llama : support for Llama-3_1-Nemotron-51B (#10669)

* conflict resolution

* move comments after bracket to its own line
This commit is contained in:
ymcki 2024-12-23 08:22:33 +08:00 committed by GitHub
parent dab76c92cc
commit 6f0c9e034b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 471 additions and 1 deletions

View file

@ -1692,6 +1692,184 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeciLMForCausalLM")
class DeciModel(Model):
model_arch = gguf.MODEL_ARCH.DECI
@staticmethod
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
# DeciLM-specific code
intermediate_size = int(2 * ffn_mult * n_embd / 3)
return DeciModel._find_multiple(intermediate_size, 256)
@staticmethod
def _find_multiple(n: int, k: int) -> int:
# DeciLM-specific code
if n % k == 0:
return n
return n + k - (n % k)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
_block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
assert self.block_count == len(_block_configs)
self._num_kv_heads = list()
self._num_heads = list()
_ffn_multipliers = list()
# ***linear attention layer***
# if n_heads_in_group is None and replace_with_linear is True
# then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
# ***attention-free layer***
# if n_heads_in_group is None and replace_with_linear is False
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0
# ***normal attention-layer***
# if n_heads_in_group is not None, then
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
# _num_heads[il] is num_attention_head
for il in range(len(_block_configs)):
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
if _block_configs[il]["attention"]["replace_with_linear"] is True:
self._num_kv_heads.append(0)
self._num_heads.append(self.hparams["num_attention_heads"])
else:
self._num_kv_heads.append(0)
self._num_heads.append(0)
else:
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
self._num_heads.append(self.hparams["num_attention_heads"])
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(_ffn_multipliers)
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
self._ffn_dims: list[int] = [
DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
for multiplier in _ffn_multipliers
]
def set_vocab(self):
# Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
# eos_token from '|eot_id|' to '|end_of_text|'
if self.hparams.get("vocab_size", 128256) == 128256:
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(
self.dir_model, load_merges=True,
special_token_types = ['bos', 'eos', 'eom', 'eot']
)
special_vocab._set_special_token("bos", 128000)
special_vocab._set_special_token("eos", 128001)
special_vocab._set_special_token("eom", 128008)
special_vocab._set_special_token("eot", 128009)
special_vocab.add_to_gguf(self.gguf_writer)
else:
# DeciLM-7B
self._set_vocab_llama_hf()
# self._set_vocab_gpt2()
def set_gguf_parameters(self):
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(self._ffn_dims)
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
self.gguf_writer.add_head_count(self._num_heads)
self.gguf_writer.add_feed_forward_length(self._ffn_dims)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_file_type(self.ftype)
else: # DeciLM-7B
super().set_gguf_parameters()
if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
assert self.block_count == len(self._num_kv_heads)
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
if bid is not None:
if "num_key_value_heads_per_layer" in self.hparams:
n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
elif "block_configs" in self.hparams:
n_kv_head = self._num_kv_heads[bid]
n_head = self._num_heads[bid]
else:
n_kv_head = self.hparams.get("num_key_value_heads")
else:
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = DeciModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
assert low_freq_wavelen != high_freq_wavelen
rope_factors = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
rope_factors.append(1)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
def prepare_tensors(self):
super().prepare_tensors()
@Model.register("BitnetForCausalLM")
class BitnetModel(Model):
model_arch = gguf.MODEL_ARCH.BITNET