llama : add custom RoPE (#2054)
* Implement customizable RoPE The original RoPE has pre-defined parameters theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2] Our customizable RoPE, ggml_rope_custom_inplace, uses theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2] with the default matches the original scale = 1.0 base = 10000 The new command line arguments --rope-freq-base --rope-freq-scale set the two new RoPE parameter. Recent researches show changing these two parameters extends the context limit with minimal loss. 1. Extending Context to 8K kaiokendev https://kaiokendev.github.io/til#extending-context-to-8k 2. Extending Context Window of Large Language Models via Positional Interpolation Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian https://arxiv.org/abs/2306.15595 3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/user/bloc97 https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ For the bold, try adding the following command line parameters to your favorite model: -c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5 * ggml-metal: fix custom rope * common: fix argument names in help * llama: increase MEM_REQ_EVAL for MODEL_3B It avoids crashing for quantized weights on CPU. Better ways to calculate the required buffer size would be better. * llama: make MEM_REQ_EVAL depend on n_ctx * server: use proper Content-Type in curl examples Without the header Content-Type: application/json, curl will POST with Content-Type: application/x-www-form-urlencoded Though our simple server doesn't care, the httplib.h used has a limit with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192 With Content-Type: application/json, we can send large json data. * style : minor fixes, mostly indentations * ggml : fix asserts --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
a6803cab94
commit
6e7cca4047
12 changed files with 185 additions and 67 deletions
50
ggml.c
50
ggml.c
|
@ -6956,6 +6956,8 @@ struct ggml_tensor * ggml_rope_impl(
|
|||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
int n_ctx,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(n_past >= 0);
|
||||
|
@ -6969,12 +6971,14 @@ struct ggml_tensor * ggml_rope_impl(
|
|||
|
||||
ggml_scratch_save(ctx);
|
||||
|
||||
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
|
||||
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
|
||||
|
||||
((int32_t *) b->data)[0] = n_past;
|
||||
((int32_t *) b->data)[1] = n_dims;
|
||||
((int32_t *) b->data)[2] = mode;
|
||||
((int32_t *) b->data)[3] = n_ctx;
|
||||
memcpy((int32_t *) b->data + 4, &freq_base, sizeof(float));
|
||||
memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float));
|
||||
|
||||
ggml_scratch_load(ctx);
|
||||
|
||||
|
@ -6993,7 +6997,7 @@ struct ggml_tensor * ggml_rope(
|
|||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx) {
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rope_inplace(
|
||||
|
@ -7003,7 +7007,19 @@ struct ggml_tensor * ggml_rope_inplace(
|
|||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx) {
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rope_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
int n_ctx) {
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, freq_base, freq_scale, n_ctx, true);
|
||||
}
|
||||
|
||||
// ggml_rope_back
|
||||
|
@ -12074,16 +12090,21 @@ static void ggml_compute_forward_rope_f32(
|
|||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 4);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 6);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
||||
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
|
@ -12112,7 +12133,7 @@ static void ggml_compute_forward_rope_f32(
|
|||
// row index used to determine which thread to use
|
||||
int ir = 0;
|
||||
|
||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
@ -12124,7 +12145,7 @@ static void ggml_compute_forward_rope_f32(
|
|||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
|
||||
float theta = (float)p;
|
||||
float theta = freq_scale * (float)p;
|
||||
|
||||
if (is_glm) {
|
||||
theta = MIN(p, n_ctx - 2);
|
||||
|
@ -12201,16 +12222,21 @@ static void ggml_compute_forward_rope_f16(
|
|||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 4);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 6);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
||||
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
|
@ -12239,7 +12265,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
// row index used to determine which thread to use
|
||||
int ir = 0;
|
||||
|
||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
@ -12251,7 +12277,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
|
||||
float theta = (float)p;
|
||||
float theta = freq_scale * (float)p;
|
||||
|
||||
if (is_glm) {
|
||||
theta = MIN(p, n_ctx - 2);
|
||||
|
@ -12312,7 +12338,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
|
@ -15710,7 +15736,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
// necessary for llama
|
||||
if (src0->grad) {
|
||||
assert(src1->type == GGML_TYPE_I32);
|
||||
assert(ggml_nelements(src1) == 4);
|
||||
assert(ggml_nelements(src1) == 6);
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
|
@ -15731,7 +15757,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
{
|
||||
if (src0->grad) {
|
||||
assert(src1->type == GGML_TYPE_I32);
|
||||
assert(ggml_nelements(src1) == 4);
|
||||
assert(ggml_nelements(src1) == 3);
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue