llama : combine repetition, frequency and presence penalties in 1 call

This commit is contained in:
Georgi Gerganov 2023-10-20 17:05:46 +03:00
parent cd1e937821
commit 6e6587656f
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
5 changed files with 51 additions and 118 deletions

View file

@ -3,7 +3,7 @@
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params;
result->params = params;
result->grammar = nullptr;
// if there is a grammar, parse it
@ -71,17 +71,16 @@ llama_token llama_sampling_sample(
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const int n_ctx = llama_n_ctx(ctx_main);
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_prev : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
@ -97,7 +96,7 @@ llama_token llama_sampling_sample(
float * logits = llama_get_logits_ith(ctx_main, idx);
// Apply params.logit_bias map
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
@ -117,14 +116,10 @@ llama_token llama_sampling_sample(
// apply penalties
if (!prev.empty()) {
const float nl_logit = logits[llama_token_nl(ctx_main)];
const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx_main, &cur_p,
prev.data() + prev.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
llama_sample_repetition_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - repeat_last_n,
repeat_last_n, repeat_penalty, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
@ -141,7 +136,7 @@ llama_token llama_sampling_sample(
}
if (temp <= 0) {
// Greedy sampling
// greedy sampling
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
@ -152,8 +147,9 @@ llama_token llama_sampling_sample(
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// Temperature sampling
// temperature sampling
size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);