llama : support for Llama-3_1-Nemotron-51B (#10669)
* conflict resolution * move comments after bracket to its own line
This commit is contained in:
parent
dab76c92cc
commit
6f0c9e034b
4 changed files with 471 additions and 1 deletions
|
@ -1692,6 +1692,184 @@ class LlamaModel(Model):
|
|||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("DeciLMForCausalLM")
|
||||
class DeciModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.DECI
|
||||
|
||||
@staticmethod
|
||||
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
|
||||
# DeciLM-specific code
|
||||
intermediate_size = int(2 * ffn_mult * n_embd / 3)
|
||||
return DeciModel._find_multiple(intermediate_size, 256)
|
||||
|
||||
@staticmethod
|
||||
def _find_multiple(n: int, k: int) -> int:
|
||||
# DeciLM-specific code
|
||||
if n % k == 0:
|
||||
return n
|
||||
return n + k - (n % k)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
|
||||
_block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
|
||||
assert self.block_count == len(_block_configs)
|
||||
self._num_kv_heads = list()
|
||||
self._num_heads = list()
|
||||
_ffn_multipliers = list()
|
||||
# ***linear attention layer***
|
||||
# if n_heads_in_group is None and replace_with_linear is True
|
||||
# then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
|
||||
# ***attention-free layer***
|
||||
# if n_heads_in_group is None and replace_with_linear is False
|
||||
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0
|
||||
# ***normal attention-layer***
|
||||
# if n_heads_in_group is not None, then
|
||||
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
|
||||
# _num_heads[il] is num_attention_head
|
||||
for il in range(len(_block_configs)):
|
||||
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
|
||||
if _block_configs[il]["attention"]["replace_with_linear"] is True:
|
||||
self._num_kv_heads.append(0)
|
||||
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||
else:
|
||||
self._num_kv_heads.append(0)
|
||||
self._num_heads.append(0)
|
||||
else:
|
||||
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
|
||||
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||
assert self.block_count == len(self._num_kv_heads)
|
||||
assert self.block_count == len(self._num_heads)
|
||||
assert self.block_count == len(_ffn_multipliers)
|
||||
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
|
||||
assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
|
||||
assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
|
||||
self._ffn_dims: list[int] = [
|
||||
DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
|
||||
for multiplier in _ffn_multipliers
|
||||
]
|
||||
|
||||
def set_vocab(self):
|
||||
# Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
|
||||
# eos_token from '|eot_id|' to '|end_of_text|'
|
||||
if self.hparams.get("vocab_size", 128256) == 128256:
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(
|
||||
self.dir_model, load_merges=True,
|
||||
special_token_types = ['bos', 'eos', 'eom', 'eot']
|
||||
)
|
||||
special_vocab._set_special_token("bos", 128000)
|
||||
special_vocab._set_special_token("eos", 128001)
|
||||
special_vocab._set_special_token("eom", 128008)
|
||||
special_vocab._set_special_token("eot", 128009)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
else:
|
||||
# DeciLM-7B
|
||||
self._set_vocab_llama_hf()
|
||||
# self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
|
||||
assert self.block_count == len(self._num_kv_heads)
|
||||
assert self.block_count == len(self._num_heads)
|
||||
assert self.block_count == len(self._ffn_dims)
|
||||
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
|
||||
self.gguf_writer.add_head_count(self._num_heads)
|
||||
self.gguf_writer.add_feed_forward_length(self._ffn_dims)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
else: # DeciLM-7B
|
||||
super().set_gguf_parameters()
|
||||
if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
|
||||
self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
|
||||
assert self.block_count == len(self._num_kv_heads)
|
||||
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
if bid is not None:
|
||||
if "num_key_value_heads_per_layer" in self.hparams:
|
||||
n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
|
||||
elif "block_configs" in self.hparams:
|
||||
n_kv_head = self._num_kv_heads[bid]
|
||||
n_head = self._num_heads[bid]
|
||||
else:
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
else:
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = DeciModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||||
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||||
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
assert low_freq_wavelen != high_freq_wavelen
|
||||
|
||||
rope_factors = []
|
||||
for freq in freqs:
|
||||
wavelen = 2 * math.pi / freq
|
||||
if wavelen < high_freq_wavelen:
|
||||
rope_factors.append(1)
|
||||
elif wavelen > low_freq_wavelen:
|
||||
rope_factors.append(factor)
|
||||
else:
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
|
||||
@Model.register("BitnetForCausalLM")
|
||||
class BitnetModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BITNET
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue