf(stdout, notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
|
||||
for (int j = 0;;) { // at least one iteration (one prompt)
|
||||
if (notArray) fprintf(stdout, " {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
|
||||
fprintf(stdout, "[");
|
||||
for (int i = 0;;) { // at least one iteration (n_embd > 0)
|
||||
fprintf(stdout, params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
|
||||
i++;
|
||||
if (i < n_embd) fprintf(stdout, ","); else break;
|
||||
}
|
||||
fprintf(stdout, notArray ? "]\n }" : "]");
|
||||
j++;
|
||||
if (j < n_prompts) fprintf(stdout, notArray ? ",\n" : ","); else break;
|
||||
}
|
||||
fprintf(stdout, notArray ? "\n ]" : "]\n");
|
||||
|
||||
if (params.embd_out == "json+" && n_prompts > 1) {
|
||||
fprintf(stdout, ",\n \"cosineSimilarity\": [\n");
|
||||
for (int i = 0;;) { // at least two iteration (n_prompts > 1)
|
||||
fprintf(stdout, " [");
|
||||
for (int j = 0;;) { // at least two iteration (n_prompts > 1)
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
fprintf(stdout, "%6.2f", sim);
|
||||
j++;
|
||||
if (j < n_prompts) fprintf(stdout, ", "); else break;
|
||||
}
|
||||
fprintf(stdout, " ]");
|
||||
i++;
|
||||
if (i < n_prompts) fprintf(stdout, ",\n"); else break;
|
||||
}
|
||||
fprintf(stdout, "\n ]");
|
||||
}
|
||||
|
||||
if (notArray) fprintf(stdout, "\n}\n");
|
||||
}
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
|
|
|
@ -44,6 +44,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
|||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
// run model
|
||||
|
@ -98,7 +99,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
|
|||
llama_token eos_token = llama_token_eos(mdl);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
|
||||
|
@ -166,8 +169,7 @@ int main(int argc, char * argv[]) {
|
|||
|
||||
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
|
||||
// create new context - set to embedding mode
|
||||
cparams.embeddings = true;
|
||||
// create generation context
|
||||
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
|
||||
|
||||
// ### Embedding/Representation ###
|
||||
|
|
|
@ -223,7 +223,11 @@ int main(int argc, char ** argv) {
|
|||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
embd_inp = inp_pfx;
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
embd_inp.push_back(llama_token_middle(model));
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||
|
@ -528,7 +532,12 @@ int main(int argc, char ** argv) {
|
|||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
embd_inp = inp_pfx;
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
embd_inp.push_back(llama_token_middle(model));
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
|
|
|
@ -131,23 +131,30 @@ class LlamaState: ObservableObject {
|
|||
|
||||
messageLog += "\(text)"
|
||||
|
||||
Task.detached {
|
||||
while await llamaContext.n_cur < llamaContext.n_len {
|
||||
let result = await llamaContext.completion_loop()
|
||||
messageLog += "\(result)"
|
||||
await MainActor.run {
|
||||
self.messageLog += "\(result)"
|
||||
}
|
||||
}
|
||||
|
||||
let t_end = DispatchTime.now().uptimeNanoseconds
|
||||
let t_generation = Double(t_end - t_heat_end) / NS_PER_S
|
||||
let t_generation = Double(t_end - t_heat_end) / self.NS_PER_S
|
||||
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
|
||||
|
||||
await llamaContext.clear()
|
||||
messageLog += """
|
||||
|
||||
await MainActor.run {
|
||||
self.messageLog += """
|
||||
\n
|
||||
Done
|
||||
Heat up took \(t_heat)s
|
||||
Generated \(tokens_per_second) t/s\n
|
||||
"""
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func bench() async {
|
||||
guard let llamaContext else {
|
||||
|
|
|
@ -16,37 +16,37 @@ struct quant_option {
|
|||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
||||
|
|
|
@ -73,9 +73,10 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
|
|||
return chunks;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -160,6 +161,12 @@ int main(int argc, char ** argv) {
|
|||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
|
|
|
@ -634,12 +634,12 @@ return html`
|
|||
<div>
|
||||
<div class="grammar">
|
||||
<label for="template"></label>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use GBNF or JSON-Scheme + Converter" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use GBNF or JSON Schema + Converter" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
</div>
|
||||
<div class="grammar-columns">
|
||||
<div class="json-schema-controls">
|
||||
<input type="text" name="prop-order" placeholder="Order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||
<button type="button" class="button-grammar" onclick=${convertJSONSchemaGrammar}>Convert JSON-Scheme</button>
|
||||
<button type="button" class="button-grammar" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
|
|
@ -1594,7 +1594,7 @@ struct server_context {
|
|||
} else {
|
||||
std::string prompt;
|
||||
if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
|
||||
json_value(task.data, "prompt", std::string());
|
||||
prompt = json_value(task.data, "prompt", std::string());
|
||||
}
|
||||
|
||||
slot = get_available_slot(prompt);
|
||||
|
@ -2038,7 +2038,12 @@ struct server_context {
|
|||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
if (middle_token >= 0) {
|
||||
prefix_tokens.push_back(middle_token);
|
||||
}
|
||||
|
||||
prompt_tokens = prefix_tokens;
|
||||
} else {
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
|
||||
|
|
|
@ -13,16 +13,16 @@ if %errorlevel% neq 0 goto ERROR
|
|||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -G "Ninja" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
cmake --build . -j
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
cd ..
|
||||
|
|
6
flake.lock
generated
6
flake.lock
generated
|
@ -20,11 +20,11 @@
|
|||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1717786204,
|
||||
"narHash": "sha256-4q0s6m0GUcN7q+Y2DqD27iLvbcd1G50T2lv08kKxkSI=",
|
||||
"lastModified": 1718318537,
|
||||
"narHash": "sha256-4Zu0RYRcAY/VWuu6awwq4opuiD//ahpc2aFHg2CWqFY=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "051f920625ab5aabe37c920346e3e69d7d34400e",
|
||||
"rev": "e9ee548d90ff586a6471b4ae80ae9cfcbceb3420",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
|
|
@ -1172,7 +1172,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
|||
// check if a backend with higher prio wants to offload the op
|
||||
if (src_backend_id == sched->n_backends - 1) {
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
SET_CAUSE(tensor, "1.off");
|
||||
return b;
|
||||
}
|
||||
|
@ -1706,14 +1706,16 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
bool backend_ids_changed = false;
|
||||
for (int i = 0; i < sched->graph->n_nodes; i++) {
|
||||
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i]) {
|
||||
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
|
||||
sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
|
||||
backend_ids_changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!backend_ids_changed) {
|
||||
for (int i = 0; i < sched->graph->n_leafs; i++) {
|
||||
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i]) {
|
||||
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
|
||||
sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
|
||||
backend_ids_changed = true;
|
||||
break;
|
||||
}
|
||||
|
@ -1977,6 +1979,15 @@ int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
|
|||
return sched->n_copies;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
|
||||
return sched->n_backends;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
|
||||
GGML_ASSERT(i >= 0 && i < sched->n_backends);
|
||||
return sched->backends[i];
|
||||
}
|
||||
|
||||
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
|
|
@ -182,6 +182,9 @@ extern "C" {
|
|||
// Initialize backend buffers from a measure graph
|
||||
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
|
||||
GGML_API int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i);
|
||||
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
||||
|
|
|
@ -635,7 +635,7 @@ static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> &
|
|||
}
|
||||
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc, get_mmq_x_max_host(cc)));
|
||||
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
|
||||
}
|
||||
return row_rounding;
|
||||
}
|
||||
|
@ -2267,6 +2267,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_SQR:
|
||||
ggml_cuda_op_sqr(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQRT:
|
||||
ggml_cuda_op_sqrt(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
ggml_cuda_op_clamp(ctx, dst);
|
||||
break;
|
||||
|
@ -2830,6 +2833,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
|
|
|
@ -652,8 +652,8 @@ static int get_mmq_x_max_host(const int cc) {
|
|||
}
|
||||
|
||||
// Round rows to this value for --split-mode row:
|
||||
static int get_mmq_y_host(const int cc, const int mmq_x) {
|
||||
return cc >= CC_VOLTA && mmq_x >= 32 ? 128 : 64;
|
||||
static int get_mmq_y_host(const int cc) {
|
||||
return cc >= CC_VOLTA ? 128 : 64;
|
||||
}
|
||||
|
||||
//////////////////////
|
||||
|
|
|
@ -30,34 +30,34 @@ void ggml_cuda_op_mul_mat_q(
|
|||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_0>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_1>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q5_0>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_q_case<GGML_TYPE_Q5_1>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q8_0>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q2_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q3_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q5_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q6_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#include <cstdint>
|
||||
|
||||
#define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1)
|
||||
#define MMQ_NWARPS 8
|
||||
|
||||
typedef void (*load_tiles_mmq_t)(
|
||||
const char * __restrict__ x, int * __restrict__ x_qs, half2 * __restrict__ x_dm,
|
||||
|
@ -15,7 +16,7 @@ typedef void (*load_tiles_mmq_t)(
|
|||
typedef void (*vec_dot_mmq_t)(
|
||||
const int * __restrict__ x_qs, const half2 * __restrict__ x_dm, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y, float * __restrict__ sum, const int & k0);
|
||||
typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1);
|
||||
typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max);
|
||||
|
||||
struct block_q8_1_mmq {
|
||||
half2 ds[4];
|
||||
|
@ -50,21 +51,17 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
|||
|
||||
// get_mmq_y_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row
|
||||
|
||||
static constexpr __device__ int get_mmq_y_device() {
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
static constexpr __device__ int get_mmq_y_device(int mmq_x) {
|
||||
return mmq_x >= 32 ? 128 : 64;
|
||||
}
|
||||
return 128;
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= CC_VOLTA
|
||||
static constexpr __device__ int get_mmq_y_device(int mmq_x) {
|
||||
return mmq_x >= 32 ? 128 : 64;
|
||||
}
|
||||
return 128;
|
||||
#else
|
||||
static constexpr __device__ int get_mmq_y_device(int /*mmq_x*/) {
|
||||
return 64;
|
||||
}
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
#define TILE_X_SIZES_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0}
|
||||
#define TILE_X_SIZES_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0}
|
||||
|
@ -1734,30 +1731,34 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
}
|
||||
|
||||
template<int mmq_x, int mmq_y, int nwarps, bool need_check>
|
||||
static __device__ __forceinline__ void mmq_write_back_dp4a(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1) {
|
||||
static __device__ __forceinline__ void mmq_write_back_dp4a(
|
||||
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
||||
const int j = blockIdx.y*mmq_x + j0 + threadIdx.y;
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j >= ne1) {
|
||||
if (j > j_max) {
|
||||
return;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
||||
const int i = blockIdx.x*mmq_y + i0 + threadIdx.x;
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
if (need_check && i >= ne0) {
|
||||
if (need_check && i > i_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
dst[j*ne0 + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
|
||||
dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int mmq_x, int mmq_y, int nwarps, bool need_check>
|
||||
static __device__ __forceinline__ void mmq_write_back_mma(const float * __restrict__ sum, float * __restrict__ dst, const int & ne0, const int & ne1) {
|
||||
static __device__ __forceinline__ void mmq_write_back_mma(
|
||||
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
|
||||
|
||||
typedef mma_int_C_I16J8 mma_C;
|
||||
|
||||
const int i0 = threadIdx.y*mma_C::I;
|
||||
|
@ -1769,19 +1770,19 @@ static __device__ __forceinline__ void mmq_write_back_mma(const float * __restri
|
|||
for (int j0 = 0; j0 < mmq_x; j0 += mma_C::J) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
const int j = blockIdx.y*mmq_x + j0 + mma_C::get_j(l);
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
|
||||
if (j >= ne1) {
|
||||
if (j > j_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int i = blockIdx.x*mmq_y + i0 + mma_C::get_i(l);
|
||||
const int i = i0 + mma_C::get_i(l);
|
||||
|
||||
if (need_check && i >= ne0) {
|
||||
if (need_check && i > i_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
dst[j*ne0 + i] = sum[(j0/mma_C::J)*mma_C::ne + l];
|
||||
dst[j*stride + i] = sum[(j0/mma_C::J)*mma_C::ne + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1896,32 +1897,16 @@ static bool mmq_need_sum(const ggml_type type_x) {
|
|||
return false;
|
||||
}
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
#else
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst,
|
||||
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
|
||||
|
||||
// Skip unused template specializations for faster compilation:
|
||||
if (mmq_x > get_mmq_x_max_device()) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
|
||||
static __device__ void mul_mat_q_process_tile(
|
||||
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0,
|
||||
const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qr = ggml_cuda_type_traits<type>::qr;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
constexpr int mmq_y = get_mmq_y_device(mmq_x);
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int vdr = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vdr;
|
||||
constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles;
|
||||
|
||||
|
@ -1941,20 +1926,18 @@ static __global__ void mul_mat_q(
|
|||
int * tile_x_sc = (int *) (tile_x_dm + txs.dm);
|
||||
int * tile_y = (int *) (tile_x_sc + txs.sc); // [mmq_x * (WARP_SIZE + WARP_SIZE/QI8_1)]
|
||||
|
||||
const int blocks_per_row_x = ne00 / qk;
|
||||
const int blocks_per_warp = WARP_SIZE / qi;
|
||||
|
||||
const int & ne1 = ne11;
|
||||
|
||||
const int tile_x_max_i = ne01 - blockIdx.x*mmq_y - 1;
|
||||
|
||||
const int * y = (const int *) yc + blockIdx.y*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
constexpr int blocks_per_warp = WARP_SIZE / qi;
|
||||
|
||||
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
|
||||
|
||||
for (int kb0 = 0; kb0 < blocks_per_row_x; kb0 += blocks_per_warp) {
|
||||
const int tile_x_max_i = ne01 - it*mmq_y - 1;
|
||||
const int tile_y_max_j = ne11 - jt*mmq_x - 1;
|
||||
|
||||
load_tiles(x, tile_x_qs, tile_x_dm, tile_x_sc, stride01*blockIdx.x*mmq_y + kb0, tile_x_max_i, stride01);
|
||||
const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int));
|
||||
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_warp) {
|
||||
|
||||
load_tiles(x, tile_x_qs, tile_x_dm, tile_x_sc, stride01*it*mmq_y + kb0, tile_x_max_i, stride01);
|
||||
|
||||
#pragma unroll
|
||||
for (int kr = 0; kr < qr; ++kr) {
|
||||
|
@ -1977,7 +1960,176 @@ static __global__ void mul_mat_q(
|
|||
}
|
||||
}
|
||||
|
||||
write_back(sum, dst, ne0, ne1);
|
||||
if (fixup) {
|
||||
write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x);
|
||||
} else {
|
||||
write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
#else
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
static __global__ void mul_mat_q(
|
||||
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
|
||||
|
||||
// Skip unused template specializations for faster compilation:
|
||||
if (mmq_x > get_mmq_x_max_device()) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
|
||||
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
||||
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
{
|
||||
constexpr bool fixup = false;
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
|
||||
blockIdx.x, blockIdx.y, 0, ne00/qk);
|
||||
return;
|
||||
}
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
|
||||
|
||||
const int64_t blocks_per_ne00 = ne00 / qk;
|
||||
constexpr int blocks_per_warp = WARP_SIZE / qi;
|
||||
|
||||
const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y
|
||||
|
||||
// kbc == k block continuous, current index in continuous ijk space.
|
||||
int64_t kbc = GGML_PAD((int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x, blocks_per_warp);
|
||||
const int64_t kbc_stop = GGML_PAD((int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x, blocks_per_warp);
|
||||
|
||||
// kb0 == k index when doing the matrix multiplication for an output tile.
|
||||
int kb0_start = kbc % blocks_per_ne00;
|
||||
int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc);
|
||||
while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) {
|
||||
const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile.
|
||||
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile.
|
||||
|
||||
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
|
||||
it, jt, kb0_start, kb0_stop);
|
||||
|
||||
kbc += blocks_per_ne00;
|
||||
kbc -= kbc % blocks_per_ne00;
|
||||
|
||||
kb0_start = 0;
|
||||
kb0_stop = min(blocks_per_ne00, kbc_stop - kbc);
|
||||
}
|
||||
|
||||
if (kbc >= kbc_stop) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int jt = kbc / (blocks_per_ne00*nty);
|
||||
const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
|
||||
|
||||
constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks.
|
||||
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
|
||||
(x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
|
||||
it, jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
static __global__ void mul_mat_q_stream_k_fixup(
|
||||
float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) {
|
||||
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
constexpr int blocks_per_warp = WARP_SIZE / qi;
|
||||
const int64_t blocks_per_ne00 = ne00 / qk;
|
||||
|
||||
float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
|
||||
|
||||
const int ntx = (ne11 + mmq_x - 1) / mmq_x;
|
||||
const int nty = (ne01 + mmq_y - 1) / mmq_y;
|
||||
|
||||
bool any_fixup = false;
|
||||
|
||||
const int bidx_start = (blockIdx.y*nty + blockIdx.x) * block_num_mmq / (gridDim.y*gridDim.x);
|
||||
const int bidx_stop = (blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq / (gridDim.y*gridDim.x) + 1;
|
||||
|
||||
for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) {
|
||||
const int64_t kbc = GGML_PAD((int64_t) bidx *blocks_per_ne00*ntx*nty / block_num_mmq, blocks_per_warp);
|
||||
const int64_t kbc_stop = GGML_PAD((int64_t)(bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq, blocks_per_warp);
|
||||
|
||||
// Skip fixup tile if the MMQ CUDA block never wrote anything to it:
|
||||
if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int jt = kbc_stop / (blocks_per_ne00*nty);
|
||||
const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
|
||||
|
||||
// Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block:
|
||||
if (it != blockIdx.x || jt != blockIdx.y) {
|
||||
continue;
|
||||
}
|
||||
|
||||
any_fixup = true;
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!any_fixup) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y;
|
||||
|
||||
const int i_max = ne01 - blockIdx.x*mmq_y - 1;
|
||||
const int j_max = ne11 - blockIdx.y*mmq_x - 1;
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j > j_max) {
|
||||
return;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
if (need_check && i > i_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct mmq_args {
|
||||
|
@ -1987,124 +2139,151 @@ struct mmq_args {
|
|||
int64_t ne0;
|
||||
};
|
||||
|
||||
constexpr int mmq_get_nwarps(int mmq_x) {
|
||||
return mmq_x >= 32 ? 8 : 4;
|
||||
}
|
||||
|
||||
static int mmq_get_shmem(const ggml_type type, const int mmq_x, const int mmq_y) {
|
||||
const tile_x_sizes txs = get_tile_x_sizes_host(type, mmq_y);
|
||||
const int nwarps = mmq_get_nwarps(mmq_x);
|
||||
|
||||
const int shmem_x = txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int);
|
||||
const int shmem_y = mmq_x*WARP_SIZE*sizeof(int) + mmq_x*(WARP_SIZE/QI8_1)*sizeof(half2);
|
||||
return shmem_x + GGML_PAD(shmem_y, nwarps*WARP_SIZE*sizeof(int));
|
||||
return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int));
|
||||
}
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps>
|
||||
static void launch_mul_mat_q(const mmq_args & args, cudaStream_t stream) {
|
||||
template <ggml_type type, int mmq_x>
|
||||
static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int mmq_y = get_mmq_y_host(cc, mmq_x);
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
const int mmq_y = get_mmq_y_host(cc);
|
||||
|
||||
const int block_num_x = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const int block_num_y = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||
const dim3 block_nums(block_num_x, block_num_y, 1);
|
||||
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
||||
const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1);
|
||||
|
||||
const int shmem = mmq_get_shmem(type, mmq_x, mmq_y);
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shmem_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, nwarps, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, nwarps, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
||||
shmem_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||
const dim3 block_nums_xy_tiling(nty, ntx, 1);
|
||||
|
||||
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
|
||||
if (!use_stream_k) {
|
||||
if (args.ne01 % mmq_y == 0) {
|
||||
const bool need_check = false;
|
||||
mul_mat_q<type, mmq_x, nwarps, need_check><<<block_nums, block_dims, shmem, stream>>>
|
||||
(args.x, args.y, args.dst, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
|
||||
constexpr bool need_check = false;
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
|
||||
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
|
||||
} else {
|
||||
const bool need_check = true;
|
||||
mul_mat_q<type, mmq_x, nwarps, need_check><<<block_nums, block_dims, shmem, stream>>>
|
||||
(args.x, args.y, args.dst, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
|
||||
constexpr bool need_check = true;
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
|
||||
(args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_nums_mmq(nsm, 1, 1);
|
||||
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
ggml_cuda_pool_alloc<float> tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y);
|
||||
|
||||
if (args.ne01 % mmq_y == 0) {
|
||||
constexpr bool need_check = false;
|
||||
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
|
||||
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
|
||||
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
|
||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
|
||||
(args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
|
||||
(args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
|
||||
}
|
||||
}
|
||||
|
||||
template <ggml_type type>
|
||||
void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) {
|
||||
void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int smpbo = ggml_cuda_info().devices[id].smpbo;
|
||||
|
||||
const int mmq_x_max = get_mmq_x_max_host(cc);
|
||||
const int mmq_y = get_mmq_y_host(cc, mmq_x_max);
|
||||
const int mmq_y = get_mmq_y_host(cc);
|
||||
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
|
||||
|
||||
int mmq_x_best = 0;
|
||||
int nwaves_best = INT_MAX;
|
||||
int nparts_best = INT_MAX;
|
||||
|
||||
for (int mmq_x = 8; mmq_x <= mmq_x_max && nwaves_best > 1; mmq_x += 8) {
|
||||
const int block_num_x = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||
const int nwaves = (block_num_x*block_num_y + nsm - 1) / nsm;
|
||||
for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) {
|
||||
const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||
const int nwaves_xy_tiling = ntiles_x*block_num_y;
|
||||
|
||||
if (nwaves < nwaves_best && mmq_get_shmem(type, mmq_x, mmq_y) <= smpbo) {
|
||||
const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling;
|
||||
|
||||
if (nparts < nparts_best && mmq_get_shmem(type, mmq_x, mmq_y) <= smpbo) {
|
||||
mmq_x_best = mmq_x;
|
||||
nwaves_best = nwaves;
|
||||
nparts_best = nparts;
|
||||
}
|
||||
}
|
||||
|
||||
switch (mmq_x_best) {
|
||||
case 8:
|
||||
launch_mul_mat_q<type, 8, mmq_get_nwarps( 8)>(args, stream);
|
||||
launch_mul_mat_q<type, 8>(ctx, args, stream);
|
||||
break;
|
||||
case 16:
|
||||
launch_mul_mat_q<type, 16, mmq_get_nwarps( 16)>(args, stream);
|
||||
launch_mul_mat_q<type, 16>(ctx, args, stream);
|
||||
break;
|
||||
case 24:
|
||||
launch_mul_mat_q<type, 24, mmq_get_nwarps( 24)>(args, stream);
|
||||
launch_mul_mat_q<type, 24>(ctx, args, stream);
|
||||
break;
|
||||
case 32:
|
||||
launch_mul_mat_q<type, 32, mmq_get_nwarps( 32)>(args, stream);
|
||||
launch_mul_mat_q<type, 32>(ctx, args, stream);
|
||||
break;
|
||||
case 40:
|
||||
launch_mul_mat_q<type, 40, mmq_get_nwarps( 40)>(args, stream);
|
||||
launch_mul_mat_q<type, 40>(ctx, args, stream);
|
||||
break;
|
||||
case 48:
|
||||
launch_mul_mat_q<type, 48, mmq_get_nwarps( 48)>(args, stream);
|
||||
launch_mul_mat_q<type, 48>(ctx, args, stream);
|
||||
break;
|
||||
case 56:
|
||||
launch_mul_mat_q<type, 56, mmq_get_nwarps( 56)>(args, stream);
|
||||
launch_mul_mat_q<type, 56>(ctx, args, stream);
|
||||
break;
|
||||
case 64:
|
||||
launch_mul_mat_q<type, 64, mmq_get_nwarps( 64)>(args, stream);
|
||||
launch_mul_mat_q<type, 64>(ctx, args, stream);
|
||||
break;
|
||||
case 72:
|
||||
launch_mul_mat_q<type, 72, mmq_get_nwarps( 72)>(args, stream);
|
||||
launch_mul_mat_q<type, 72>(ctx, args, stream);
|
||||
break;
|
||||
case 80:
|
||||
launch_mul_mat_q<type, 80, mmq_get_nwarps( 80)>(args, stream);
|
||||
launch_mul_mat_q<type, 80>(ctx, args, stream);
|
||||
break;
|
||||
case 88:
|
||||
launch_mul_mat_q<type, 88, mmq_get_nwarps( 88)>(args, stream);
|
||||
launch_mul_mat_q<type, 88>(ctx, args, stream);
|
||||
break;
|
||||
case 96:
|
||||
launch_mul_mat_q<type, 96, mmq_get_nwarps( 96)>(args, stream);
|
||||
launch_mul_mat_q<type, 96>(ctx, args, stream);
|
||||
break;
|
||||
case 104:
|
||||
launch_mul_mat_q<type, 104, mmq_get_nwarps(104)>(args, stream);
|
||||
launch_mul_mat_q<type, 104>(ctx, args, stream);
|
||||
break;
|
||||
case 112:
|
||||
launch_mul_mat_q<type, 112, mmq_get_nwarps(112)>(args, stream);
|
||||
launch_mul_mat_q<type, 112>(ctx, args, stream);
|
||||
break;
|
||||
case 120:
|
||||
launch_mul_mat_q<type, 120, mmq_get_nwarps(120)>(args, stream);
|
||||
launch_mul_mat_q<type, 120>(ctx, args, stream);
|
||||
break;
|
||||
case 128:
|
||||
launch_mul_mat_q<type, 128, mmq_get_nwarps(128)>(args, stream);
|
||||
launch_mul_mat_q<type, 128>(ctx, args, stream);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best);
|
||||
|
@ -2114,7 +2293,7 @@ void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) {
|
|||
}
|
||||
|
||||
#define DECL_MMQ_CASE(type) \
|
||||
template void mul_mat_q_case<type>(const mmq_args & args, cudaStream_t stream) \
|
||||
template void mul_mat_q_case<type>(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \
|
||||
|
||||
extern DECL_MMQ_CASE(GGML_TYPE_Q4_0);
|
||||
extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);
|
||||
|
|
|
@ -117,7 +117,7 @@ static __global__ void mul_mat_vec_q(
|
|||
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
||||
}
|
||||
|
||||
if (threadIdx.x < rows_per_cuda_block) {
|
||||
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
|
||||
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
||||
}
|
||||
}
|
||||
|
|
|
@ -92,6 +92,15 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
|||
dst[i] = x[i] * x[i];
|
||||
}
|
||||
|
||||
static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = sqrtf(x[i]);
|
||||
}
|
||||
|
||||
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
|
@ -142,6 +151,11 @@ static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
|
|||
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
|
||||
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
|
@ -284,3 +298,17 @@ void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
|
||||
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
#define CUDA_SQRT_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
|
@ -28,3 +29,5 @@ void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|||
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
#if defined(_WIN32)
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
|
|
@ -735,6 +735,12 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs
|
|||
}
|
||||
|
||||
static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
|
||||
for (size_t i = 0, n = 3; i < n; ++i) {
|
||||
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
|
|
1346
ggml-quants.c
1346
ggml-quants.c
File diff suppressed because it is too large
Load diff
11
ggml-rpc.cpp
11
ggml-rpc.cpp
|
@ -73,9 +73,13 @@ struct rpc_tensor {
|
|||
uint64_t view_offs;
|
||||
uint64_t data;
|
||||
char name[GGML_MAX_NAME];
|
||||
|
||||
char padding[4];
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
|
||||
|
||||
// RPC commands
|
||||
enum rpc_cmd {
|
||||
ALLOC_BUFFER = 0,
|
||||
|
@ -599,9 +603,8 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & o
|
|||
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
|
||||
output.resize(output_size, 0);
|
||||
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
|
||||
uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
|
||||
memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
|
||||
}
|
||||
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
|
||||
*out_ntensors = n_tensors;
|
||||
|
@ -1036,7 +1039,9 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<u
|
|||
}
|
||||
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
|
||||
int64_t id;
|
||||
memcpy(&id, &nodes[i], sizeof(id));
|
||||
graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
|
||||
}
|
||||
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
||||
// output serialization format: | status (1 byte) |
|
||||
|
|
7006
ggml-sycl.cpp
7006
ggml-sycl.cpp
File diff suppressed because it is too large
Load diff
|
@ -14,5 +14,10 @@
|
|||
#define GGML_SYCL_BACKEND_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
#include "convert.hpp"
|
||||
#include "dequantize.hpp"
|
||||
#include "dmmv.hpp"
|
||||
#include "mmq.hpp"
|
||||
#include "mmvq.hpp"
|
||||
|
||||
#endif // GGML_SYCL_BACKEND_HPP
|
||||
|
|
544
ggml-sycl/convert.cpp
Normal file
544
ggml-sycl/convert.cpp
Normal file
|
@ -0,0 +1,544 @@
|
|||
#include "convert.hpp"
|
||||
#include "dequantize.hpp"
|
||||
#include "presets.hpp"
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2));
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int ib = i/qk; // block index
|
||||
const int iqs = (i%qk)/qr; // quant index
|
||||
const int iybs = i - i%qk; // y block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(vx, ib, iqs, v);
|
||||
|
||||
y[iybs + iqs + 0] = v.x();
|
||||
y[iybs + iqs + y_offset] = v.y();
|
||||
}
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static void dequantize_block_sycl(const void *__restrict__ vx,
|
||||
dst_t *__restrict__ y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(
|
||||
sycl::range<3>(1, 1, num_blocks) *
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q2_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q2_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q3_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q3_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb32 = k / 32;
|
||||
const int nb = (k + 255) / 256;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_0(vx, y, nb32, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb32 = k / 32;
|
||||
const int nb = (k + 255) / 256;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_1(vx, y, nb32, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q5_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q5_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q6_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q6_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq1_s(
|
||||
vx, y, item_ct1, iq1s_grid_gpu
|
||||
);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq1_m(
|
||||
vx, y, item_ct1, iq1s_grid_gpu
|
||||
);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq2_xxs(
|
||||
vx, y, item_ct1, iq2xxs_grid,
|
||||
ksigns_iq2xs, kmask_iq2xs);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq2_xs(
|
||||
vx, y, item_ct1, iq2xs_grid,
|
||||
ksigns_iq2xs, kmask_iq2xs);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq2_s(vx, y, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq3_xxs(
|
||||
vx, y, item_ct1, iq3xxs_grid,
|
||||
ksigns_iq2xs, kmask_iq2xs);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq3_s(
|
||||
vx, y, item_ct1, kmask_iq2xs, iq3s_grid);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
#if QK_K == 64
|
||||
dequantize_row_iq4_nl_sycl(vx, y, k, stream);
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq4_xs(vx, y, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq4_nl(vx, y, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const src_t * x = (src_t *) vx;
|
||||
|
||||
y[i] = x[i];
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_sycl(const void *__restrict__ vx,
|
||||
dst_t *__restrict__ y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(
|
||||
sycl::range<3>(1, 1, num_blocks) *
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
convert_unary<src_t>(vx, y, k, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return dequantize_row_q2_K_sycl;
|
||||
case GGML_TYPE_Q3_K:
|
||||
return dequantize_row_q3_K_sycl;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return dequantize_row_q4_K_sycl;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return dequantize_row_q5_K_sycl;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return dequantize_row_q6_K_sycl;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_sycl;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_sycl;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return dequantize_row_iq2_xxs_sycl;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_sycl;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_sycl;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_sycl;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_sycl;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_sycl;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_sycl;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_sycl<float>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_sycl;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_row_q4_1_sycl;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return dequantize_row_q2_K_sycl;
|
||||
case GGML_TYPE_Q3_K:
|
||||
return dequantize_row_q3_K_sycl;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return dequantize_row_q4_K_sycl;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return dequantize_row_q5_K_sycl;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return dequantize_row_q6_K_sycl;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_sycl;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_sycl;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return dequantize_row_iq2_xxs_sycl;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_sycl;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_sycl;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_sycl;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_sycl;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_sycl;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_sycl;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_sycl<sycl::half>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
27
ggml-sycl/convert.hpp
Normal file
27
ggml-sycl/convert.hpp
Normal file
|
@ -0,0 +1,27 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_CONVERT_HPP
|
||||
#define GGML_SYCL_CONVERT_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
template <typename T>
|
||||
using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
|
||||
int k, dpct::queue_ptr stream);
|
||||
typedef to_t_sycl_t<float> to_fp32_sycl_t;
|
||||
typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
|
||||
|
||||
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type);
|
||||
to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type);
|
||||
|
||||
#endif // GGML_SYCL_CONVERT_HPP
|
690
ggml-sycl/dequantize.hpp
Normal file
690
ggml-sycl/dequantize.hpp
Normal file
|
@ -0,0 +1,690 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_DEQUANTIZE_HPP
|
||||
#define GGML_SYCL_DEQUANTIZE_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
||||
|
||||
static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x() = vui & 0xF;
|
||||
v.y() = vui >> 4;
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v - {8.0f, 8.0f};
|
||||
// v = v * {d, d};
|
||||
v.s0() = (v.s0() - 8.0f) * d;
|
||||
v.s1() = (v.s1() - 8.0f) * d;
|
||||
|
||||
#else
|
||||
v.x() = (v.x() - 8.0f) * d;
|
||||
v.y() = (v.y() - 8.0f) * d;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const dfloat d = x[ib].dm[0];
|
||||
const dfloat m = x[ib].dm[1];
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x() = vui & 0xF;
|
||||
v.y() = vui >> 4;
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
// v = v + {m, m};
|
||||
v.s0() = (v.s0() * d) + m;
|
||||
v.s1() = (v.s1() * d) + m;
|
||||
|
||||
#else
|
||||
v.x() = (v.x() * d) + m;
|
||||
v.y() = (v.y() * d) + m;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||
|
||||
v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v - {16.0f, 16.0f};
|
||||
// v = v * {d, d};
|
||||
v.s0() = (v.s0() - 16.0f) * d;
|
||||
v.s1() = (v.s1() - 16.0f) * d;
|
||||
|
||||
#else
|
||||
v.x() = (v.x() - 16.0f) * d;
|
||||
v.y() = (v.y() - 16.0f) * d;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const dfloat d = x[ib].dm[0];
|
||||
const dfloat m = x[ib].dm[1];
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||
|
||||
v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
// v = v + {m, m};
|
||||
v.s0() = (v.s0() * d) + m;
|
||||
v.s1() = (v.s1() * d) + m;
|
||||
#else
|
||||
v.x() = (v.x() * d) + m;
|
||||
v.y() = (v.y() * d) + m;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
v.x() = x[ib].qs[iqs + 0];
|
||||
v.y() = x[ib].qs[iqs + 1];
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
v.s0() *= d;
|
||||
v.s1() *= d;
|
||||
#else
|
||||
v.x() *= d;
|
||||
v.y() *= d;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||
|
||||
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
|
||||
const float d = sycl::vec<sycl::half, 1>(x->d)
|
||||
.convert<float, sycl::rounding_mode::automatic>()[0];
|
||||
const float dm = -8*d;
|
||||
|
||||
const uint8_t * q = x->qs + 4*il;
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
y[l+ 0] = d * (q[l] & 0xF) + dm;
|
||||
y[l+16] = d * (q[l] >> 4) + dm;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||
|
||||
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
|
||||
const sycl::float2 d =
|
||||
x->dm.convert<float, sycl::rounding_mode::automatic>();
|
||||
|
||||
const uint8_t * q = x->qs + 4*il;
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
y[l + 0] = d.x() * (q[l] & 0xF) + d.y();
|
||||
y[l + 16] = d.x() * (q[l] >> 4) + d.y();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//================================== k-quants
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_q2_K * x = (const block_q2_K *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int n = tid/32;
|
||||
const int l = tid - 32*n;
|
||||
const int is = 8*n + l/16;
|
||||
|
||||
const uint8_t q = x[i].qs[32*n + l];
|
||||
dst_t * y = yy + i*QK_K + 128*n;
|
||||
|
||||
float dall = x[i].dm[0];
|
||||
float dmin = x[i].dm[1];
|
||||
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||
#else
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int il = tid%16; // 0...15
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
float dall = x[i].dm[0];
|
||||
float dmin = x[i].dm[1];
|
||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_q3_K * x = (const block_q3_K *) vx;
|
||||
|
||||
#if QK_K == 256
|
||||
const int r = item_ct1.get_local_id(2) / 4;
|
||||
const int tid = r/2;
|
||||
const int is0 = r%2;
|
||||
const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
|
||||
const int n = tid / 4;
|
||||
const int j = tid - 4*n;
|
||||
|
||||
uint8_t m = 1 << (4*n + j);
|
||||
int is = 8*n + 2*j + is0;
|
||||
int shift = 2*j;
|
||||
|
||||
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
||||
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
||||
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
||||
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
||||
float d_all = x[i].d;
|
||||
float dl = d_all * (us - 32);
|
||||
|
||||
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
||||
const uint8_t * q = x[i].qs + 32*n;
|
||||
const uint8_t * hm = x[i].hmask;
|
||||
|
||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int il = tid%16; // 0...15
|
||||
const int im = il/8; // 0...1
|
||||
const int in = il%8; // 0...7
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
||||
const float d = (float)x[i].d;
|
||||
|
||||
if (is == 0) {
|
||||
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
} else {
|
||||
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||
if (j < 4) {
|
||||
d = q[j] & 63; m = q[j + 4] & 63;
|
||||
} else {
|
||||
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q4_K * x = (const block_q4_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int is = 2*il;
|
||||
const int n = 4;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||
|
||||
const float dall = x[i].dm[0];
|
||||
const float dmin = x[i].dm[1];
|
||||
|
||||
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||
}
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const uint8_t * q = x[i].qs;
|
||||
dst_t * y = yy + i*QK_K;
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q5_K * x = (const block_q5_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/16; // il is in 0...3
|
||||
const int ir = tid%16; // ir is in 0...15
|
||||
const int is = 2*il; // is is in 0...6
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
||||
|
||||
const float dall = x[i].dm[0];
|
||||
const float dmin = x[i].dm[1];
|
||||
|
||||
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
||||
const uint8_t * qh = x[i].qh + 2*ir;
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
|
||||
uint8_t hm = 1 << (2*il);
|
||||
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
||||
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
||||
hm <<= 1;
|
||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const uint8_t q = x[i].qs[tid];
|
||||
const int im = tid/8; // 0...3
|
||||
const int in = tid%8; // 0...7
|
||||
const int is = tid/16; // 0 or 1
|
||||
const uint8_t h = x[i].qh[in] >> im;
|
||||
const float d = x[i].d;
|
||||
dst_t * y = yy + i*QK_K + tid;
|
||||
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
||||
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q6_K * x = (const block_q6_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
#if QK_K == 256
|
||||
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int ip = tid/32; // ip is 0 or 1
|
||||
const int il = tid - 32*ip; // 0...32
|
||||
const int is = 8*ip + il/16;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 128*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * ql = x[i].ql + 64*ip + il;
|
||||
const uint8_t qh = x[i].qh[32*ip + il];
|
||||
const int8_t * sc = x[i].scales + is;
|
||||
|
||||
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||
#else
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int ip = tid/16; // 0 or 1
|
||||
const int il = tid - 16*ip; // 0...15
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t ql = x[i].ql[16*ip + il];
|
||||
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
||||
const int8_t * sc = x[i].scales;
|
||||
|
||||
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint64_t *iq2xxs_grid_ptr,
|
||||
const uint8_t *ksigns_iq2xs_ptr,
|
||||
const uint8_t *kmask_iq2xs_ptr) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * aux8 = (const uint8_t *)q2;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid_ptr + aux8[il]);
|
||||
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint64_t *iq2xs_grid,
|
||||
const uint8_t *ksigns_iq2xs,
|
||||
const uint8_t *kmask_iq2xs) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; ++j)
|
||||
y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq3xxs_grid,
|
||||
const uint8_t *ksigns_iq2xs,
|
||||
const uint8_t *kmask_iq2xs) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * qs = x[i].qs + 8*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
||||
const uint8_t signs = x[i].signs[4*ib + il];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq1s_grid_gpu) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
||||
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq1s_grid_gpu) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
iq1m_scale_t scale;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
||||
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||
const float d = (float)x[ib].d;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // GGML_SYCL_DEQUANTIZE_HPP
|
1022
ggml-sycl/dmmv.cpp
Normal file
1022
ggml-sycl/dmmv.cpp
Normal file
File diff suppressed because it is too large
Load diff
27
ggml-sycl/dmmv.hpp
Normal file
27
ggml-sycl/dmmv.hpp
Normal file
|
@ -0,0 +1,27 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_DMMV_HPP
|
||||
#define GGML_SYCL_DMMV_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
|
||||
void ggml_sycl_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr &stream);
|
||||
|
||||
#endif // GGML_SYCL_DMMV_HPP
|
|
@ -589,94 +589,75 @@ namespace dpct
|
|||
}
|
||||
|
||||
/// dpct device extension
|
||||
class device_ext : public sycl::device
|
||||
{
|
||||
class device_ext : public sycl::device {
|
||||
typedef std::mutex mutex_type;
|
||||
|
||||
public:
|
||||
device_ext() : sycl::device(), _ctx(*this) {}
|
||||
~device_ext()
|
||||
{
|
||||
device_ext() : sycl::device() {}
|
||||
~device_ext() {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
clear_queues();
|
||||
}
|
||||
device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this)
|
||||
{
|
||||
device_ext(const sycl::device &base) : sycl::device(base) {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
init_queues();
|
||||
}
|
||||
|
||||
int is_native_atomic_supported() { return 0; }
|
||||
int get_major_version() const
|
||||
{
|
||||
return dpct::get_major_version(*this);
|
||||
}
|
||||
int get_major_version() const { return dpct::get_major_version(*this); }
|
||||
|
||||
int get_minor_version() const
|
||||
{
|
||||
return dpct::get_minor_version(*this);
|
||||
}
|
||||
int get_minor_version() const { return dpct::get_minor_version(*this); }
|
||||
|
||||
int get_max_compute_units() const
|
||||
{
|
||||
int get_max_compute_units() const {
|
||||
return get_device_info().get_max_compute_units();
|
||||
}
|
||||
|
||||
/// Return the maximum clock frequency of this device in KHz.
|
||||
int get_max_clock_frequency() const
|
||||
{
|
||||
int get_max_clock_frequency() const {
|
||||
return get_device_info().get_max_clock_frequency();
|
||||
}
|
||||
|
||||
int get_integrated() const { return get_device_info().get_integrated(); }
|
||||
|
||||
int get_max_sub_group_size() const
|
||||
{
|
||||
int get_max_sub_group_size() const {
|
||||
return get_device_info().get_max_sub_group_size();
|
||||
}
|
||||
|
||||
int get_max_register_size_per_work_group() const
|
||||
{
|
||||
int get_max_register_size_per_work_group() const {
|
||||
return get_device_info().get_max_register_size_per_work_group();
|
||||
}
|
||||
|
||||
int get_max_work_group_size() const
|
||||
{
|
||||
int get_max_work_group_size() const {
|
||||
return get_device_info().get_max_work_group_size();
|
||||
}
|
||||
|
||||
int get_mem_base_addr_align() const
|
||||
{
|
||||
int get_mem_base_addr_align() const {
|
||||
return get_info<sycl::info::device::mem_base_addr_align>();
|
||||
}
|
||||
|
||||
size_t get_global_mem_size() const
|
||||
{
|
||||
size_t get_global_mem_size() const {
|
||||
return get_device_info().get_global_mem_size();
|
||||
}
|
||||
|
||||
size_t get_max_mem_alloc_size() const
|
||||
{
|
||||
size_t get_max_mem_alloc_size() const {
|
||||
return get_device_info().get_max_mem_alloc_size();
|
||||
}
|
||||
|
||||
/// Get the number of bytes of free and total memory on the SYCL device.
|
||||
/// \param [out] free_memory The number of bytes of free memory on the SYCL device.
|
||||
/// \param [out] total_memory The number of bytes of total memory on the SYCL device.
|
||||
void get_memory_info(size_t &free_memory, size_t &total_memory)
|
||||
{
|
||||
/// \param [out] free_memory The number of bytes of free memory on the
|
||||
/// SYCL device. \param [out] total_memory The number of bytes of total
|
||||
/// memory on the SYCL device.
|
||||
void get_memory_info(size_t &free_memory, size_t &total_memory) {
|
||||
total_memory = get_device_info().get_global_mem_size();
|
||||
const char *warning_info = "get_memory_info: [warning] ext_intel_free_memory is not "
|
||||
const char *warning_info =
|
||||
"get_memory_info: [warning] ext_intel_free_memory is not "
|
||||
"supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
|
||||
"use total memory as free memory";
|
||||
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
|
||||
if (!has(sycl::aspect::ext_intel_free_memory))
|
||||
{
|
||||
if (!has(sycl::aspect::ext_intel_free_memory)) {
|
||||
std::cerr << warning_info << std::endl;
|
||||
free_memory = total_memory;
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
|
||||
}
|
||||
#else
|
||||
|
@ -690,164 +671,139 @@ namespace dpct
|
|||
#endif
|
||||
}
|
||||
|
||||
void get_device_info(device_info &out) const
|
||||
{
|
||||
void get_device_info(device_info &out) const {
|
||||
dpct::get_device_info(out, *this);
|
||||
}
|
||||
|
||||
device_info get_device_info() const
|
||||
{
|
||||
device_info get_device_info() const {
|
||||
device_info prop;
|
||||
dpct::get_device_info(prop, *this);
|
||||
return prop;
|
||||
}
|
||||
|
||||
void reset()
|
||||
{
|
||||
void reset() {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
clear_queues();
|
||||
init_queues();
|
||||
}
|
||||
|
||||
sycl::queue &in_order_queue() { return *_q_in_order; }
|
||||
sycl::queue &in_order_queue() { return _q_in_order; }
|
||||
|
||||
sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
|
||||
sycl::queue &out_of_order_queue() { return _q_out_of_order; }
|
||||
|
||||
sycl::queue &default_queue()
|
||||
{
|
||||
return in_order_queue();
|
||||
}
|
||||
sycl::queue &default_queue() { return in_order_queue(); }
|
||||
|
||||
void queues_wait_and_throw()
|
||||
{
|
||||
void queues_wait_and_throw() {
|
||||
std::unique_lock<mutex_type> lock(m_mutex);
|
||||
std::vector<std::shared_ptr<sycl::queue>> current_queues(
|
||||
_queues);
|
||||
lock.unlock();
|
||||
for (const auto &q : current_queues)
|
||||
{
|
||||
q->wait_and_throw();
|
||||
for (auto &q : _queues) {
|
||||
q.wait_and_throw();
|
||||
}
|
||||
// Guard the destruct of current_queues to make sure the ref count is safe.
|
||||
// Guard the destruct of current_queues to make sure the ref count is
|
||||
// safe.
|
||||
lock.lock();
|
||||
}
|
||||
|
||||
sycl::queue *create_queue(bool enable_exception_handler = false)
|
||||
{
|
||||
sycl::queue create_queue(bool enable_exception_handler = false) {
|
||||
return create_in_order_queue(enable_exception_handler);
|
||||
}
|
||||
|
||||
sycl::queue *create_queue(sycl::context context, sycl::device device,
|
||||
sycl::queue create_queue(sycl::device device,
|
||||
bool enable_exception_handler = false) {
|
||||
return create_in_order_queue(context, device, enable_exception_handler);
|
||||
return create_in_order_queue(device, enable_exception_handler);
|
||||
}
|
||||
|
||||
sycl::queue *create_in_order_queue(bool enable_exception_handler = false) {
|
||||
sycl::queue create_in_order_queue(bool enable_exception_handler = false) {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
return create_queue_impl(enable_exception_handler,
|
||||
sycl::property::queue::in_order());
|
||||
}
|
||||
|
||||
sycl::queue *create_in_order_queue(sycl::context context, sycl::device device,
|
||||
sycl::queue create_in_order_queue(sycl::device device,
|
||||
bool enable_exception_handler = false) {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
return create_queue_impl(context, device, enable_exception_handler,
|
||||
return create_queue_impl(device, enable_exception_handler,
|
||||
sycl::property::queue::in_order());
|
||||
}
|
||||
|
||||
sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) {
|
||||
sycl::queue create_out_of_order_queue(
|
||||
bool enable_exception_handler = false) {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
return create_queue_impl(enable_exception_handler);
|
||||
}
|
||||
|
||||
void destroy_queue(sycl::queue *&queue)
|
||||
{
|
||||
void destroy_queue(sycl::queue queue) {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
_queues.erase(std::remove_if(_queues.begin(), _queues.end(),
|
||||
[=](const std::shared_ptr<sycl::queue> &q) -> bool
|
||||
{
|
||||
return q.get() == queue;
|
||||
}),
|
||||
_queues.end());
|
||||
queue = nullptr;
|
||||
_queues.clear();
|
||||
}
|
||||
void set_saved_queue(sycl::queue *q)
|
||||
{
|
||||
void set_saved_queue(sycl::queue q) {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
_saved_queue = q;
|
||||
}
|
||||
sycl::queue *get_saved_queue() const
|
||||
{
|
||||
sycl::queue get_saved_queue() const {
|
||||
std::lock_guard<mutex_type> lock(m_mutex);
|
||||
return _saved_queue;
|
||||
}
|
||||
sycl::context get_context() const { return _ctx; }
|
||||
|
||||
private:
|
||||
void clear_queues()
|
||||
{
|
||||
_queues.clear();
|
||||
_q_in_order = _q_out_of_order = _saved_queue = nullptr;
|
||||
}
|
||||
void clear_queues() { _queues.clear(); }
|
||||
|
||||
void init_queues()
|
||||
{
|
||||
_q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
|
||||
void init_queues() {
|
||||
_q_in_order =
|
||||
create_queue_impl(true, sycl::property::queue::in_order());
|
||||
_q_out_of_order = create_queue_impl(true);
|
||||
_saved_queue = &default_queue();
|
||||
_saved_queue = default_queue();
|
||||
}
|
||||
|
||||
/// Caller should acquire resource \p m_mutex before calling this function.
|
||||
/// Caller should acquire resource \p m_mutex before calling this
|
||||
/// function.
|
||||
template <class... Properties>
|
||||
sycl::queue *create_queue_impl(bool enable_exception_handler,
|
||||
Properties... properties)
|
||||
{
|
||||
sycl::queue create_queue_impl(bool enable_exception_handler,
|
||||
Properties... properties) {
|
||||
sycl::async_handler eh = {};
|
||||
if (enable_exception_handler)
|
||||
{
|
||||
if (enable_exception_handler) {
|
||||
eh = exception_handler;
|
||||
}
|
||||
_queues.push_back(std::make_shared<sycl::queue>(
|
||||
_ctx, *this, eh,
|
||||
auto q = sycl::queue(*this, eh,
|
||||
sycl::property_list(
|
||||
#ifdef DPCT_PROFILING_ENABLED
|
||||
sycl::property::queue::enable_profiling(),
|
||||
#endif
|
||||
properties...)));
|
||||
properties...));
|
||||
_queues.push_back(q);
|
||||
|
||||
return _queues.back().get();
|
||||
return _queues.back();
|
||||
}
|
||||
|
||||
template <class... Properties>
|
||||
sycl::queue *create_queue_impl(sycl::context context, sycl::device device,
|
||||
sycl::queue create_queue_impl(sycl::device device,
|
||||
bool enable_exception_handler,
|
||||
Properties... properties) {
|
||||
sycl::async_handler eh = {};
|
||||
if (enable_exception_handler) {
|
||||
eh = exception_handler;
|
||||
}
|
||||
_queues.push_back(std::make_shared<sycl::queue>(
|
||||
context, device, eh,
|
||||
_queues.push_back(
|
||||
sycl::queue(device, eh,
|
||||
sycl::property_list(
|
||||
#ifdef DPCT_PROFILING_ENABLED
|
||||
sycl::property::queue::enable_profiling(),
|
||||
#endif
|
||||
properties...)));
|
||||
|
||||
return _queues.back().get();
|
||||
return _queues.back();
|
||||
}
|
||||
|
||||
void get_version(int &major, int &minor) const
|
||||
{
|
||||
void get_version(int &major, int &minor) const {
|
||||
detail::get_version(*this, major, minor);
|
||||
}
|
||||
sycl::queue *_q_in_order, *_q_out_of_order;
|
||||
sycl::queue *_saved_queue;
|
||||
sycl::context _ctx;
|
||||
std::vector<std::shared_ptr<sycl::queue>> _queues;
|
||||
sycl::queue _q_in_order, _q_out_of_order;
|
||||
sycl::queue _saved_queue;
|
||||
std::vector<sycl::queue> _queues;
|
||||
mutable mutex_type m_mutex;
|
||||
};
|
||||
|
||||
|
||||
/// device manager
|
||||
class dev_mgr
|
||||
{
|
||||
|
|
3031
ggml-sycl/mmq.cpp
Normal file
3031
ggml-sycl/mmq.cpp
Normal file
File diff suppressed because it is too large
Load diff
33
ggml-sycl/mmq.hpp
Normal file
33
ggml-sycl/mmq.hpp
Normal file
|
@ -0,0 +1,33 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_MMQ_HPP
|
||||
#define GGML_SYCL_MMQ_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
void ggml_sycl_op_mul_mat_q(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
ggml_tensor* dst,
|
||||
const char* src0_dd_i,
|
||||
const float* src1_ddf_i,
|
||||
const char* src1_ddq_i,
|
||||
float* dst_dd_i,
|
||||
const int64_t row_low,
|
||||
const int64_t row_high,
|
||||
const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr& stream);
|
||||
|
||||
#endif // GGML_SYCL_MMQ_HPP
|
1024
ggml-sycl/mmvq.cpp
Normal file
1024
ggml-sycl/mmvq.cpp
Normal file
File diff suppressed because it is too large
Load diff
27
ggml-sycl/mmvq.hpp
Normal file
27
ggml-sycl/mmvq.hpp
Normal file
|
@ -0,0 +1,27 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_MMVQ_HPP
|
||||
#define GGML_SYCL_MMVQ_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
|
||||
void ggml_sycl_op_mul_mat_vec_q(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr &stream);
|
||||
|
||||
#endif // GGML_SYCL_MMVQ_HPP
|
|
@ -18,8 +18,6 @@
|
|||
#define GGML_SYCL_MAX_DEVICES 48
|
||||
#define GGML_SYCL_NAME "SYCL"
|
||||
|
||||
// FIXME: 1024 from cuda
|
||||
#define GROUP_SIZE 1024
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
|
|
1161
ggml-sycl/vecdotq.hpp
Normal file
1161
ggml-sycl/vecdotq.hpp
Normal file
File diff suppressed because it is too large
Load diff
74377
ggml-vulkan-shaders.hpp
74377
ggml-vulkan-shaders.hpp
File diff suppressed because it is too large
Load diff
2561
ggml-vulkan.cpp
2561
ggml-vulkan.cpp
File diff suppressed because it is too large
Load diff
41
ggml.h
41
ggml.h
|
@ -312,6 +312,12 @@
|
|||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
@ -585,11 +591,7 @@ extern "C" {
|
|||
struct ggml_tensor * grad;
|
||||
struct ggml_tensor * src[GGML_MAX_SRC];
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
|
||||
// source tensor and offset for views
|
||||
struct ggml_tensor * view_src;
|
||||
size_t view_offs;
|
||||
|
||||
|
@ -599,7 +601,7 @@ extern "C" {
|
|||
|
||||
void * extra; // extra things e.g. for ggml-cuda.cu
|
||||
|
||||
char padding[8];
|
||||
// char padding[4];
|
||||
};
|
||||
|
||||
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
||||
|
@ -646,11 +648,6 @@ extern "C" {
|
|||
struct ggml_hash_set visited_hash_table;
|
||||
|
||||
enum ggml_cgraph_eval_order order;
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
};
|
||||
|
||||
// scratch buffer
|
||||
|
@ -667,28 +664,6 @@ extern "C" {
|
|||
bool no_alloc; // don't allocate memory for the tensor data
|
||||
};
|
||||
|
||||
|
||||
// compute types
|
||||
|
||||
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
||||
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
||||
enum ggml_task_type {
|
||||
GGML_TASK_TYPE_INIT = 0,
|
||||
GGML_TASK_TYPE_COMPUTE,
|
||||
GGML_TASK_TYPE_FINALIZE,
|
||||
};
|
||||
|
||||
struct ggml_compute_params {
|
||||
enum ggml_task_type type;
|
||||
|
||||
// ith = thread index, nth = number of threads
|
||||
int ith, nth;
|
||||
|
||||
// work buffer for all threads
|
||||
size_t wsize;
|
||||
void * wdata;
|
||||
};
|
||||
|
||||
// numa strategies
|
||||
enum ggml_numa_strategy {
|
||||
GGML_NUMA_STRATEGY_DISABLED = 0,
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -40,6 +40,7 @@ class Keys:
|
|||
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
|
||||
EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
|
@ -48,6 +49,7 @@ class Keys:
|
|||
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
||||
POOLING_TYPE = "{arch}.pooling_type"
|
||||
LOGIT_SCALE = "{arch}.logit_scale"
|
||||
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
|
@ -61,6 +63,7 @@ class Keys:
|
|||
CAUSAL = "{arch}.attention.causal"
|
||||
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
|
||||
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
||||
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
||||
|
||||
class Rope:
|
||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||
|
@ -101,6 +104,8 @@ class Keys:
|
|||
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
||||
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
||||
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
|
||||
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
|
||||
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
|
||||
HF_JSON = "tokenizer.huggingface.json"
|
||||
RWKV = "tokenizer.rwkv.world"
|
||||
CHAT_TEMPLATE = "tokenizer.chat_template"
|
||||
|
@ -153,6 +158,8 @@ class MODEL_ARCH(IntEnum):
|
|||
OLMO = auto()
|
||||
ARCTIC = auto()
|
||||
DEEPSEEK2 = auto()
|
||||
BITNET = auto()
|
||||
T5 = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -204,6 +211,36 @@ class MODEL_TENSOR(IntEnum):
|
|||
ATTN_KV_B = auto()
|
||||
ATTN_Q_A_NORM = auto()
|
||||
ATTN_KV_A_NORM = auto()
|
||||
FFN_SUB_NORM = auto()
|
||||
ATTN_SUB_NORM = auto()
|
||||
DEC_ATTN_NORM = auto()
|
||||
DEC_ATTN_Q = auto()
|
||||
DEC_ATTN_K = auto()
|
||||
DEC_ATTN_V = auto()
|
||||
DEC_ATTN_OUT = auto()
|
||||
DEC_ATTN_REL_B = auto()
|
||||
DEC_CROSS_ATTN_NORM = auto()
|
||||
DEC_CROSS_ATTN_Q = auto()
|
||||
DEC_CROSS_ATTN_K = auto()
|
||||
DEC_CROSS_ATTN_V = auto()
|
||||
DEC_CROSS_ATTN_OUT = auto()
|
||||
DEC_CROSS_ATTN_REL_B = auto()
|
||||
DEC_FFN_NORM = auto()
|
||||
DEC_FFN_GATE = auto()
|
||||
DEC_FFN_DOWN = auto()
|
||||
DEC_FFN_UP = auto()
|
||||
DEC_OUTPUT_NORM = auto()
|
||||
ENC_ATTN_NORM = auto()
|
||||
ENC_ATTN_Q = auto()
|
||||
ENC_ATTN_K = auto()
|
||||
ENC_ATTN_V = auto()
|
||||
ENC_ATTN_OUT = auto()
|
||||
ENC_ATTN_REL_B = auto()
|
||||
ENC_FFN_NORM = auto()
|
||||
ENC_FFN_GATE = auto()
|
||||
ENC_FFN_DOWN = auto()
|
||||
ENC_FFN_UP = auto()
|
||||
ENC_OUTPUT_NORM = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
|
@ -241,6 +278,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.OLMO: "olmo",
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -292,6 +331,36 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
|
||||
MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
|
||||
MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
|
||||
MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
|
||||
MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
|
||||
MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
|
||||
MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
|
||||
MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
|
||||
MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
|
||||
MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
|
||||
MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
|
||||
MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
|
||||
MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
|
||||
MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
|
||||
MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
|
||||
MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
|
||||
MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
|
@ -812,6 +881,53 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.BITNET: [
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.ATTN_SUB_NORM,
|
||||
MODEL_TENSOR.FFN_SUB_NORM,
|
||||
],
|
||||
MODEL_ARCH.T5: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.DEC_ATTN_NORM,
|
||||
MODEL_TENSOR.DEC_ATTN_Q,
|
||||
MODEL_TENSOR.DEC_ATTN_K,
|
||||
MODEL_TENSOR.DEC_ATTN_V,
|
||||
MODEL_TENSOR.DEC_ATTN_OUT,
|
||||
MODEL_TENSOR.DEC_ATTN_REL_B,
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_Q,
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_K,
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_V,
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
|
||||
MODEL_TENSOR.DEC_FFN_NORM,
|
||||
MODEL_TENSOR.DEC_FFN_GATE,
|
||||
MODEL_TENSOR.DEC_FFN_DOWN,
|
||||
MODEL_TENSOR.DEC_FFN_UP,
|
||||
MODEL_TENSOR.DEC_OUTPUT_NORM,
|
||||
MODEL_TENSOR.ENC_ATTN_NORM,
|
||||
MODEL_TENSOR.ENC_ATTN_Q,
|
||||
MODEL_TENSOR.ENC_ATTN_K,
|
||||
MODEL_TENSOR.ENC_ATTN_V,
|
||||
MODEL_TENSOR.ENC_ATTN_OUT,
|
||||
MODEL_TENSOR.ENC_ATTN_REL_B,
|
||||
MODEL_TENSOR.ENC_FFN_NORM,
|
||||
MODEL_TENSOR.ENC_FFN_GATE,
|
||||
MODEL_TENSOR.ENC_FFN_DOWN,
|
||||
MODEL_TENSOR.ENC_FFN_UP,
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
|
@ -486,9 +486,15 @@ class GGUFWriter:
|
|||
def add_expert_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_expert_shared_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_parallel_residual(self, use: bool) -> None:
|
||||
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
|
||||
def add_decoder_start_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
|
||||
|
||||
def add_head_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
|
||||
|
||||
|
@ -537,6 +543,9 @@ class GGUFWriter:
|
|||
def add_kv_lora_rank(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
|
||||
|
||||
def add_relative_attn_buckets_count(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
|
@ -627,6 +636,12 @@ class GGUFWriter:
|
|||
def add_add_space_prefix(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
|
||||
|
||||
def add_remove_extra_whitespaces(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
|
||||
|
||||
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
|
||||
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
|
||||
|
||||
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
|
||||
if not isinstance(value, str):
|
||||
template_default = None
|
||||
|
@ -688,6 +703,9 @@ class GGUFWriter:
|
|||
kv_data += self._pack("Q", len(encoded_val))
|
||||
kv_data += encoded_val
|
||||
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
|
||||
if isinstance(val, bytes):
|
||||
ltype = GGUFValueType.UINT8
|
||||
else:
|
||||
ltype = GGUFValueType.get_type(val[0])
|
||||
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
||||
raise ValueError("All items in a GGUF array should be of the same type")
|
||||
|
|
|
@ -24,6 +24,7 @@ class TensorNameMap:
|
|||
"backbone.embedding", # mamba
|
||||
"backbone.embeddings", # mamba-hf
|
||||
"transformer.in_out_embed", # Grok
|
||||
"shared", # t5
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
|
@ -413,6 +414,128 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.ATTN_KV_A_NORM: (
|
||||
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_SUB_NORM: (
|
||||
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_SUB_NORM: (
|
||||
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_NORM: (
|
||||
"decoder.block.{bid}.layer.0.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_Q: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.q", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_K: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.k", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_V: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.v", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_OUT: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_REL_B: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
|
||||
"decoder.block.{bid}.layer.1.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_NORM: (
|
||||
"decoder.block.{bid}.layer.2.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_GATE: (
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_UP: (
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_DOWN: (
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_OUTPUT_NORM: (
|
||||
"decoder.final_layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_NORM: (
|
||||
"encoder.block.{bid}.layer.0.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_Q: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.q", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_K: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.k", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_V: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.v", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_OUT: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_REL_B: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_NORM: (
|
||||
"encoder.block.{bid}.layer.1.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_GATE: (
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_UP: (
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_DOWN: (
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
||||
"encoder.final_layer_norm", # t5
|
||||
),
|
||||
}
|
||||
|
||||
# architecture-specific block mappings
|
||||
|
|
|
@ -14,7 +14,7 @@ import numpy as np
|
|||
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
from gguf import GGUFReader, GGUFValueType # noqa: E402
|
||||
from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
|
||||
|
||||
logger = logging.getLogger("gguf-dump")
|
||||
|
||||
|
@ -101,25 +101,285 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
|
|||
json.dump(result, sys.stdout)
|
||||
|
||||
|
||||
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
|
||||
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
|
||||
|
||||
# Alignment Utility Function
|
||||
def strAlign(padding: int, alignMode: str | None, strVal: str):
|
||||
if alignMode == 'center':
|
||||
return strVal.center(padding)
|
||||
elif alignMode == 'right':
|
||||
return strVal.rjust(padding - 1) + ' '
|
||||
elif alignMode == 'left':
|
||||
return ' ' + strVal.ljust(padding - 1)
|
||||
else: # default left
|
||||
return ' ' + strVal.ljust(padding - 1)
|
||||
|
||||
def dashAlign(padding: int, alignMode: str | None):
|
||||
if alignMode == 'center':
|
||||
return ':' + '-' * (padding - 2) + ':'
|
||||
elif alignMode == 'right':
|
||||
return '-' * (padding - 1) + ':'
|
||||
elif alignMode == 'left':
|
||||
return ':' + '-' * (padding - 1)
|
||||
else: # default left
|
||||
return '-' * (padding)
|
||||
|
||||
# Calculate Padding For Each Column Based On Header and Data Length
|
||||
rowsPadding = {}
|
||||
for index, columnEntry in enumerate(header_map):
|
||||
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
|
||||
headerPadCount = len(columnEntry['header_name']) + 2
|
||||
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
|
||||
|
||||
# Render Markdown Header
|
||||
rows = []
|
||||
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
|
||||
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
|
||||
|
||||
# Render Tabular Data
|
||||
for item in data:
|
||||
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
|
||||
|
||||
# Convert Tabular String Rows Into String
|
||||
tableString = ""
|
||||
for row in rows:
|
||||
tableString += f'|{row}|\n'
|
||||
|
||||
return tableString
|
||||
|
||||
|
||||
def element_count_rounded_notation(count: int) -> str:
|
||||
if count > 1e15 :
|
||||
# Quadrillion
|
||||
scaled_amount = count * 1e-15
|
||||
scale_suffix = "Q"
|
||||
elif count > 1e12 :
|
||||
# Trillions
|
||||
scaled_amount = count * 1e-12
|
||||
scale_suffix = "T"
|
||||
elif count > 1e9 :
|
||||
# Billions
|
||||
scaled_amount = count * 1e-9
|
||||
scale_suffix = "B"
|
||||
elif count > 1e6 :
|
||||
# Millions
|
||||
scaled_amount = count * 1e-6
|
||||
scale_suffix = "M"
|
||||
elif count > 1e3 :
|
||||
# Thousands
|
||||
scaled_amount = count * 1e-3
|
||||
scale_suffix = "K"
|
||||
else:
|
||||
# Under Thousands
|
||||
scaled_amount = count
|
||||
scale_suffix = ""
|
||||
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
|
||||
|
||||
|
||||
def translate_tensor_name(name):
|
||||
words = name.split(".")
|
||||
|
||||
# Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
|
||||
abbreviation_dictionary = {
|
||||
'token_embd': 'Token embedding',
|
||||
'pos_embd': 'Position embedding',
|
||||
'output_norm': 'Output normalization',
|
||||
'output': 'Output',
|
||||
'attn_norm': 'Attention normalization',
|
||||
'attn_norm_2': 'Attention normalization',
|
||||
'attn_qkv': 'Attention query-key-value',
|
||||
'attn_q': 'Attention query',
|
||||
'attn_k': 'Attention key',
|
||||
'attn_v': 'Attention value',
|
||||
'attn_output': 'Attention output',
|
||||
'ffn_norm': 'Feed-forward network normalization',
|
||||
'ffn_up': 'Feed-forward network "up"',
|
||||
'ffn_gate': 'Feed-forward network "gate"',
|
||||
'ffn_down': 'Feed-forward network "down"',
|
||||
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
|
||||
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
|
||||
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
|
||||
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
|
||||
'ssm_in': 'State space model input projections',
|
||||
'ssm_conv1d': 'State space model rolling/shift',
|
||||
'ssm_x': 'State space model selective parametrization',
|
||||
'ssm_a': 'State space model state compression',
|
||||
'ssm_d': 'State space model skip connection',
|
||||
'ssm_dt': 'State space model time step',
|
||||
'ssm_out': 'State space model output projection',
|
||||
'blk': 'Block'
|
||||
}
|
||||
|
||||
expanded_words = []
|
||||
for word in words:
|
||||
word_norm = word.strip().lower()
|
||||
if word_norm in abbreviation_dictionary:
|
||||
expanded_words.append(abbreviation_dictionary[word_norm].title())
|
||||
else:
|
||||
expanded_words.append(word.title())
|
||||
|
||||
return ' '.join(expanded_words)
|
||||
|
||||
|
||||
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||
host_endian, file_endian = get_file_host_endian(reader)
|
||||
markdown_content = ""
|
||||
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
|
||||
markdown_content += f'- Endian: {file_endian} endian\n'
|
||||
markdown_content += '\n'
|
||||
markdown_content += '## Key Value Metadata Store\n\n'
|
||||
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
|
||||
markdown_content += '\n'
|
||||
|
||||
kv_dump_table: list[dict[str, str | int]] = []
|
||||
for n, field in enumerate(reader.fields.values(), 1):
|
||||
if not field.types:
|
||||
pretty_type = 'N/A'
|
||||
elif field.types[0] == GGUFValueType.ARRAY:
|
||||
nest_count = len(field.types) - 1
|
||||
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
|
||||
else:
|
||||
pretty_type = str(field.types[-1].name)
|
||||
|
||||
total_elements = len(field.data)
|
||||
value = ""
|
||||
if len(field.types) == 1:
|
||||
curr_type = field.types[0]
|
||||
if curr_type == GGUFValueType.STRING:
|
||||
value = repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])
|
||||
elif curr_type in reader.gguf_scalar_to_np:
|
||||
value = str(field.parts[-1][0])
|
||||
else:
|
||||
if field.types[0] == GGUFValueType.ARRAY:
|
||||
curr_type = field.types[1]
|
||||
if curr_type == GGUFValueType.STRING:
|
||||
render_element = min(5, total_elements)
|
||||
for element_pos in range(render_element):
|
||||
value += repr(str(bytes(field.parts[-1 - element_pos]), encoding='utf-8')[:5]) + (", " if total_elements > 1 else "")
|
||||
elif curr_type in reader.gguf_scalar_to_np:
|
||||
render_element = min(7, total_elements)
|
||||
for element_pos in range(render_element):
|
||||
value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "")
|
||||
value = f'[ {value}{" ..." if total_elements > 1 else ""} ]'
|
||||
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
|
||||
|
||||
kv_dump_table_header_map = [
|
||||
{'key_name':'n', 'header_name':'POS', 'align':'right'},
|
||||
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
|
||||
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
|
||||
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
|
||||
{'key_name':'value', 'header_name':'Value', 'align':'left'},
|
||||
]
|
||||
|
||||
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
|
||||
|
||||
markdown_content += "\n"
|
||||
|
||||
if not args.no_tensors:
|
||||
# Group tensors by their prefix and maintain order
|
||||
tensor_prefix_order: list[str] = []
|
||||
tensor_name_to_key: dict[str, int] = {}
|
||||
tensor_groups: dict[str, list[ReaderTensor]] = {}
|
||||
total_elements = sum(tensor.n_elements for tensor in reader.tensors)
|
||||
|
||||
# Parsing Tensors Record
|
||||
for key, tensor in enumerate(reader.tensors):
|
||||
tensor_components = tensor.name.split('.')
|
||||
|
||||
# Classify Tensor Group
|
||||
tensor_group_name = "base"
|
||||
if tensor_components[0] == 'blk':
|
||||
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
|
||||
|
||||
# Check if new Tensor Group
|
||||
if tensor_group_name not in tensor_groups:
|
||||
tensor_groups[tensor_group_name] = []
|
||||
tensor_prefix_order.append(tensor_group_name)
|
||||
|
||||
# Record Tensor and Tensor Position
|
||||
tensor_groups[tensor_group_name].append(tensor)
|
||||
tensor_name_to_key[tensor.name] = key
|
||||
|
||||
# Tensors Mapping Dump
|
||||
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
|
||||
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
|
||||
markdown_content += '\n'
|
||||
|
||||
for group in tensor_prefix_order:
|
||||
tensors = tensor_groups[group]
|
||||
group_elements = sum(tensor.n_elements for tensor in tensors)
|
||||
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
|
||||
|
||||
markdown_content += "\n"
|
||||
|
||||
for group in tensor_prefix_order:
|
||||
tensors = tensor_groups[group]
|
||||
group_elements = sum(tensor.n_elements for tensor in tensors)
|
||||
group_percentage = group_elements / total_elements * 100
|
||||
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
|
||||
|
||||
# Precalculate column sizing for visual consistency
|
||||
prettify_element_est_count_size: int = 1
|
||||
prettify_element_count_size: int = 1
|
||||
prettify_dimension_max_widths: dict[int, int] = {}
|
||||
for tensor in tensors:
|
||||
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
|
||||
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
|
||||
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
|
||||
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
|
||||
|
||||
# Generate Tensor Layer Table Content
|
||||
tensor_dump_table: list[dict[str, str | int]] = []
|
||||
for tensor in tensors:
|
||||
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
|
||||
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
|
||||
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
|
||||
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
|
||||
type_name_string = f"{tensor.tensor_type.name}"
|
||||
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
|
||||
|
||||
tensor_dump_table_header_map = [
|
||||
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
|
||||
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
|
||||
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
|
||||
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
|
||||
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
|
||||
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
|
||||
]
|
||||
|
||||
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
|
||||
|
||||
markdown_content += "\n"
|
||||
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
|
||||
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
|
||||
markdown_content += "\n\n"
|
||||
|
||||
print(markdown_content) # noqa: NP100
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
|
||||
parser.add_argument("model", type=str, help="GGUF format model filename")
|
||||
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
|
||||
parser.add_argument("--json", action="store_true", help="Produce JSON output")
|
||||
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
|
||||
parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
if not args.json:
|
||||
if not args.json and not args.markdown:
|
||||
logger.info(f'* Loading: {args.model}')
|
||||
|
||||
reader = GGUFReader(args.model, 'r')
|
||||
|
||||
if args.json:
|
||||
dump_metadata_json(reader, args)
|
||||
elif args.markdown:
|
||||
dump_markdown_metadata(reader, args)
|
||||
else:
|
||||
dump_metadata(reader, args)
|
||||
|
||||
|
|
6
llama.h
6
llama.h
|
@ -174,6 +174,7 @@ extern "C" {
|
|||
LLAMA_POOLING_TYPE_NONE = 0,
|
||||
LLAMA_POOLING_TYPE_MEAN = 1,
|
||||
LLAMA_POOLING_TYPE_CLS = 2,
|
||||
LLAMA_POOLING_TYPE_LAST = 3,
|
||||
};
|
||||
|
||||
enum llama_split_mode {
|
||||
|
@ -293,7 +294,6 @@ extern "C" {
|
|||
|
||||
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||||
// (ignored if no pooling layer)
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
|
@ -786,6 +786,10 @@ extern "C" {
|
|||
// Get the number of threads used for prompt and batch processing (multiple token).
|
||||
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
|
||||
|
||||
// Set whether the model is in embeddings mode or not
|
||||
// If true, embeddings will be returned but logits will not
|
||||
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
|
||||
|
||||
// Set whether to use causal attention or not
|
||||
// If set to true, the model will only attend to the past tokens
|
||||
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
-r ./requirements-convert-legacy-llama.txt
|
||||
torch~=2.1.1
|
||||
torch~=2.2.1
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
-r ./requirements-convert-legacy-llama.txt
|
||||
torch~=2.1.1
|
||||
torch~=2.2.1
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
numpy~=1.24.4
|
||||
numpy~=1.26.4
|
||||
sentencepiece~=0.2.0
|
||||
transformers>=4.40.1,<5.0.0
|
||||
gguf>=0.1.0
|
||||
|
|
|
@ -1,83 +1,143 @@
|
|||
import regex
|
||||
import ctypes
|
||||
import array
|
||||
import unicodedata
|
||||
|
||||
|
||||
class CoodepointFlags (ctypes.Structure):
|
||||
_fields_ = [ # see definition in unicode.h
|
||||
("is_undefined", ctypes.c_uint16, 1),
|
||||
("is_number", ctypes.c_uint16, 1), # regex: \p{N}
|
||||
("is_letter", ctypes.c_uint16, 1), # regex: \p{L}
|
||||
("is_separator", ctypes.c_uint16, 1), # regex: \p{Z}
|
||||
("is_accent_mark", ctypes.c_uint16, 1), # regex: \p{M}
|
||||
("is_punctuation", ctypes.c_uint16, 1), # regex: \p{P}
|
||||
("is_symbol", ctypes.c_uint16, 1), # regex: \p{S}
|
||||
("is_control", ctypes.c_uint16, 1), # regex: \p{C}
|
||||
]
|
||||
|
||||
|
||||
assert (ctypes.sizeof(CoodepointFlags) == 2)
|
||||
import requests
|
||||
|
||||
|
||||
MAX_CODEPOINTS = 0x110000
|
||||
|
||||
regex_number = regex.compile(r'\p{N}')
|
||||
regex_letter = regex.compile(r'\p{L}')
|
||||
regex_separator = regex.compile(r'\p{Z}')
|
||||
regex_accent_mark = regex.compile(r'\p{M}')
|
||||
regex_punctuation = regex.compile(r'\p{P}')
|
||||
regex_symbol = regex.compile(r'\p{S}')
|
||||
regex_control = regex.compile(r'\p{C}')
|
||||
regex_whitespace = regex.compile(r'\s')
|
||||
UNICODE_DATA_URL = "https://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt"
|
||||
|
||||
codepoint_flags = (CoodepointFlags * MAX_CODEPOINTS)()
|
||||
|
||||
# see https://www.unicode.org/L2/L1999/UnicodeData.html
|
||||
def unicode_data_iter():
|
||||
res = requests.get(UNICODE_DATA_URL)
|
||||
res.raise_for_status()
|
||||
data = res.content.decode()
|
||||
|
||||
prev = []
|
||||
|
||||
for line in data.splitlines():
|
||||
# ej: 0000;<control>;Cc;0;BN;;;;;N;NULL;;;;
|
||||
line = line.split(";")
|
||||
|
||||
cpt = int(line[0], base=16)
|
||||
assert cpt < MAX_CODEPOINTS
|
||||
|
||||
cpt_lower = int(line[-2] or "0", base=16)
|
||||
assert cpt_lower < MAX_CODEPOINTS
|
||||
|
||||
cpt_upper = int(line[-3] or "0", base=16)
|
||||
assert cpt_upper < MAX_CODEPOINTS
|
||||
|
||||
categ = line[2].strip()
|
||||
assert len(categ) == 2
|
||||
|
||||
bidir = line[4].strip()
|
||||
assert len(categ) == 2
|
||||
|
||||
name = line[1]
|
||||
if name.endswith(", First>"):
|
||||
prev = (cpt, cpt_lower, cpt_upper, categ, bidir)
|
||||
continue
|
||||
if name.endswith(", Last>"):
|
||||
assert prev[1:] == (0, 0, categ, bidir)
|
||||
for c in range(prev[0], cpt):
|
||||
yield (c, cpt_lower, cpt_upper, categ, bidir)
|
||||
|
||||
yield (cpt, cpt_lower, cpt_upper, categ, bidir)
|
||||
|
||||
|
||||
# see definition in unicode.h
|
||||
CODEPOINT_FLAG_UNDEFINED = 0x0001 #
|
||||
CODEPOINT_FLAG_NUMBER = 0x0002 # \p{N}
|
||||
CODEPOINT_FLAG_LETTER = 0x0004 # \p{L}
|
||||
CODEPOINT_FLAG_SEPARATOR = 0x0008 # \p{Z}
|
||||
CODEPOINT_FLAG_MARK = 0x0010 # \p{M}
|
||||
CODEPOINT_FLAG_PUNCTUATION = 0x0020 # \p{P}
|
||||
CODEPOINT_FLAG_SYMBOL = 0x0040 # \p{S}
|
||||
CODEPOINT_FLAG_CONTROL = 0x0080 # \p{C}
|
||||
|
||||
UNICODE_CATEGORY_TO_FLAG = {
|
||||
"Cn": CODEPOINT_FLAG_UNDEFINED, # Undefined
|
||||
"Cc": CODEPOINT_FLAG_CONTROL, # Control
|
||||
"Cf": CODEPOINT_FLAG_CONTROL, # Format
|
||||
"Co": CODEPOINT_FLAG_CONTROL, # Private Use
|
||||
"Cs": CODEPOINT_FLAG_CONTROL, # Surrrogate
|
||||
"Ll": CODEPOINT_FLAG_LETTER, # Lowercase Letter
|
||||
"Lm": CODEPOINT_FLAG_LETTER, # Modifier Letter
|
||||
"Lo": CODEPOINT_FLAG_LETTER, # Other Letter
|
||||
"Lt": CODEPOINT_FLAG_LETTER, # Titlecase Letter
|
||||
"Lu": CODEPOINT_FLAG_LETTER, # Uppercase Letter
|
||||
"L&": CODEPOINT_FLAG_LETTER, # Cased Letter
|
||||
"Mc": CODEPOINT_FLAG_MARK, # Spacing Mark
|
||||
"Me": CODEPOINT_FLAG_MARK, # Enclosing Mark
|
||||
"Mn": CODEPOINT_FLAG_MARK, # Nonspacing Mark
|
||||
"Nd": CODEPOINT_FLAG_NUMBER, # Decimal Number
|
||||
"Nl": CODEPOINT_FLAG_NUMBER, # Letter Number
|
||||
"No": CODEPOINT_FLAG_NUMBER, # Other Number
|
||||
"Pc": CODEPOINT_FLAG_PUNCTUATION, # Connector Punctuation
|
||||
"Pd": CODEPOINT_FLAG_PUNCTUATION, # Dash Punctuation
|
||||
"Pe": CODEPOINT_FLAG_PUNCTUATION, # Close Punctuation
|
||||
"Pf": CODEPOINT_FLAG_PUNCTUATION, # Final Punctuation
|
||||
"Pi": CODEPOINT_FLAG_PUNCTUATION, # Initial Punctuation
|
||||
"Po": CODEPOINT_FLAG_PUNCTUATION, # Other Punctuation
|
||||
"Ps": CODEPOINT_FLAG_PUNCTUATION, # Open Punctuation
|
||||
"Sc": CODEPOINT_FLAG_SYMBOL, # Currency Symbol
|
||||
"Sk": CODEPOINT_FLAG_SYMBOL, # Modifier Symbol
|
||||
"Sm": CODEPOINT_FLAG_SYMBOL, # Math Symbol
|
||||
"So": CODEPOINT_FLAG_SYMBOL, # Other Symbol
|
||||
"Zl": CODEPOINT_FLAG_SEPARATOR, # Line Separator
|
||||
"Zp": CODEPOINT_FLAG_SEPARATOR, # Paragraph Separator
|
||||
"Zs": CODEPOINT_FLAG_SEPARATOR, # Space Separator
|
||||
}
|
||||
|
||||
|
||||
codepoint_flags = array.array('H', [CODEPOINT_FLAG_UNDEFINED]) * MAX_CODEPOINTS
|
||||
table_whitespace = []
|
||||
table_lowercase = []
|
||||
table_uppercase = []
|
||||
table_nfd = []
|
||||
|
||||
for codepoint in range(MAX_CODEPOINTS):
|
||||
for (cpt, cpt_lower, cpt_upper, categ, bidir) in unicode_data_iter():
|
||||
# convert codepoint to unicode character
|
||||
char = chr(codepoint)
|
||||
char = chr(cpt)
|
||||
|
||||
# regex categories
|
||||
flags = codepoint_flags[codepoint]
|
||||
flags.is_number = bool(regex_number.match(char))
|
||||
flags.is_letter = bool(regex_letter.match(char))
|
||||
flags.is_separator = bool(regex_separator.match(char))
|
||||
flags.is_accent_mark = bool(regex_accent_mark.match(char))
|
||||
flags.is_punctuation = bool(regex_punctuation.match(char))
|
||||
flags.is_symbol = bool(regex_symbol.match(char))
|
||||
flags.is_control = bool(regex_control.match(char))
|
||||
flags.is_undefined = bytes(flags)[0] == 0
|
||||
assert (not flags.is_undefined)
|
||||
|
||||
# whitespaces
|
||||
if bool(regex_whitespace.match(char)):
|
||||
table_whitespace.append(codepoint)
|
||||
# codepoint category flags
|
||||
codepoint_flags[cpt] = UNICODE_CATEGORY_TO_FLAG[categ]
|
||||
|
||||
# lowercase conversion
|
||||
lower = ord(char.lower()[0])
|
||||
if codepoint != lower:
|
||||
table_lowercase.append((codepoint, lower))
|
||||
if cpt_lower:
|
||||
table_lowercase.append((cpt, cpt_lower))
|
||||
|
||||
# uppercase conversion
|
||||
upper = ord(char.upper()[0])
|
||||
if codepoint != upper:
|
||||
table_uppercase.append((codepoint, upper))
|
||||
if cpt_upper:
|
||||
table_uppercase.append((cpt, cpt_upper))
|
||||
|
||||
# NFD normalization
|
||||
norm = ord(unicodedata.normalize('NFD', char)[0])
|
||||
if codepoint != norm:
|
||||
table_nfd.append((codepoint, norm))
|
||||
if cpt != norm:
|
||||
table_nfd.append((cpt, norm))
|
||||
|
||||
|
||||
# whitespaces, see "<White_Space>" https://www.unicode.org/Public/UCD/latest/ucd/PropList.txt
|
||||
table_whitespace.extend(range(0x0009, 0x000D + 1))
|
||||
table_whitespace.extend(range(0x2000, 0x200A + 1))
|
||||
table_whitespace.extend([0x0020, 0x0085, 0x00A0, 0x1680, 0x2028, 0x2029, 0x202F, 0x205F, 0x3000])
|
||||
|
||||
|
||||
# sort by codepoint
|
||||
table_whitespace.sort()
|
||||
table_lowercase.sort()
|
||||
table_uppercase.sort()
|
||||
table_nfd.sort()
|
||||
|
||||
|
||||
# group ranges with same flags
|
||||
ranges_flags = [(0, codepoint_flags[0])] # start, flags
|
||||
for codepoint, flags in enumerate(codepoint_flags):
|
||||
if bytes(flags) != bytes(ranges_flags[-1][1]):
|
||||
if flags != ranges_flags[-1][1]:
|
||||
ranges_flags.append((codepoint, flags))
|
||||
ranges_flags.append((MAX_CODEPOINTS, CoodepointFlags()))
|
||||
ranges_flags.append((MAX_CODEPOINTS, 0x0000))
|
||||
|
||||
|
||||
# group ranges with same nfd
|
||||
|
@ -90,8 +150,8 @@ for codepoint, norm in table_nfd:
|
|||
ranges_nfd[-1] = (start, codepoint, norm)
|
||||
|
||||
|
||||
# Generate 'unicode-data.cpp'
|
||||
|
||||
# Generate 'unicode-data.cpp':
|
||||
# python ./scripts//gen-unicode-data.py > unicode-data.cpp
|
||||
|
||||
def out(line=""):
|
||||
print(line, end='\n') # noqa
|
||||
|
@ -110,12 +170,12 @@ out("""\
|
|||
|
||||
out("const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags = { // start, flags // last=next_start-1")
|
||||
for codepoint, flags in ranges_flags:
|
||||
flags = int.from_bytes(bytes(flags), "little")
|
||||
out("{0x%06X, 0x%04X}," % (codepoint, flags))
|
||||
out("};\n")
|
||||
|
||||
out("const std::unordered_set<uint32_t> unicode_set_whitespace = {")
|
||||
out(", ".join("0x%06X" % cpt for cpt in table_whitespace))
|
||||
for codepoint in table_whitespace:
|
||||
out("0x%06X," % codepoint)
|
||||
out("};\n")
|
||||
|
||||
out("const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {")
|
||||
|
|
|
@ -1 +1 @@
|
|||
2aae01fd9b8f9399f343cf18f46f38996ef52e2c
|
||||
5653a195935ea3ac54652644c9daf154dbc1571b
|
||||
|
|
39
sgemm.cpp
39
sgemm.cpp
|
@ -43,8 +43,10 @@
|
|||
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
|
||||
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Wpedantic"
|
||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||||
#endif
|
||||
|
||||
#include "sgemm.h"
|
||||
#include "ggml-impl.h"
|
||||
|
@ -247,8 +249,7 @@ class tinyBLAS {
|
|||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n, int task) {
|
||||
if (task == GGML_TASK_TYPE_COMPUTE)
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
|
@ -456,8 +457,7 @@ class tinyBLAS_Q0_ARM {
|
|||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n, int task) {
|
||||
if (task == GGML_TASK_TYPE_COMPUTE)
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
|
@ -594,8 +594,7 @@ class tinyBLAS_Q0_AVX {
|
|||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n, int task) {
|
||||
if (task == GGML_TASK_TYPE_COMPUTE)
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
|
@ -827,7 +826,7 @@ class tinyBLAS_Q0_AVX {
|
|||
* For example, for single-threaded single-precision GEMM you can say
|
||||
*
|
||||
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
|
||||
* 0, 1, GGML_TASK_TYPE_COMPUTE,
|
||||
* 0, 1,
|
||||
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
|
||||
*
|
||||
* @param m is rows in `A` and `C`
|
||||
|
@ -841,14 +840,13 @@ class tinyBLAS_Q0_AVX {
|
|||
* @param ldc is row stride of `C`
|
||||
* @param ith is thread id (must be less than `nth`)
|
||||
* @param nth is number of threads (must be greater than zero)
|
||||
* @param task is GGML task type
|
||||
* @param Atype is GGML data type of `A`
|
||||
* @param Btype is GGML data type of `B`
|
||||
* @param Ctype is GGML data type of `C`
|
||||
* @return true if this function was able to service the matmul request
|
||||
*/
|
||||
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
|
||||
int64_t ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
|
||||
int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
|
||||
|
||||
assert(m >= 0);
|
||||
assert(n >= 0);
|
||||
|
@ -875,7 +873,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const float *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif defined(__AVX__) || defined(__AVX2__)
|
||||
if (k % 8)
|
||||
|
@ -885,7 +883,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const float *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif defined(__ARM_NEON)
|
||||
if (n < 4)
|
||||
|
@ -897,7 +895,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const float *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
|
@ -915,7 +913,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const float *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
|
||||
if (k % 8)
|
||||
|
@ -927,7 +925,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const float *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
|
||||
if (n < 8)
|
||||
|
@ -941,7 +939,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const ggml_fp16_t *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
if (k % 4)
|
||||
|
@ -953,7 +951,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const float *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
|
@ -969,7 +967,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const block_q8_0 *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif defined(__ARM_FEATURE_DOTPROD)
|
||||
tinyBLAS_Q0_ARM<block_q8_0> tb{
|
||||
|
@ -977,7 +975,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const block_q8_0 *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
|
@ -993,7 +991,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const block_q8_0 *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#elif defined(__ARM_FEATURE_DOTPROD)
|
||||
tinyBLAS_Q0_ARM<block_q4_0> tb{
|
||||
|
@ -1001,7 +999,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(const block_q8_0 *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n, task);
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
|
@ -1023,7 +1021,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
|||
(void)ldc;
|
||||
(void)ith;
|
||||
(void)nth;
|
||||
(void)task;
|
||||
(void)Atype;
|
||||
(void)Btype;
|
||||
(void)Ctype;
|
||||
|
|
2
sgemm.h
2
sgemm.h
|
@ -7,7 +7,7 @@ extern "C" {
|
|||
|
||||
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
|
||||
const void *, int64_t, void *, int64_t, int, int,
|
||||
int, int, int, int);
|
||||
int, int, int);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -785,6 +785,10 @@ struct test_cpy : public test_case {
|
|||
return VARS_TO_STR3(type_src, type_dst, ne);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 1e-6;
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
|
||||
}
|
||||
|
@ -1063,6 +1067,33 @@ struct test_sqr : public test_case {
|
|||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SQRT
|
||||
struct test_sqrt : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR2(type, ne);
|
||||
}
|
||||
|
||||
test_sqrt(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10})
|
||||
: type(type), ne(ne) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * out = ggml_sqrt(ctx, a);
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
// fill with positive values
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
init_tensor_uniform(t, 0.0f, 100.0f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_CLAMP
|
||||
struct test_clamp : public test_case {
|
||||
const ggml_type type;
|
||||
|
@ -2200,6 +2231,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
}
|
||||
|
||||
test_cases.emplace_back(new test_sqr());
|
||||
test_cases.emplace_back(new test_sqrt());
|
||||
test_cases.emplace_back(new test_clamp());
|
||||
|
||||
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
|
||||
|
|
|
@ -7,11 +7,16 @@
|
|||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "unicode.h"
|
||||
#include <cassert>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//#define INCLUDE_FAILING_TESTS 1
|
||||
|
||||
static llama_grammar* build_grammar(const std::string & grammar_str) {
|
||||
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
|
||||
|
||||
|
@ -65,8 +70,8 @@ static bool match_string(const std::string & input, llama_grammar* grammar) {
|
|||
return false;
|
||||
}
|
||||
|
||||
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
|
||||
fprintf(stderr, "⚫ Testing %s. Grammar: %s\n", test_desc.c_str(), grammar_str.c_str());
|
||||
static void test(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
|
||||
fprintf(stderr, "⚫ Testing %s\n%s\n", test_desc.c_str(), grammar_str.c_str());
|
||||
fflush(stderr);
|
||||
|
||||
auto grammar = build_grammar(grammar_str);
|
||||
|
@ -85,6 +90,23 @@ static void test_grammar(const std::string & test_desc, const std::string & gram
|
|||
|
||||
if (!matched) {
|
||||
fprintf(stderr, "❌ (failed to match)\n");
|
||||
|
||||
// DEBUG: Write strings to files so that we can analyze more easily with gbnf-validator program to see exactly where things failed.
|
||||
// DEBUG: Write the grammar_str to test-grammar-integration.grammar.gbnf
|
||||
FILE* grammar_file = fopen("test-grammar-integration.grammar.gbnf", "w");
|
||||
if (grammar_file) {
|
||||
fprintf(grammar_file, "%s", grammar_str.c_str());
|
||||
fclose(grammar_file);
|
||||
}
|
||||
|
||||
// DEBUG: Write the test string to test-grammar-integration.string.txt
|
||||
FILE* string_file = fopen("test-grammar-integration.string.txt", "w");
|
||||
if (string_file) {
|
||||
fprintf(string_file, "%s", test_string.c_str());
|
||||
fclose(string_file);
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n NOTE: Debug grammar file generated. To analyze this failure in detail, run the following command: ./llama-gbnf-validator test-grammar-integration.grammar.gbnf test-grammar-integration.string.txt\n\n");
|
||||
} else {
|
||||
fprintf(stdout, "✅︎\n");
|
||||
}
|
||||
|
@ -118,6 +140,12 @@ static void test_grammar(const std::string & test_desc, const std::string & gram
|
|||
// Clean up allocated memory
|
||||
llama_grammar_free(grammar);
|
||||
}
|
||||
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
|
||||
test(test_desc + ". Grammar: " + grammar_str, grammar_str, passing_strings, failing_strings);
|
||||
}
|
||||
static void test_schema(const std::string & test_desc, const std::string & schema_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
|
||||
test(test_desc + ". Schema: " + schema_str, json_schema_to_grammar(json::parse(schema_str)), passing_strings, failing_strings);
|
||||
}
|
||||
|
||||
static void test_simple_grammar() {
|
||||
// Test case for a simple grammar
|
||||
|
@ -400,7 +428,8 @@ static void test_quantifiers() {
|
|||
static void test_failure_missing_root() {
|
||||
fprintf(stderr, "⚫ Testing missing root node:\n");
|
||||
// Test case for a grammar that is missing a root rule
|
||||
const std::string grammar_str = R"""(rot ::= expr
|
||||
const std::string grammar_str = R"""(
|
||||
rot ::= expr
|
||||
expr ::= term ("+" term)*
|
||||
term ::= number
|
||||
number ::= [0-9]+)""";
|
||||
|
@ -468,6 +497,535 @@ empty ::= "blah" | )""";
|
|||
fprintf(stderr, " ✅︎ Passed\n");
|
||||
}
|
||||
|
||||
static void test_json_schema() {
|
||||
// Note that this is similar to the regular grammar tests,
|
||||
// but we convert each json schema to a grammar before parsing.
|
||||
// Otherwise, this test structure is the same.
|
||||
|
||||
test_schema(
|
||||
"empty schema (object)",
|
||||
// Schema
|
||||
R"""(
|
||||
{}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"{}",
|
||||
R"""({"foo": "bar"})""",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"[]",
|
||||
"null",
|
||||
"\"\"",
|
||||
"true",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"exotic formats (list)",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"items": [
|
||||
{ "format": "date" },
|
||||
{ "format": "uuid" },
|
||||
{ "format": "time" },
|
||||
{ "format": "date-time" }
|
||||
]
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
// "{}", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
// "[]", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
R"""(["2012-04-23", "12345678-1234-1234-1234-1234567890ab", "18:25:43.511Z", "2012-04-23T18:25:43.511Z"])""",
|
||||
//R"""(["2012-04-23","12345678-1234-1234-1234-1234567890ab"])""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
//R"""({"foo": "bar"})""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
R"""(["foo", "bar"])""",
|
||||
R"""(["12345678-1234-1234-1234-1234567890ab"])""",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"{}",
|
||||
"\"foo\": \"bar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ min length 1",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"minLength": 1
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"{}",
|
||||
"\"foo\": \"bar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ min length 3",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"minLength": 3
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"foobar\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"\"f\"",
|
||||
"\"fo\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ max length",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"maxLength": 3
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"\"",
|
||||
"\"f\"",
|
||||
"\"fo\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"foobar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ min & max length",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"minLength": 1,
|
||||
"maxLength": 4
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"f\"",
|
||||
"\"barf\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"\"barfo\"",
|
||||
"\"foobar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"boolean",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "boolean"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"true",
|
||||
"false",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"\"true\"",
|
||||
"True",
|
||||
"FALSE",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"integer",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "integer"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"0",
|
||||
"12345",
|
||||
"1234567890123456"
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"01",
|
||||
"007",
|
||||
"12345678901234567"
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string const",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"const": "foo"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"foo",
|
||||
"\"bar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"non-string const",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"const": true
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"true",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"foo",
|
||||
"\"true\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"non-string const",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"enum": ["red", "amber", "green", null, 42, ["foo"]]
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"red\"",
|
||||
"null",
|
||||
"42",
|
||||
"[\"foo\"]",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"420",
|
||||
"true",
|
||||
"foo",
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
test_schema(
|
||||
"min+max items",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"items": {
|
||||
"type": ["number", "integer"]
|
||||
},
|
||||
"minItems": 3,
|
||||
"maxItems": 5
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"[1, 2, 3]",
|
||||
"[1, 2, 3, 4]",
|
||||
"[1, 2, 3, 4, 5]",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"[1, 2]",
|
||||
"[1, 2, 3, 4, 5, 6]",
|
||||
"1"
|
||||
}
|
||||
);
|
||||
|
||||
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
|
||||
test_schema(
|
||||
"object properties",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": { "type": "number" },
|
||||
"street_name": { "type": "string" },
|
||||
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
|
||||
}
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
// "By default, leaving out properties is valid"
|
||||
R"""({ "street_name": "Pennsylvania" })""",
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
|
||||
// "By extension, even an empty object is valid"
|
||||
R"""({})""",
|
||||
// "By default, providing additional properties is valid"
|
||||
#ifdef INCLUDE_FAILING_TESTS
|
||||
// TODO: The following should pass, but currently FAILS. Additional properties should be permitted by default.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
|
||||
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
|
||||
#endif
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
// Change datatype from number to string
|
||||
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
// Reorder properties
|
||||
R"""({ "street_name": "Pennsylvania", "number": 1600 })""",
|
||||
// Reorder properties
|
||||
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
|
||||
test_schema(
|
||||
"object properties, additionalProperties: true",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": { "type": "number" },
|
||||
"street_name": { "type": "string" },
|
||||
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
|
||||
},
|
||||
"additionalProperties": true
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
// "By extension, even an empty object is valid"
|
||||
R"""({})""",
|
||||
#ifdef INCLUDE_FAILING_TESTS
|
||||
// TODO: Following line should pass and doesn't
|
||||
R"""({"number":1600,"street_name":"Pennsylvania","street_type":"Avenue"})""",
|
||||
// "By default, leaving out properties is valid"
|
||||
// TODO: Following line should pass and doesn't
|
||||
R"""({ "street_name": "Pennsylvania" })""",
|
||||
// TODO: Following line should pass and doesn't
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
|
||||
// "By default, providing additional properties is valid"
|
||||
// TODO: The following should pass, but currently FAILS. Additional properties should be permitted by default.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
|
||||
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
|
||||
#endif
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
// Change datatype from number to string
|
||||
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
// Reorder properties
|
||||
R"""({ "street_name": "Pennsylvania", "number": 1600, "street_type":"Avenue"})""",
|
||||
}
|
||||
);
|
||||
|
||||
// Additional properties: false
|
||||
test_schema(
|
||||
"required + optional props each in original order",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": { "type": "number" },
|
||||
"street_name": { "type": "string" },
|
||||
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
|
||||
},
|
||||
"additionalProperties": false
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({ "street_name": "Pennsylvania" })""",
|
||||
R"""({ "number": 1600, "street_type":"Avenue"})""",
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
#ifdef INCLUDE_FAILING_TESTS
|
||||
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
|
||||
#endif
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
// Reorder properties
|
||||
R"""({ "street_type": "Avenue", "number": 1600 })""",
|
||||
// Add "direction"
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue", "direction": "NW" })""",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"required + optional props each in original order",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"properties": {
|
||||
"b": {"type": "string"},
|
||||
"a": {"type": "string"},
|
||||
"d": {"type": "string"},
|
||||
"c": {"type": "string"}
|
||||
},
|
||||
"required": ["a", "b"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({"b": "foo", "a": "bar"})""",
|
||||
R"""({"b":"foo","a":"bar","d":"qux"})""",
|
||||
R"""({"b":"foo", "a":"bar", "d":"qux", "c":"baz"})""",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
R"""({"a": "foo", "b": "bar"})""",
|
||||
R"""({"b": "bar"})""",
|
||||
R"""({"a": "foo", "c": "baz"})""",
|
||||
R"""({"a":"foo", "b":"bar", "c":"baz", "d":"qux"})""",
|
||||
}
|
||||
);
|
||||
|
||||
// NOTE: Example from https://json-schema.org/learn/getting-started-step-by-step#define-required-properties
|
||||
test_schema(
|
||||
"required props",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"$schema": "https://json-schema.org/draft/2020-12/schema",
|
||||
"$id": "https://example.com/product.schema.json",
|
||||
"title": "Product",
|
||||
"description": "A product from Acme's catalog",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"productId": {
|
||||
"description": "The unique identifier for a product",
|
||||
"type": "integer"
|
||||
},
|
||||
"productName": {
|
||||
"description": "Name of the product",
|
||||
"type": "string"
|
||||
},
|
||||
"price": {
|
||||
"description": "The price of the product",
|
||||
"type": "number",
|
||||
"exclusiveMinimum": 0
|
||||
},
|
||||
"tags": {
|
||||
"description": "Tags for the product",
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
},
|
||||
"minItems": 1,
|
||||
"uniqueItems": true
|
||||
},
|
||||
"dimensions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"length": {
|
||||
"type": "number"
|
||||
},
|
||||
"width": {
|
||||
"type": "number"
|
||||
},
|
||||
"height": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
"required": [ "length", "width", "height" ]
|
||||
}
|
||||
},
|
||||
"required": [ "productId", "productName", "price" ]
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50})""",
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"]})""",
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"], "dimensions": {"length": 785, "width": 250.5, "height": -0.359}})""",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
R"""({})""", // Missing all required properties
|
||||
R"""({"productName": "A green door", "price": 12.50, "productId": 1})""", // Out of order properties
|
||||
// TODO: The following line should fail, but currently it passes. `exclusiveMinimum` is not supported, as it would likely be too difficult to implement.
|
||||
// Perhaps special checks for minimum and maximum values of 0 could be added (since that's relatively easy to do with grammars), but anything else would likely be too complex.
|
||||
// R"""({"productId": 1, "productName": "A green door", "price": -12.50})""",
|
||||
R"""({"productId": 1, "productName": "A green door"})""", // Missing required property (price)
|
||||
R"""({"productName": "A green door", "price": 12.50})""", // Missing required property (productId)
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": []})""", // tags is empty, but minItems is 1
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "dimensions": {"length": 785, "width": 250.5, "height": -0.359}, "tags": ["home", "green"]})""", // Tags and dimensions are out of order
|
||||
// TODO: The following line should fail, but currently it passes. `uniqueItems` is not supported, as it would likely be too difficult to implement.
|
||||
// R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green", "home"]})""",
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
int main() {
|
||||
fprintf(stdout, "Running grammar integration tests...\n");
|
||||
test_simple_grammar();
|
||||
|
@ -477,6 +1035,7 @@ int main() {
|
|||
test_failure_missing_root();
|
||||
test_failure_missing_reference();
|
||||
test_failure_left_recursion();
|
||||
test_json_schema();
|
||||
fprintf(stdout, "All tests passed.\n");
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -11,13 +11,15 @@ import logging
|
|||
import argparse
|
||||
import subprocess
|
||||
import random
|
||||
import unicodedata
|
||||
|
||||
from typing import Callable, Iterator
|
||||
|
||||
import cffi
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random-bpe")
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random")
|
||||
|
||||
|
||||
class LibLlama:
|
||||
|
@ -155,9 +157,14 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
|
|||
'Cửa Việt', # llama-3, ignore_merges = true
|
||||
'<s>a', # Phi-3 fail
|
||||
'<unk><|endoftext|><s>', # Phi-3 fail
|
||||
'a\na', # TODO: Bert fail
|
||||
'a\na', # bert fail
|
||||
'"`', # falcon
|
||||
' \u2e4e', # falcon
|
||||
'a\xa0\xa0\x00b', # jina-v2-es
|
||||
'one <mask>', # jina-v2-es <mask> lstrip=true
|
||||
'a </s> b', # rstrip phi-3
|
||||
'a <mask> b', # lstrip jina-v2
|
||||
'\xa0aC', # deepseek
|
||||
]
|
||||
|
||||
|
||||
|
@ -189,17 +196,23 @@ def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
|
|||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
words = rand.choices(all_tokens, k=500)
|
||||
if words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||||
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||||
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
|
||||
words.pop(0)
|
||||
if tokenizer.add_bos_token: # drop all starting BOS
|
||||
words.pop(0)
|
||||
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
|
||||
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
|
||||
words.pop(-1)
|
||||
if tokenizer.add_bos_token: # drop all trailing EOS
|
||||
words.pop(-1)
|
||||
yield "".join(words)
|
||||
|
||||
|
||||
def generator_random_chars(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with simple characters"""
|
||||
|
||||
NUM_WORDS = 400
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
CHARS = list(sorted(set("""
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
|
@ -213,12 +226,50 @@ def generator_random_chars(iterations=100) -> Iterator[str]:
|
|||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
for _ in range(NUM_WORDS):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(CHARS, k=k)
|
||||
space = rand.choice(WHITESPACES)
|
||||
text.append("".join(word) + space)
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_unicodes() -> Iterator[str]:
|
||||
"""Iterate unicode characters"""
|
||||
|
||||
MAX_CODEPOINTS = 0x30000 # 0x110000
|
||||
|
||||
def _valid(cpt):
|
||||
if cpt >= 0x30000: # unassigned and supplementary
|
||||
return False
|
||||
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
|
||||
return False
|
||||
if unicodedata.category(chr(cpt)) == "Cn":
|
||||
return False
|
||||
return True
|
||||
|
||||
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
|
||||
|
||||
yield from characters
|
||||
|
||||
|
||||
def generator_random_unicodes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with unicode characters"""
|
||||
|
||||
NUM_WORDS = 200
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
||||
characters = list(generator_unicodes())
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
for _ in range(NUM_WORDS):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(characters, k=k)
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
|
@ -256,25 +307,7 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_bytes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random bytes"""
|
||||
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 8)
|
||||
word = [chr(r) for r in rand.randbytes(k) if r]
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
|
||||
def find_first_mismatch(ids1: list[int], ids2: list[int]):
|
||||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||||
|
@ -284,20 +317,34 @@ def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, g
|
|||
return -1
|
||||
return min(len(ids1), len(ids2))
|
||||
|
||||
t0 = time.perf_counter()
|
||||
t_tokenizer1 = 0
|
||||
t_tokenizer2 = 0
|
||||
t_start = time.perf_counter()
|
||||
num_errors = 10
|
||||
|
||||
logger.info("%s: %s" % (generator.__name__, "ini"))
|
||||
for text in generator:
|
||||
# print(repr(text), hex(ord(text[0])), text.encode())
|
||||
t0 = time.perf_counter()
|
||||
ids1 = func_tokenize1(text)
|
||||
t1 = time.perf_counter()
|
||||
ids2 = func_tokenize2(text)
|
||||
t2 = time.perf_counter()
|
||||
t_tokenizer1 += t1 - t0
|
||||
t_tokenizer2 += t2 - t1
|
||||
if ids1 != ids2:
|
||||
i = find_first_mismatch(ids1, ids2)
|
||||
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
||||
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
||||
logger.info(" TokenIDs: " + str(ids1))
|
||||
logger.info(" Expected: " + str(ids2))
|
||||
raise Exception()
|
||||
t1 = time.perf_counter()
|
||||
logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
|
||||
logger.error(" TokenIDs: " + str(ids1))
|
||||
logger.error(" Expected: " + str(ids2))
|
||||
# raise Exception()
|
||||
num_errors += 1
|
||||
if num_errors > 10:
|
||||
break
|
||||
|
||||
t_total = time.perf_counter() - t_start
|
||||
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
|
||||
|
||||
|
||||
def main(argv: list[str] = None):
|
||||
|
@ -308,6 +355,7 @@ def main(argv: list[str] = None):
|
|||
args = parser.parse_args(argv)
|
||||
|
||||
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
|
||||
logger.info(f"VOCABFILE: '{args.vocab_file}'")
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||
|
@ -321,18 +369,22 @@ def main(argv: list[str] = None):
|
|||
ids = func_tokenize2("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
|
||||
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
|
||||
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
|
||||
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
|
||||
|
||||
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
# test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
|
||||
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
|
||||
model.free()
|
||||
|
||||
|
@ -340,20 +392,40 @@ def main(argv: list[str] = None):
|
|||
if __name__ == "__main__":
|
||||
# main()
|
||||
|
||||
logging.basicConfig(
|
||||
level = logging.DEBUG,
|
||||
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
||||
datefmt = "%Y-%m-%d %H:%M:%S",
|
||||
filename = logger.name + ".log",
|
||||
filemode = "a"
|
||||
)
|
||||
|
||||
path_tokenizers = "./models/tokenizers/"
|
||||
path_vocab_format = "./models/ggml-vocab-%s.gguf"
|
||||
|
||||
# import os
|
||||
# tokenizers = os.listdir(path_tokenizers)
|
||||
tokenizers = [
|
||||
"llama-spm", # SPM
|
||||
"phi-3", # SPM
|
||||
"jina-v2-en", # WPM
|
||||
"bert-bge", # WPM
|
||||
# "llama-spm", # SPM
|
||||
# "phi-3", # SPM
|
||||
# "bert-bge", # WPM
|
||||
# "jina-v2-en", # WPM
|
||||
"gpt-2", # BPE
|
||||
"llama-bpe", # BPE
|
||||
"falcon", # BPE
|
||||
"starcoder", # BPE
|
||||
"jina-v2-es", # BPE
|
||||
"jina-v2-de", # BPE
|
||||
"jina-v2-code", # BPE
|
||||
"smaug-bpe", # BPE
|
||||
"phi-2", # BPE
|
||||
"deepseek-coder", # BPE
|
||||
"deepseek-llm", # BPE
|
||||
]
|
||||
|
||||
for tokenizer in tokenizers:
|
||||
print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa
|
||||
logger.info("=" * 50)
|
||||
logger.info(f"TOKENIZER: '{tokenizer}'")
|
||||
vocab_file = path_vocab_format % tokenizer
|
||||
dir_tokenizer = path_tokenizers + "/" + tokenizer
|
||||
main([vocab_file, dir_tokenizer, "--verbose"])
|
||||
|
|
1652
unicode-data.cpp
1652
unicode-data.cpp
File diff suppressed because it is too large
Load diff
52
unicode.cpp
52
unicode.cpp
|
@ -226,8 +226,9 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
assert(offset_end <= cpts.size());
|
||||
start = offset_end;
|
||||
|
||||
auto _get_cpt = [&] (const size_t pos) -> char32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
|
||||
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
|
||||
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
|
||||
};
|
||||
|
||||
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
|
||||
|
@ -253,18 +254,18 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
};
|
||||
|
||||
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
|
||||
const char32_t cpt = _get_cpt(pos);
|
||||
const uint32_t cpt = _get_cpt(pos);
|
||||
const auto flags = _get_flags(pos);
|
||||
|
||||
// regex: 's|'t|'re|'ve|'m|'ll|'d
|
||||
if (cpt == '\'' && pos+1 < offset_end) {
|
||||
char32_t cpt_next = _get_cpt(pos+1);
|
||||
uint32_t cpt_next = _get_cpt(pos+1);
|
||||
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
|
||||
pos += _add_token(pos+2);
|
||||
continue;
|
||||
}
|
||||
if (pos+2 < offset_end) {
|
||||
char32_t cpt_next_next = _get_cpt(pos+2);
|
||||
uint32_t cpt_next_next = _get_cpt(pos+2);
|
||||
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'v' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'l' && cpt_next_next == 'l')) {
|
||||
|
@ -309,7 +310,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
}
|
||||
|
||||
// regex: \s+(?!\S)
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
|
||||
pos += num_whitespaces - 1;
|
||||
_add_token(pos);
|
||||
continue;
|
||||
|
@ -344,8 +345,9 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
assert(offset_end <= cpts.size());
|
||||
start = offset_end;
|
||||
|
||||
auto _get_cpt = [&] (const size_t pos) -> char32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
|
||||
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
|
||||
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
|
||||
};
|
||||
|
||||
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
|
||||
|
@ -371,18 +373,18 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
};
|
||||
|
||||
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
|
||||
const char32_t cpt = _get_cpt(pos);
|
||||
const uint32_t cpt = _get_cpt(pos);
|
||||
const auto flags = _get_flags(pos);
|
||||
|
||||
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
|
||||
if (cpt == '\'' && pos+1 < offset_end) {
|
||||
char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
|
||||
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
|
||||
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
|
||||
pos += _add_token(pos+2);
|
||||
continue;
|
||||
}
|
||||
if (pos+2 < offset_end) {
|
||||
char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
|
||||
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
|
||||
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'v' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'l' && cpt_next_next == 'l')) {
|
||||
|
@ -424,7 +426,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
|
||||
flags2 = _get_flags(++pos);
|
||||
}
|
||||
char32_t cpt2 = _get_cpt(pos);
|
||||
uint32_t cpt2 = _get_cpt(pos);
|
||||
while (cpt2 == '\r' || cpt2 == '\n') {
|
||||
cpt2 = _get_cpt(++pos);
|
||||
}
|
||||
|
@ -435,7 +437,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
size_t num_whitespaces = 0;
|
||||
size_t last_end_r_or_n = 0;
|
||||
while (_get_flags(pos+num_whitespaces).is_whitespace) {
|
||||
char32_t cpt2 = _get_cpt(pos+num_whitespaces);
|
||||
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
|
||||
if (cpt2 == '\r' || cpt2 == '\n') {
|
||||
last_end_r_or_n = pos + num_whitespaces + 1;
|
||||
}
|
||||
|
@ -450,7 +452,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
}
|
||||
|
||||
// regex: \s+(?!\S)
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
|
||||
pos += num_whitespaces - 1;
|
||||
_add_token(pos);
|
||||
continue;
|
||||
|
@ -594,6 +596,7 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
|
|||
|
||||
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
|
||||
std::vector<uint32_t> result;
|
||||
result.reserve(utf8.size());
|
||||
size_t offset = 0;
|
||||
while (offset < utf8.size()) {
|
||||
result.push_back(unicode_cpt_from_utf8(utf8, offset));
|
||||
|
@ -626,7 +629,7 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
|
|||
return map.at(utf8);
|
||||
}
|
||||
|
||||
char32_t unicode_tolower(char32_t cp) {
|
||||
uint32_t unicode_tolower(uint32_t cp) {
|
||||
auto it = unicode_map_lowercase.find(cp);
|
||||
return it == unicode_map_lowercase.end() ? cp : it->second;
|
||||
}
|
||||
|
@ -679,10 +682,14 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
continue;
|
||||
}
|
||||
|
||||
const int cpt_flag = unicode_cpt_flags(cpts[i]).category_flag();
|
||||
const auto flags = unicode_cpt_flags(cpts[i]);
|
||||
|
||||
if (k_ucat_cpt.find(cpt_flag) != k_ucat_cpt.end()) {
|
||||
text_collapsed[i] = k_ucat_cpt.at(cpt_flag);
|
||||
if (flags.is_whitespace) {
|
||||
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
|
||||
//text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
|
||||
text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
|
||||
} else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
|
||||
text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
|
||||
} else {
|
||||
text_collapsed[i] = (char) 0xD0; // fallback
|
||||
}
|
||||
|
@ -766,9 +773,16 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
|
||||
} else {
|
||||
// no unicode category used, we can use std::wregex directly
|
||||
const std::wstring wtext = unicode_wstring_from_utf8(text);
|
||||
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
|
||||
|
||||
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
|
||||
std::wstring wtext(cpts.begin(), cpts.end());
|
||||
for (size_t i = 0; i < wtext.size(); ++i) {
|
||||
if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
|
||||
wtext[i] = 0x0B;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("text: %s\n", text.c_str());
|
||||
//printf("regex_expr: %s\n", regex_expr.c_str());
|
||||
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
|
||||
|
|
|
@ -58,6 +58,6 @@ codepoint_flags unicode_cpt_flags(const std::string & utf8);
|
|||
std::string unicode_byte_to_utf8(uint8_t byte);
|
||||
uint8_t unicode_utf8_to_byte(const std::string & utf8);
|
||||
|
||||
char32_t unicode_tolower(char32_t cp);
|
||||
uint32_t unicode_tolower(uint32_t cp);
|
||||
|
||||
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);
|
||||
|
|
12
vulkan-shaders/add.comp
Normal file
12
vulkan-shaders/add.comp
Normal file
|
@ -0,0 +1,12 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
|
||||
}
|
71
vulkan-shaders/argsort.comp
Normal file
71
vulkan-shaders/argsort.comp
Normal file
|
@ -0,0 +1,71 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
#define BLOCK_SIZE 1024
|
||||
#define ASC 0
|
||||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) buffer D {int data_d[];};
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint ncols;
|
||||
uint ncols_pad;
|
||||
uint order;
|
||||
} p;
|
||||
|
||||
shared int dst_row[BLOCK_SIZE];
|
||||
|
||||
void swap(uint idx0, uint idx1) {
|
||||
int tmp = dst_row[idx0];
|
||||
dst_row[idx0] = dst_row[idx1];
|
||||
dst_row[idx1] = tmp;
|
||||
}
|
||||
|
||||
void main() {
|
||||
// bitonic sort
|
||||
const int col = int(gl_LocalInvocationID.x);
|
||||
const uint row = gl_WorkGroupID.y;
|
||||
|
||||
if (col >= p.ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint row_offset = row * p.ncols;
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
barrier();
|
||||
|
||||
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
|
||||
for (uint j = k / 2; j > 0; j /= 2) {
|
||||
const uint ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= p.ncols ||
|
||||
(dst_row[ixj] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= p.ncols ||
|
||||
(dst_row[col] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
}
|
||||
|
||||
if (col < p.ncols) {
|
||||
data_d[row_offset + col] = dst_row[col];
|
||||
}
|
||||
}
|
13
vulkan-shaders/clamp.comp
Normal file
13
vulkan-shaders/clamp.comp
Normal file
|
@ -0,0 +1,13 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
|
||||
}
|
16
vulkan-shaders/copy.comp
Normal file
16
vulkan-shaders/copy.comp
Normal file
|
@ -0,0 +1,16 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
|
||||
#else
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)];
|
||||
#endif
|
||||
}
|
20
vulkan-shaders/dequant_f32.comp
Normal file
20
vulkan-shaders/dequant_f32.comp
Normal file
|
@ -0,0 +1,20 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {float data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_GlobalInvocationID.x * 16;
|
||||
|
||||
if (i >= p.nel) {
|
||||
return;
|
||||
}
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 16; l++) {
|
||||
data_b[i + l] = D_TYPE(data_a[i + l]);
|
||||
}
|
||||
}
|
60
vulkan-shaders/dequant_funcs.comp
Normal file
60
vulkan-shaders/dequant_funcs.comp
Normal file
|
@ -0,0 +1,60 @@
|
|||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_F32)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_F16)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_0)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a[a_offset + ib].d);
|
||||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q4_1)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a[a_offset + ib].d);
|
||||
const float m = float(data_a[a_offset + ib].m);
|
||||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return vec2(vui & 0xF, vui >> 4) * d + m;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_0)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a[a_offset + ib].d);
|
||||
const uint uint_qh = uint(data_a[a_offset + ib].qh[1]) << 16 | data_a[a_offset + ib].qh[0];
|
||||
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
|
||||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q5_1)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a[a_offset + ib].d);
|
||||
const float m = float(data_a[a_offset + ib].m);
|
||||
const uint uint_qh = data_a[a_offset + ib].qh;
|
||||
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
|
||||
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
|
||||
return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_Q8_0)
|
||||
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
|
||||
const float d = float(data_a[a_offset + ib].d);
|
||||
return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1])) * d;
|
||||
}
|
||||
#endif
|
13
vulkan-shaders/dequant_head.comp
Normal file
13
vulkan-shaders/dequant_head.comp
Normal file
|
@ -0,0 +1,13 @@
|
|||
#extension GL_EXT_control_flow_attributes : require
|
||||
#extension GL_EXT_shader_16bit_storage : require
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint M;
|
||||
uint K;
|
||||
uint stride_a;
|
||||
uint stride_b;
|
||||
uint nel;
|
||||
} p;
|
||||
|
||||
#include "types.comp"
|
34
vulkan-shaders/dequant_q2_k.comp
Normal file
34
vulkan-shaders/dequant_q2_k.comp
Normal file
|
@ -0,0 +1,34 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
|
||||
const uint i = gl_WorkGroupID.x * 256 + wgy;
|
||||
if (i >= p.M * p.K / QUANT_K) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
const uint ip = tid / 32;
|
||||
const uint il = tid - 32 * ip;
|
||||
const uint is = 8 * ip + il / 16;
|
||||
|
||||
const uint y_idx = i * QUANT_K + 128 * ip + il;
|
||||
|
||||
const uint ql_idx = 32 * ip + il;
|
||||
const uint8_t qs = data_a[i].qs[32 * ip + il];
|
||||
|
||||
FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
|
||||
FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
|
||||
data_b[y_idx + 0] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+0] & 0xF) * ((qs >> 0) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+0] >> 4));
|
||||
data_b[y_idx + 32] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+2] & 0xF) * ((qs >> 2) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+2] >> 4));
|
||||
data_b[y_idx + 64] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+4] & 0xF) * ((qs >> 4) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+4] >> 4));
|
||||
data_b[y_idx + 96] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+6] & 0xF) * ((qs >> 6) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+6] >> 4));
|
||||
}
|
||||
}
|
42
vulkan-shaders/dequant_q3_k.comp
Normal file
42
vulkan-shaders/dequant_q3_k.comp
Normal file
|
@ -0,0 +1,42 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
|
||||
const uint i = uint(gl_WorkGroupID.x * 256 + wgy);
|
||||
if (i >= p.M * p.K / QUANT_K) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint r = gl_LocalInvocationID.x / 4;
|
||||
const uint tid = r / 2;
|
||||
const uint is0 = r % 2;
|
||||
const uint l0 = 16 * is0 + 4 * (gl_LocalInvocationID.x % 4);
|
||||
const uint n = tid / 4;
|
||||
const uint j = tid - 4*n;
|
||||
|
||||
const uint8_t m = uint8_t(1 << (4*n + j));
|
||||
const uint is = 8*n + 2*j + is0;
|
||||
const uint shift = 2*j;
|
||||
|
||||
const int8_t us = int8_t(is < 4 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+8] >> 0) & 3) << 4) :
|
||||
is < 8 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+4] >> 2) & 3) << 4) :
|
||||
is < 12 ? (data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is+0] >> 4) & 3) << 4) :
|
||||
(data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is-4] >> 6) & 3) << 4));
|
||||
const FLOAT_TYPE d_all = FLOAT_TYPE(data_a[i].d);
|
||||
const FLOAT_TYPE dl = d_all * FLOAT_TYPE(us - 32);
|
||||
|
||||
const uint y_idx = i * QUANT_K + 128 * n + 32 * j;
|
||||
const uint qs_idx = 32*n;
|
||||
|
||||
for (uint l = l0; l < l0 + 4; ++l) {
|
||||
data_b[y_idx + l] = D_TYPE(dl * FLOAT_TYPE(int8_t((data_a[i].qs[qs_idx + l] >> shift) & 3) - (((data_a[i].hmask[l] & m) != 0) ? 0 : 4)));
|
||||
}
|
||||
}
|
||||
}
|
32
vulkan-shaders/dequant_q4_0.comp
Normal file
32
vulkan-shaders/dequant_q4_0.comp
Normal file
|
@ -0,0 +1,32 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {block_q4_0 data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x % 64;
|
||||
const uint il = tid/32;
|
||||
const uint ir = tid%32;
|
||||
const uint ib = 32*i + ir;
|
||||
if (ib >= p.nel / 32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint b_idx = 1024*i + 32*ir + 8*il;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const float dm = -8.0f * d;
|
||||
|
||||
const uint q_idx = 8*il;
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 8; ++l) {
|
||||
data_b[b_idx + l + 0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + dm);
|
||||
data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >> 4) + dm);
|
||||
}
|
||||
}
|
32
vulkan-shaders/dequant_q4_1.comp
Normal file
32
vulkan-shaders/dequant_q4_1.comp
Normal file
|
@ -0,0 +1,32 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {block_q4_1 data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x % 64;
|
||||
const uint il = tid/32;
|
||||
const uint ir = tid%32;
|
||||
const uint ib = 32*i + ir;
|
||||
if (ib >= p.nel / 32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint b_idx = 1024*i + 32*ir + 8*il;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const float m = float(data_a[ib].m);
|
||||
|
||||
const uint q_idx = 8*il;
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 8; ++l) {
|
||||
data_b[b_idx + l + 0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + m);
|
||||
data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >> 4) + m);
|
||||
}
|
||||
}
|
56
vulkan-shaders/dequant_q4_k.comp
Normal file
56
vulkan-shaders/dequant_q4_k.comp
Normal file
|
@ -0,0 +1,56 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
|
||||
const uint i = gl_WorkGroupID.x * 256 + wgy;
|
||||
if (i >= p.M * p.K / QUANT_K) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
const uint il = tid / 8;
|
||||
const uint ir = tid % 8;
|
||||
const uint is = 2 * il;
|
||||
const uint n = 4;
|
||||
|
||||
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
|
||||
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
|
||||
|
||||
const uint y_idx = i * QUANT_K + 64 * il + n * ir;
|
||||
const uint qs_idx = 32*il + n * ir;
|
||||
|
||||
uint8_t sc;
|
||||
uint8_t m;
|
||||
if (is < 4) {
|
||||
sc = uint8_t(data_a[i].scales[is] & 63);
|
||||
m = uint8_t(data_a[i].scales[is + 4] & 63);
|
||||
} else {
|
||||
sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
|
||||
m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
|
||||
}
|
||||
const FLOAT_TYPE d1 = dall * sc;
|
||||
const FLOAT_TYPE m1 = dmin * m;
|
||||
|
||||
if (is < 4) {
|
||||
sc = uint8_t(data_a[i].scales[is + 1] & 63);
|
||||
m = uint8_t(data_a[i].scales[is + 5] & 63);
|
||||
} else {
|
||||
sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
|
||||
m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
|
||||
}
|
||||
const FLOAT_TYPE d2 = dall * sc;
|
||||
const FLOAT_TYPE m2 = dmin * m;
|
||||
|
||||
[[unroll]] for (uint l = 0; l < n; ++l) {
|
||||
data_b[y_idx + l ] = D_TYPE(d1 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] & 0xF) - m1);
|
||||
data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] >> 4) - m2);
|
||||
}
|
||||
}
|
||||
}
|
34
vulkan-shaders/dequant_q5_0.comp
Normal file
34
vulkan-shaders/dequant_q5_0.comp
Normal file
|
@ -0,0 +1,34 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {block_q5_0 data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x % 64;
|
||||
const uint il = tid/32;
|
||||
const uint ir = tid%32;
|
||||
const uint ib = 32*i + ir;
|
||||
if (ib >= p.nel / 32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint b_idx = 1024*i + 32*ir + 8*il;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const uint qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
|
||||
|
||||
const uint q_idx = 8*il;
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 8; ++l) {
|
||||
const uint iqs = q_idx + l;
|
||||
const uint vui = uint(data_a[ib].qs[iqs]);
|
||||
data_b[b_idx + l + 0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10)) - 16.0f));
|
||||
data_b[b_idx + l + 16] = D_TYPE(d * (((vui >> 4) | ((qh >> (iqs + 12)) & 0x10)) - 16.0f));
|
||||
}
|
||||
}
|
35
vulkan-shaders/dequant_q5_1.comp
Normal file
35
vulkan-shaders/dequant_q5_1.comp
Normal file
|
@ -0,0 +1,35 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {block_q5_1 data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x % 64;
|
||||
const uint il = tid/32;
|
||||
const uint ir = tid%32;
|
||||
const uint ib = 32*i + ir;
|
||||
if (ib >= p.nel / 32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint b_idx = 1024*i + 32*ir + 8*il;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const float m = float(data_a[ib].m);
|
||||
const uint qh = data_a[ib].qh;
|
||||
|
||||
const uint q_idx = 8*il;
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 8; ++l) {
|
||||
const uint iqs = q_idx + l;
|
||||
const uint vui = uint(data_a[ib].qs[iqs]);
|
||||
data_b[b_idx + l + 0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10))) + m);
|
||||
data_b[b_idx + l + 16] = D_TYPE(d * (((vui >> 4) | ((qh >> (iqs + 12)) & 0x10))) + m);
|
||||
}
|
||||
}
|
58
vulkan-shaders/dequant_q5_k.comp
Normal file
58
vulkan-shaders/dequant_q5_k.comp
Normal file
|
@ -0,0 +1,58 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
|
||||
const uint i = gl_WorkGroupID.x * 256 + wgy;
|
||||
if (i >= p.M * p.K / QUANT_K) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
const uint il = tid / 16;
|
||||
const uint ir = tid % 16;
|
||||
const uint is = 2 * il;
|
||||
|
||||
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
|
||||
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
|
||||
|
||||
const uint y_idx = i * QUANT_K + 64 * il + 2 * ir;
|
||||
const uint qs_idx = 32*il + 2 * ir;
|
||||
const uint qh_idx = 2 * ir;
|
||||
|
||||
uint8_t sc;
|
||||
uint8_t m;
|
||||
if (is < 4) {
|
||||
sc = uint8_t(data_a[i].scales[is] & 63);
|
||||
m = uint8_t(data_a[i].scales[is + 4] & 63);
|
||||
} else {
|
||||
sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
|
||||
m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
|
||||
}
|
||||
const FLOAT_TYPE d1 = dall * sc;
|
||||
const FLOAT_TYPE m1 = dmin * m;
|
||||
|
||||
if (is < 4) {
|
||||
sc = uint8_t(data_a[i].scales[is + 1] & 63);
|
||||
m = uint8_t(data_a[i].scales[is + 5] & 63);
|
||||
} else {
|
||||
sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
|
||||
m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
|
||||
}
|
||||
const FLOAT_TYPE d2 = dall * sc;
|
||||
const FLOAT_TYPE m2 = dmin * m;
|
||||
|
||||
const uint8_t hm1 = uint8_t(1 << (2 * il ));
|
||||
const uint8_t hm2 = uint8_t(1 << (2 * il + 1));
|
||||
data_b[y_idx ] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx ] & 0xF) + (((data_a[i].qh[qh_idx ] & hm1) != 0) ? 16 : 0)) - m1);
|
||||
data_b[y_idx + 1] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] & 0xF) + (((data_a[i].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1);
|
||||
data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx ] >> 4) + (((data_a[i].qh[qh_idx ] & hm2) != 0) ? 16 : 0)) - m2);
|
||||
data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] >> 4) + (((data_a[i].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2);
|
||||
}
|
||||
}
|
33
vulkan-shaders/dequant_q6_k.comp
Normal file
33
vulkan-shaders/dequant_q6_k.comp
Normal file
|
@ -0,0 +1,33 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
|
||||
const uint i = gl_WorkGroupID.x * 256 + wgy;
|
||||
if (i >= p.M * p.K / QUANT_K) {
|
||||
return;
|
||||
}
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
const uint ip = tid / 32;
|
||||
const uint il = tid - 32 * ip;
|
||||
const uint is = 8 * ip + il / 16;
|
||||
|
||||
const uint y_idx = i * QUANT_K + 128 * ip + il;
|
||||
|
||||
const uint ql_idx = 64 * ip + il;
|
||||
const uint8_t qh = data_a[i].qh[32 * ip + il];
|
||||
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[i].d);
|
||||
|
||||
data_b[y_idx + 0] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 0] * (int8_t((data_a[i].ql[ql_idx + 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
|
||||
data_b[y_idx + 32] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 2] * (int8_t((data_a[i].ql[ql_idx + 32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
|
||||
data_b[y_idx + 64] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 4] * (int8_t((data_a[i].ql[ql_idx + 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32)));
|
||||
data_b[y_idx + 96] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 6] * (int8_t((data_a[i].ql[ql_idx + 32] >> 4) | (((qh >> 6) & 3) << 4)) - 32)));
|
||||
}
|
||||
}
|
31
vulkan-shaders/dequant_q8_0.comp
Normal file
31
vulkan-shaders/dequant_q8_0.comp
Normal file
|
@ -0,0 +1,31 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {block_q8_0 data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
|
||||
|
||||
const uint tid = gl_LocalInvocationID.x % 64;
|
||||
const uint il = tid/32;
|
||||
const uint ir = tid%32;
|
||||
const uint ib = 32*i + ir;
|
||||
if (ib >= p.nel / 32) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint b_idx = 1024*i + 32*ir + 16*il;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
|
||||
const uint q_idx = 16*il;
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 16; l += 2) {
|
||||
data_b[b_idx + l ] = D_TYPE(d * data_a[ib].qs[q_idx + l ]);
|
||||
data_b[b_idx + l + 1] = D_TYPE(d * data_a[ib].qs[q_idx + l + 1]);
|
||||
}
|
||||
}
|
34
vulkan-shaders/diag_mask_inf.comp
Normal file
34
vulkan-shaders/diag_mask_inf.comp
Normal file
|
@ -0,0 +1,34 @@
|
|||
#version 450
|
||||
|
||||
#extension GL_EXT_shader_16bit_storage : require
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint ncols;
|
||||
uint rows_per_channel;
|
||||
uint n_past;
|
||||
} p;
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
void main() {
|
||||
const uint col = gl_GlobalInvocationID.y;
|
||||
const uint row = gl_GlobalInvocationID.x;
|
||||
|
||||
if (col >= p.ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint i = row*p.ncols + col;
|
||||
if (col > p.n_past + row % p.rows_per_channel) {
|
||||
data_d[i] = D_TYPE(uintBitsToFloat(0xFF800000));
|
||||
} else {
|
||||
data_d[i] = D_TYPE(data_a[i]);
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue