metal: don't call find_concurrency automatically.
This commit is contained in:
parent
5d0dabe19c
commit
6f489a77dd
3 changed files with 48 additions and 22 deletions
|
@ -61,6 +61,13 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
|||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// try to find operations that can be run concurrently in the graph
|
||||
// you should run it again if the topology of your graph changes
|
||||
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
||||
// if the graph has been optimized for concurrently dispatch
|
||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
|
60
ggml-metal.m
60
ggml-metal.m
|
@ -221,6 +221,13 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
|||
ctx->n_cb = n_cb;
|
||||
}
|
||||
|
||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
||||
if (ctx->concur_list_len) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||
// Metal buffer based on the host memory pointer
|
||||
|
@ -441,9 +448,15 @@ void ggml_metal_graph_compute(
|
|||
struct ggml_metal_context * ctx,
|
||||
struct ggml_cgraph * gf) {
|
||||
metal_printf("%s: evaluating graph\n", __func__);
|
||||
|
||||
if (!ctx->concur_list_len) {
|
||||
ggml_metal_graph_find_concurrency(ctx,gf);
|
||||
|
||||
// if there is ctx->concur_list, dispatch concurrently
|
||||
// else fallback to serial dispatch
|
||||
MTLComputePassDescriptor * encoder_descriptor = MTLComputePassDescriptor.computePassDescriptor;
|
||||
encoder_descriptor.dispatchType = MTLDispatchTypeSerial;
|
||||
int all_nodes_len = gf->n_nodes;
|
||||
if (ctx->concur_list_len) {
|
||||
encoder_descriptor.dispatchType = MTLDispatchTypeConcurrent;
|
||||
all_nodes_len = ctx->concur_list_len;
|
||||
}
|
||||
// create multiple command buffers and enqueue them
|
||||
// then, we encode the graph into the command buffers in parallel
|
||||
|
@ -463,7 +476,7 @@ void ggml_metal_graph_compute(
|
|||
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||
const int n_nodes_per_cb = (ctx->concur_list_len + n_cb - 1) / n_cb;
|
||||
const int n_nodes_per_cb = (all_nodes_len + n_cb - 1) / n_cb;
|
||||
|
||||
dispatch_async(queue, ^{
|
||||
size_t offs_src0 = 0;
|
||||
|
@ -475,13 +488,16 @@ void ggml_metal_graph_compute(
|
|||
id<MTLComputeCommandEncoder> encoder = nil;
|
||||
|
||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||
const int node_end = (cb_idx == n_cb - 1) ? ctx->concur_list_len : (cb_idx + 1) * n_nodes_per_cb;
|
||||
const int node_end = (cb_idx == n_cb - 1) ? all_nodes_len : (cb_idx + 1) * n_nodes_per_cb;
|
||||
|
||||
for (int ind = node_start; ind < node_end; ++ind) {
|
||||
int i = ctx->concur_list[ind];
|
||||
int i = ind;
|
||||
if (ctx->concur_list_len) {
|
||||
i = ctx->concur_list[ind];
|
||||
}
|
||||
if (i == -1) {
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
continue;
|
||||
}
|
||||
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
||||
|
@ -557,7 +573,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_ADD:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
|
@ -578,7 +594,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_MUL:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
|
@ -599,7 +615,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_SCALE:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const float scale = *(const float *) src1->data;
|
||||
|
@ -616,7 +632,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_SILU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_silu];
|
||||
|
@ -630,7 +646,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_RELU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_relu];
|
||||
|
@ -644,7 +660,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_GELU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
||||
|
@ -658,7 +674,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const int nth = 32;
|
||||
|
@ -676,7 +692,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||
|
@ -739,7 +755,7 @@ void ggml_metal_graph_compute(
|
|||
}
|
||||
} else {
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
int nth0 = 32;
|
||||
|
@ -866,7 +882,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
switch (src0->type) {
|
||||
|
@ -895,7 +911,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_RMS_NORM:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const float eps = 1e-6f;
|
||||
|
@ -917,7 +933,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_NORM:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const float eps = 1e-5f;
|
||||
|
@ -939,7 +955,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_ALIBI:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
||||
|
@ -982,7 +998,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_ROPE:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
|
@ -1026,7 +1042,7 @@ void ggml_metal_graph_compute(
|
|||
case GGML_OP_CONT:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDispatchType: MTLDispatchTypeConcurrent];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: encoder_descriptor];
|
||||
}
|
||||
|
||||
const int nth = 32;
|
||||
|
|
|
@ -1710,6 +1710,9 @@ static bool llama_eval_internal(
|
|||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (lctx.ctx_metal && N == 1) {
|
||||
if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
|
||||
ggml_metal_graph_find_concurrency(lctx.ctx_metal,&gf);
|
||||
}
|
||||
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
|
||||
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
|
||||
ggml_metal_get_tensor (lctx.ctx_metal, cur);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue