Merge remote-tracking branch 'origin/master' into json-bounds2
This commit is contained in:
commit
6fa73649a4
144 changed files with 43989 additions and 36377 deletions
|
@ -26,3 +26,7 @@ indent_size = 2
|
|||
|
||||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
[examples/cvector-generator/*.txt]
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
|
1
.github/labeler.yml
vendored
1
.github/labeler.yml
vendored
|
@ -42,7 +42,6 @@ build:
|
|||
- cmake/**
|
||||
- CMakeLists.txt
|
||||
- CMakePresets.json
|
||||
- codecov.yml
|
||||
examples:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/**
|
||||
|
|
12
.github/pull_request_template.md
vendored
12
.github/pull_request_template.md
vendored
|
@ -1,5 +1,7 @@
|
|||
- Self Reported Review Complexity:
|
||||
- [ ] Review Complexity : Low
|
||||
- [ ] Review Complexity : Medium
|
||||
- [ ] Review Complexity : High
|
||||
- [ ] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
|
||||
|
||||
|
||||
- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
|
||||
- Self-reported review complexity:
|
||||
- [ ] Low
|
||||
- [ ] Medium
|
||||
- [ ] High
|
||||
|
|
2
.github/workflows/build.yml
vendored
2
.github/workflows/build.yml
vendored
|
@ -84,7 +84,7 @@ jobs:
|
|||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-latest
|
||||
runs-on: macos-12
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
|
40
.github/workflows/code-coverage.yml
vendored
40
.github/workflows/code-coverage.yml
vendored
|
@ -1,40 +0,0 @@
|
|||
name: Code Coverage
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8 lcov
|
||||
|
||||
- name: Build
|
||||
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
|
||||
|
||||
- name: Run tests
|
||||
run: CC=gcc-8 make test
|
||||
|
||||
- name: Generate coverage report
|
||||
run: |
|
||||
make coverage
|
||||
make lcov-report
|
||||
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
env:
|
||||
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
with:
|
||||
files: lcov-report/coverage.info
|
14
.github/workflows/server.yml
vendored
14
.github/workflows/server.yml
vendored
|
@ -87,8 +87,22 @@ jobs:
|
|||
exit 1
|
||||
fi
|
||||
|
||||
- name: Build (no OpenMP)
|
||||
id: cmake_build_no_openmp
|
||||
if: ${{ matrix.sanitizer == 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DLLAMA_OPENMP=OFF ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
|
|
113
.gitignore
vendored
113
.gitignore
vendored
|
@ -1,90 +1,123 @@
|
|||
*.o
|
||||
# Extensions
|
||||
|
||||
*.a
|
||||
*.so
|
||||
*.bat
|
||||
*.bin
|
||||
*.dll
|
||||
*.dot
|
||||
*.etag
|
||||
*.exe
|
||||
*.gcda
|
||||
*.gcno
|
||||
*.gcov
|
||||
*.gguf
|
||||
*.gguf.json
|
||||
*.bin
|
||||
*.exe
|
||||
*.dll
|
||||
*.log
|
||||
*.gcov
|
||||
*.gcno
|
||||
*.gcda
|
||||
*.dot
|
||||
*.bat
|
||||
*.tmp
|
||||
*.metallib
|
||||
*.etag
|
||||
*.lastModified
|
||||
.DS_Store
|
||||
.build/
|
||||
*.log
|
||||
*.metallib
|
||||
*.o
|
||||
*.so
|
||||
*.tmp
|
||||
|
||||
# IDE / OS
|
||||
|
||||
.cache/
|
||||
.ccls-cache/
|
||||
.direnv/
|
||||
.DS_Store
|
||||
.envrc
|
||||
.idea/
|
||||
.swiftpm
|
||||
.venv
|
||||
.clang-tidy
|
||||
.vs/
|
||||
.vscode/
|
||||
.idea/
|
||||
nppBackup
|
||||
|
||||
ggml-metal-embed.metal
|
||||
|
||||
lcov-report/
|
||||
# Coverage
|
||||
|
||||
gcovr-report/
|
||||
lcov-report/
|
||||
|
||||
# Build Artifacts
|
||||
|
||||
tags
|
||||
.build/
|
||||
build*
|
||||
!build-info.cmake
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
!build.zig
|
||||
cmake-build-*
|
||||
/libllama.so
|
||||
/llama-*
|
||||
android-ndk-*
|
||||
arm_neon.h
|
||||
cmake-build-*
|
||||
CMakeSettings.json
|
||||
compile_commands.json
|
||||
ggml-metal-embed.metal
|
||||
llama-batched-swift
|
||||
out/
|
||||
tmp/
|
||||
|
||||
# CI
|
||||
|
||||
!.github/workflows/*.yml
|
||||
|
||||
# Models
|
||||
|
||||
models/*
|
||||
models-mnt
|
||||
!models/.editorconfig
|
||||
!models/ggml-vocab-*.gguf*
|
||||
|
||||
/Pipfile
|
||||
/libllama.so
|
||||
/llama-*
|
||||
llama-batched-swift
|
||||
/common/build-info.cpp
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
CMakeSettings.json
|
||||
|
||||
__pycache__
|
||||
dist
|
||||
# Zig
|
||||
|
||||
zig-out/
|
||||
zig-cache/
|
||||
|
||||
# Logs
|
||||
|
||||
ppl-*.txt
|
||||
qnt-*.txt
|
||||
perf-*.txt
|
||||
|
||||
# Examples
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.css.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
!examples/*/*/*.kts
|
||||
!examples/sycl/*.bat
|
||||
!examples/sycl/*.sh
|
||||
|
||||
# Python
|
||||
|
||||
__pycache__
|
||||
.venv
|
||||
/Pipfile
|
||||
dist
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
nppBackup
|
||||
|
||||
# Test binaries
|
||||
/tests/test-grammar-parser
|
||||
/tests/test-llama-grammar
|
||||
/tests/test-backend-ops
|
||||
/tests/test-double-float
|
||||
/tests/test-grad0
|
||||
/tests/test-grammar-parser
|
||||
/tests/test-llama-grammar
|
||||
/tests/test-opt
|
||||
/tests/test-quantize-fns
|
||||
/tests/test-quantize-perf
|
||||
/tests/test-rope
|
||||
/tests/test-sampling
|
||||
/tests/test-tokenizer-0
|
||||
/tests/test-tokenizer-1-spm
|
||||
/tests/test-tokenizer-1-bpe
|
||||
/tests/test-rope
|
||||
/tests/test-backend-ops
|
||||
/tests/test-tokenizer-1-spm
|
||||
|
||||
# Scripts
|
||||
!/scripts/install-oneapi.bat
|
||||
|
|
|
@ -39,8 +39,12 @@ endif()
|
|||
|
||||
if (APPLE)
|
||||
set(LLAMA_METAL_DEFAULT ON)
|
||||
set(LLAMA_BLAS_DEFAULT ON)
|
||||
set(LLAMA_BLAS_VENDOR_DEFAULT "Apple")
|
||||
else()
|
||||
set(LLAMA_METAL_DEFAULT OFF)
|
||||
set(LLAMA_BLAS_DEFAULT OFF)
|
||||
set(LLAMA_BLAS_VENDOR_DEFAULT "Generic")
|
||||
endif()
|
||||
|
||||
set(LLAMA_LLAMAFILE_DEFAULT ON)
|
||||
|
@ -91,9 +95,10 @@ endif()
|
|||
|
||||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
option(LLAMA_BLAS "llama: use BLAS" ${LLAMA_BLAS_DEFAULT})
|
||||
set(LLAMA_BLAS_VENDOR ${LLAMA_BLAS_VENDOR_DEFAULT} CACHE STRING
|
||||
"llama: BLAS library vendor")
|
||||
option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM" ${LLAMA_LLAMAFILE_DEFAULT})
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
option(LLAMA_CUDA "llama: use CUDA" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
|
||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||
|
@ -114,6 +119,7 @@ option(LLAMA_HIP_UMA "llama: use HIP unified memory arch
|
|||
option(LLAMA_VULKAN "llama: use Vulkan" OFF)
|
||||
option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF)
|
||||
option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF)
|
||||
option(LLAMA_VULKAN_MEMORY_DEBUG "llama: enable Vulkan memory debug output" OFF)
|
||||
option(LLAMA_VULKAN_VALIDATE "llama: enable Vulkan validation" OFF)
|
||||
option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
|
@ -311,9 +317,9 @@ if (LLAMA_BLAS)
|
|||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
endif()
|
||||
#if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
# set(BLA_SIZEOF_INTEGER 8)
|
||||
#endif()
|
||||
|
||||
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
|
||||
find_package(BLAS)
|
||||
|
@ -321,7 +327,7 @@ if (LLAMA_BLAS)
|
|||
if (BLAS_FOUND)
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
if ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
|
||||
if (("${BLAS_INCLUDE_DIRS}" STREQUAL "") AND NOT (${LLAMA_BLAS_VENDOR} MATCHES "Apple"))
|
||||
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
|
||||
find_package(PkgConfig REQUIRED)
|
||||
|
@ -374,12 +380,15 @@ if (LLAMA_BLAS)
|
|||
|
||||
add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||
add_compile_definitions(GGML_USE_BLAS)
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
set(GGML_HEADERS_BLAS ggml-blas.h)
|
||||
set(GGML_SOURCES_BLAS ggml-blas.cpp)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
|
@ -526,6 +535,10 @@ if (LLAMA_VULKAN)
|
|||
add_compile_definitions(GGML_VULKAN_DEBUG)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_MEMORY_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_VALIDATE)
|
||||
add_compile_definitions(GGML_VULKAN_VALIDATE)
|
||||
endif()
|
||||
|
@ -652,6 +665,7 @@ if (LLAMA_SYCL)
|
|||
#todo: AOT
|
||||
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
|
||||
message(STATUS "SYCL found")
|
||||
|
||||
|
@ -666,21 +680,22 @@ if (LLAMA_SYCL)
|
|||
endif()
|
||||
|
||||
add_compile_options(-I./) #include DPCT
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||
if (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
endif()
|
||||
|
||||
set(GGML_HEADERS_SYCL ggml-sycl.h)
|
||||
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
|
||||
file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp")
|
||||
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
|
||||
|
||||
if (WIN32)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
else()
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||
if (LLAMA_SYCL_TARGET STREQUAL "INTEL")
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
elseif (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
|
@ -1258,6 +1273,7 @@ add_library(ggml OBJECT
|
|||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_BLAS} ${GGML_HEADERS_BLAS}
|
||||
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
|
||||
)
|
||||
|
||||
|
|
|
@ -11,9 +11,21 @@
|
|||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "sycl-base",
|
||||
"hidden": true,
|
||||
"generator": "Ninja",
|
||||
"binaryDir": "${sourceDir}/build-${presetName}",
|
||||
"cacheVariables": {
|
||||
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
|
||||
"CMAKE_CXX_COMPILER": "icx",
|
||||
"LLAMA_SYCL": "ON",
|
||||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
|
||||
|
||||
{
|
||||
|
@ -35,15 +47,18 @@
|
|||
},
|
||||
|
||||
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "release" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "release", "static" ] }
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
|
||||
]
|
||||
}
|
||||
|
|
40
Makefile
40
Makefile
|
@ -38,6 +38,7 @@ BUILD_TARGETS = \
|
|||
llama-tokenize \
|
||||
llama-train-text-from-scratch \
|
||||
llama-vdot \
|
||||
llama-cvector-generator \
|
||||
tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
|
@ -440,10 +441,11 @@ ifndef LLAMA_NO_ACCELERATE
|
|||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS
|
||||
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
|
||||
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
OBJS += ggml-blas.o
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
|
@ -454,21 +456,30 @@ ifndef LLAMA_NO_OPENMP
|
|||
endif # LLAMA_NO_OPENMP
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
OBJS += ggml-blas.o
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_OPENBLAS64
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
|
||||
OBJS += ggml-blas.o
|
||||
endif # LLAMA_OPENBLAS64
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
OBJS += ggml-blas.o
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifndef LLAMA_NO_LLAMAFILE
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJS += sgemm.o
|
||||
endif
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_RPC
|
||||
MK_CPPFLAGS += -DGGML_USE_RPC
|
||||
OBJS += ggml-rpc.o
|
||||
|
@ -496,7 +507,7 @@ ifdef LLAMA_CUDA
|
|||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
OBJS += $(OBJS_CUDA_TEMP_INST)
|
||||
|
@ -597,6 +608,10 @@ ifdef LLAMA_VULKAN_DEBUG
|
|||
MK_CPPFLAGS += -DGGML_VULKAN_DEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_MEMORY_DEBUG
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_MEMORY_DEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_VALIDATE
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE
|
||||
endif
|
||||
|
@ -776,6 +791,9 @@ ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
|
|||
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml-blas.o: ggml-blas.cpp ggml-blas.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
unicode.o: unicode.cpp unicode.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
|
@ -909,6 +927,10 @@ llama-eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(C
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
@ -1029,7 +1051,7 @@ tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-integration: tests/test-grammar-integration.cpp ggml.o llama.o grammar-parser.o json-schema-to-grammar.o $(OBJS)
|
||||
tests/test-grammar-integration: tests/test-grammar-integration.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# llama.cpp for SYCL
|
||||
|
||||
- [Background](#background)
|
||||
- [Recommended Release](#recommended-release)
|
||||
- [News](#news)
|
||||
- [OS](#os)
|
||||
- [Hardware](#hardware)
|
||||
|
@ -31,8 +32,23 @@ When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneM
|
|||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
The SYCL backend would be broken by some PRs due to no online CI.
|
||||
|
||||
The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform|
|
||||
|-|-|-|-|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Arch Linux is verified successfully.
|
||||
|
||||
- 2024.4
|
||||
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
|
||||
|
||||
|
@ -394,15 +410,9 @@ Output (example):
|
|||
|
||||
4. Install build tools
|
||||
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer)
|
||||
b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/)
|
||||
|
||||
b. Download & install mingw-w64 make for Windows provided by w64devkit
|
||||
|
||||
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
|
||||
|
||||
- Extract `w64devkit` on your pc.
|
||||
|
||||
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
|
@ -412,10 +422,10 @@ On the oneAPI command line window, step into the llama.cpp main directory and ru
|
|||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
# Option 2: Or FP16
|
||||
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
cmake --build build --config Release -j
|
||||
```
|
||||
|
@ -425,9 +435,23 @@ Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former in
|
|||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
Or, use CMake presets to build:
|
||||
```sh
|
||||
cmake --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
|
||||
cmake -DLLAMA_SYCL_F16=ON --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
|
||||
cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
|
||||
*Notes:*
|
||||
|
||||
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make llama-cli`.
|
||||
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
|
|
29
README.md
29
README.md
|
@ -195,6 +195,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||||
- [RAGNA Desktop](https://ragna.app/) (proprietary)
|
||||
- [RecurseChat](https://recurse.chat/) (proprietary)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
|
@ -208,6 +209,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||||
- [AIKit](https://github.com/sozercan/aikit) (MIT)
|
||||
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
|
@ -386,6 +388,30 @@ brew install llama.cpp
|
|||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||
|
||||
### Nix
|
||||
|
||||
On Mac and Linux, the Nix package manager can be used via
|
||||
```
|
||||
nix profile install nixpkgs#llama-cpp
|
||||
```
|
||||
For flake enabled installs.
|
||||
|
||||
Or
|
||||
```
|
||||
nix-env --file '<nixpkgs>' --install --attr llama-cpp
|
||||
```
|
||||
For non-flake enabled installs.
|
||||
|
||||
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
|
||||
|
||||
#### Flox
|
||||
|
||||
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
|
||||
```
|
||||
flox install llama-cpp
|
||||
```
|
||||
Flox follows the nixpkgs build of llama.cpp.
|
||||
|
||||
### Metal Build
|
||||
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
|
@ -622,9 +648,6 @@ python3 -m pip install -r requirements.txt
|
|||
# convert the model to ggml FP16 format
|
||||
python3 convert-hf-to-gguf.py models/mymodel/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe
|
||||
|
||||
# quantize the model to 4-bits (using Q4_K_M method)
|
||||
./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
|
||||
|
|
14
codecov.yml
14
codecov.yml
|
@ -1,14 +0,0 @@
|
|||
comment: off
|
||||
|
||||
coverage:
|
||||
status:
|
||||
project:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
||||
patch:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
|
@ -6,7 +6,6 @@
|
|||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <codecvt>
|
||||
|
@ -542,6 +541,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
|
||||
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
|
||||
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
|
||||
else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
|
||||
else { invalid_param = true; }
|
||||
return true;
|
||||
}
|
||||
|
@ -1576,6 +1576,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||
return true;
|
||||
}
|
||||
params.out_file = argv[i];
|
||||
params.cvector_outfile = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-ofreq" || arg == "--output-frequency") {
|
||||
|
@ -1610,6 +1611,55 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||
params.i_chunk = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
// cvector params
|
||||
if (arg == "--completions-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.cvector_completions_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--positive-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.cvector_positive_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--negative-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.cvector_negative_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--completions") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.n_completions = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--pca-batch") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.n_pca_batch = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--pca-iter") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.n_pca_iterations = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
// Parse args for logging parameters
|
||||
if (log_param_single_parse(argv[i])) {
|
||||
|
@ -1820,6 +1870,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
|
||||
options.push_back({ "backend" });
|
||||
options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
|
||||
|
||||
if (llama_supports_mlock()) {
|
||||
options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
|
||||
}
|
||||
|
@ -1931,6 +1982,16 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
options.push_back({ "cvector" });
|
||||
options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
|
||||
options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
|
||||
options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
|
||||
options.push_back({ "cvector", " --completions-file FNAME",
|
||||
"completions file (default: '%s')", params.cvector_completions_file.c_str() });
|
||||
options.push_back({ "cvector", " --completions N", "number of lines of completions file to use (default: %d)", params.n_completions });
|
||||
options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
|
||||
options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
|
||||
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
|
||||
for (const auto & o : options) {
|
||||
|
@ -2597,7 +2658,14 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||
}
|
||||
|
||||
// Set the output file
|
||||
std::unique_ptr<FILE, decltype(&fclose)> outfile(fopen(path_temporary.c_str(), "wb"), fclose);
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
|
|
|
@ -73,7 +73,6 @@ struct gpt_params {
|
|||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
|
@ -232,6 +231,15 @@ struct gpt_params {
|
|||
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
|
||||
// cvector-generator params
|
||||
int n_completions = 64;
|
||||
int n_pca_batch = 20;
|
||||
int n_pca_iterations = 1000;
|
||||
std::string cvector_outfile = "control_vector.gguf";
|
||||
std::string cvector_completions_file = "examples/cvector-generator/completions.txt";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
};
|
||||
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
|
|
@ -83,6 +83,7 @@ models = [
|
|||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||||
]
|
||||
|
||||
|
@ -213,7 +214,7 @@ src_func = f"""
|
|||
"""
|
||||
|
||||
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
|
||||
convert_py = convert_py_pth.read_text()
|
||||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
|
@ -221,7 +222,7 @@ convert_py = re.sub(
|
|||
flags=re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
|
||||
convert_py_pth.write_text(convert_py)
|
||||
convert_py_pth.write_text(convert_py, encoding="utf-8")
|
||||
|
||||
logger.info("+++ convert-hf-to-gguf.py was updated")
|
||||
|
||||
|
|
|
@ -477,6 +477,9 @@ class Model:
|
|||
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
|
||||
# ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
|
||||
res = "smaug-bpe"
|
||||
if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
|
||||
# ref: https://huggingface.co/LumiOpen/Poro-34B-chat
|
||||
res = "poro-chat"
|
||||
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
|
||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
|
||||
res = "jina-v2-code"
|
||||
|
@ -964,7 +967,11 @@ class XverseModel(Model):
|
|||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
# Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
|
||||
# because vocab_size is the count of items, and indexes start at 0.
|
||||
max_vocab_index = max(tokenizer.get_vocab().values())
|
||||
if max_vocab_index >= vocab_size:
|
||||
raise ValueError("Vocabulary size exceeds expected maximum size.")
|
||||
|
||||
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
@ -1629,6 +1636,12 @@ class Qwen2MoeModel(Model):
|
|||
super().set_gguf_parameters()
|
||||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
|
||||
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
|
||||
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
|||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
|
|
5
examples/cvector-generator/CMakeLists.txt
Normal file
5
examples/cvector-generator/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
set(TARGET llama-cvector-generator)
|
||||
add_executable(${TARGET} cvector-generator.cpp pca.hpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
34
examples/cvector-generator/README.md
Normal file
34
examples/cvector-generator/README.md
Normal file
|
@ -0,0 +1,34 @@
|
|||
# cvector-generator
|
||||
|
||||
This example demonstrates how to generate a control vector using gguf models.
|
||||
|
||||
Related PRs:
|
||||
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
|
||||
|
||||
## Examples
|
||||
|
||||
```sh
|
||||
# CPU only
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf
|
||||
|
||||
# With GPU
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99
|
||||
|
||||
# With advanced options
|
||||
./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100
|
||||
|
||||
# To see help message
|
||||
./cvector-generator -h
|
||||
# Then, have a look at "cvector" section
|
||||
```
|
||||
|
||||
## Tips and tricks
|
||||
|
||||
If you have multiple lines per prompt, you can escape the newline character (change it to `\n`). For example:
|
||||
|
||||
```
|
||||
<|im_start|>system\nAct like a person who is extremely happy.<|im_end|>
|
||||
<|im_start|>system\nYou are in a very good mood today<|im_end|>
|
||||
```
|
582
examples/cvector-generator/completions.txt
Normal file
582
examples/cvector-generator/completions.txt
Normal file
|
@ -0,0 +1,582 @@
|
|||
|
||||
That game
|
||||
I can see
|
||||
Hmm, this
|
||||
I can relate to
|
||||
Who is
|
||||
I understand the
|
||||
Ugh,
|
||||
What the hell was
|
||||
Hey, did anyone
|
||||
Although
|
||||
Thank you for choosing
|
||||
What are you
|
||||
Oh w
|
||||
How dare you open
|
||||
It was my pleasure
|
||||
I'm hon
|
||||
I appreciate that you
|
||||
Are you k
|
||||
Whoever left this
|
||||
It's always
|
||||
Ew,
|
||||
Hey, I l
|
||||
Hello? Is someone
|
||||
I understand that
|
||||
That poem
|
||||
Aww, poor
|
||||
Hey, it
|
||||
Alright, who
|
||||
I didn't
|
||||
Well, life
|
||||
The document
|
||||
Oh no, this
|
||||
I'm concerned
|
||||
Hello, this is
|
||||
This art
|
||||
Hmm, this drink
|
||||
Hi there!
|
||||
It seems
|
||||
Is
|
||||
Good
|
||||
I can't
|
||||
Ex
|
||||
Who are
|
||||
I can see that
|
||||
Wow,
|
||||
Today is a
|
||||
Hey friend
|
||||
Sometimes friends
|
||||
Oh, this old
|
||||
The weather outside
|
||||
This place is sur
|
||||
I appreciate your input
|
||||
Thank you for the
|
||||
Look at
|
||||
I'm disappoint
|
||||
To my
|
||||
How dare you
|
||||
That's an
|
||||
This piece of art
|
||||
Eww
|
||||
This park is
|
||||
This is incredible
|
||||
Oh no, someone
|
||||
Exc
|
||||
Well, it'
|
||||
I warned
|
||||
Hey, I understand
|
||||
Hey, I saw
|
||||
How dare you go
|
||||
What the he
|
||||
Hey
|
||||
It's
|
||||
Hello? Hello?
|
||||
It
|
||||
Oh no!
|
||||
This is the perfect
|
||||
Good morning,
|
||||
Oh no, there
|
||||
It's so
|
||||
Yeah
|
||||
Uh,
|
||||
Hello everyone
|
||||
Who turned off
|
||||
The weather
|
||||
Who'
|
||||
Hey, this
|
||||
Wait,
|
||||
Eww, gross
|
||||
Excuse
|
||||
It seems like you
|
||||
Thank you so
|
||||
What happened?
|
||||
Oh my g
|
||||
I am deeply sad
|
||||
I war
|
||||
Okay, let'
|
||||
Hey, that
|
||||
That was a beautiful
|
||||
Oh no! That
|
||||
What happened
|
||||
Hey there
|
||||
The artist'
|
||||
What?!
|
||||
Hey, it'
|
||||
I am disappoint
|
||||
It seems like
|
||||
Oh no! The
|
||||
This park is a
|
||||
If you
|
||||
Yes! I did
|
||||
It sounds
|
||||
What
|
||||
Who is it
|
||||
Hmm, that
|
||||
That's strange
|
||||
Yeah, that was
|
||||
That's interesting
|
||||
This park
|
||||
What the hell
|
||||
Who is that
|
||||
I feel like my
|
||||
Oh well
|
||||
What the hell is
|
||||
Hello? Hello
|
||||
To my dearest
|
||||
Bless you!\"
|
||||
Thank you for
|
||||
Oh, looks like
|
||||
Can you please
|
||||
This place is
|
||||
Eww, what
|
||||
Bless you
|
||||
Is everything
|
||||
Hey, I just
|
||||
Whoever left these
|
||||
Well, that'
|
||||
I feel
|
||||
Hey, do you
|
||||
It's sad
|
||||
Oh no, it
|
||||
Hey, that'
|
||||
Oh my god,
|
||||
Thank you,
|
||||
Hello little one,
|
||||
I apolog
|
||||
Hey team, I
|
||||
How dare you read
|
||||
Who is this and
|
||||
Whoever left
|
||||
Hi there! W
|
||||
A
|
||||
If you have
|
||||
I was
|
||||
U
|
||||
Bless
|
||||
Well, this
|
||||
Oh, I'
|
||||
It's a
|
||||
Eww,
|
||||
Is everything okay?
|
||||
Oh, I
|
||||
Hello, can you
|
||||
Al
|
||||
That was a great
|
||||
What are
|
||||
I understand that not
|
||||
Oh no, not
|
||||
Who is it?\"
|
||||
Hey, can we
|
||||
Whoever is taking
|
||||
I would love to
|
||||
Hey, I noticed
|
||||
Hey, could
|
||||
I understand that there
|
||||
Hello?
|
||||
D
|
||||
Oh man, I
|
||||
Thank you so much
|
||||
Oh no, my
|
||||
Dear [Name
|
||||
Uh
|
||||
I remember
|
||||
Hey, who
|
||||
Well, it
|
||||
Are you
|
||||
I understand that it
|
||||
Hey, is
|
||||
I would
|
||||
Who is this
|
||||
Excuse me
|
||||
Alright
|
||||
I am thrilled
|
||||
Sometimes friends have
|
||||
Who the
|
||||
It's interesting
|
||||
I would love
|
||||
E
|
||||
Hello? Is anyone
|
||||
Well, this is
|
||||
This place
|
||||
Well,
|
||||
I warned you
|
||||
Hey, watch where
|
||||
Oh my
|
||||
That'
|
||||
Sometimes friends have different
|
||||
I understand that everyone
|
||||
What?
|
||||
What do these notes
|
||||
I can relate
|
||||
I'm not
|
||||
I understand
|
||||
To my dear
|
||||
Guys
|
||||
Well
|
||||
Hey, I appreciate
|
||||
Wow, what
|
||||
Dear
|
||||
That melody
|
||||
Who the hell
|
||||
Today is
|
||||
Hello little
|
||||
Wow, look
|
||||
That's great
|
||||
Love is never wrong
|
||||
I'm having
|
||||
Whoa, did
|
||||
Ugh
|
||||
Can you please provide
|
||||
I miss you,
|
||||
I feel uncom
|
||||
I know
|
||||
Ugh, this
|
||||
Hey, watch
|
||||
Oh great, a
|
||||
I didn
|
||||
Okay
|
||||
That game of char
|
||||
Oh
|
||||
I appreciate
|
||||
Who's there
|
||||
I am so
|
||||
Oh great, someone
|
||||
Hey, could you
|
||||
I remember wondering
|
||||
Wait, what?
|
||||
What do
|
||||
Hello? Can
|
||||
Hey there,
|
||||
That game of
|
||||
This is incred
|
||||
Oh my gosh
|
||||
Oh great, f
|
||||
I appreciate your
|
||||
It sounds like
|
||||
What the heck
|
||||
Okay, I understand
|
||||
Ew
|
||||
I understand that this
|
||||
Uh, hi
|
||||
Hi everyone!
|
||||
What the hell?
|
||||
Thank you for your
|
||||
Oh no, the
|
||||
Wow, I
|
||||
Who turned
|
||||
Dear [
|
||||
Whoever
|
||||
This is a
|
||||
Whoa, he
|
||||
What in the world
|
||||
Although the physical
|
||||
Hello, who is
|
||||
That's amaz
|
||||
Hey, I know
|
||||
Okay, that
|
||||
Hi everyone
|
||||
Hey, is everything
|
||||
I understand your fr
|
||||
Oh no, poor
|
||||
Oh, look
|
||||
Good morning
|
||||
Ew, gross
|
||||
Oh no, did
|
||||
Look at the family
|
||||
Hey team
|
||||
Yes!
|
||||
Hey, can I
|
||||
Okay, that'
|
||||
It's great
|
||||
Love is
|
||||
Hey, what
|
||||
Good morning, world
|
||||
Who is it?
|
||||
That poem really reson
|
||||
I
|
||||
That's
|
||||
I understand the task
|
||||
Gu
|
||||
Hello? Who'
|
||||
This postcard is
|
||||
Whoa,
|
||||
Oh, that
|
||||
I understand that I
|
||||
Whoever is
|
||||
Hello? Who is
|
||||
I'm really
|
||||
Wow, this
|
||||
Can
|
||||
This artwork really
|
||||
This is a shame
|
||||
I miss you too
|
||||
Who are you?
|
||||
Today is a difficult
|
||||
Hey, just
|
||||
Are you okay
|
||||
I am
|
||||
Hi,
|
||||
Wow, that
|
||||
Hey there! Can
|
||||
Okay, stay
|
||||
Oh great, just
|
||||
Yeah,
|
||||
Hello? Can you
|
||||
Oh, looks
|
||||
Thank you for sharing
|
||||
I'm glad
|
||||
Hey, is that
|
||||
Hmm
|
||||
It was my
|
||||
It sounds like you
|
||||
Wow, your
|
||||
I was promised certain
|
||||
That was such a
|
||||
Thank
|
||||
Excuse you
|
||||
That was
|
||||
Hey team,
|
||||
I feel un
|
||||
It was
|
||||
What'
|
||||
Hey friend, I
|
||||
How
|
||||
Saying goodbye
|
||||
That
|
||||
It's heart
|
||||
How dare
|
||||
Oh,
|
||||
Hello, may
|
||||
What's this
|
||||
Thank you for recogn
|
||||
Aww, that
|
||||
Oh, I remember
|
||||
Hmm, that'
|
||||
I miss
|
||||
I know this
|
||||
Wait
|
||||
Is everything okay
|
||||
Who is that person
|
||||
Wow, you
|
||||
Oh great
|
||||
I'm sad
|
||||
Wow, the
|
||||
I am very disappoint
|
||||
Who turned off the
|
||||
I understand that things
|
||||
I'm very
|
||||
Hi
|
||||
That's very
|
||||
Okay, I
|
||||
Oh no,
|
||||
Wow, there
|
||||
What's wrong
|
||||
I apologize for
|
||||
Hey, I
|
||||
Can I help you
|
||||
Oh, I didn
|
||||
Alright,
|
||||
Oh wow,
|
||||
Oh my goodness
|
||||
I know this event
|
||||
What in the
|
||||
Saying
|
||||
Yeah, that
|
||||
Guys, I
|
||||
Hey, this v
|
||||
This post
|
||||
Are
|
||||
Hey, can
|
||||
Hello? Is
|
||||
I can only imagine
|
||||
Oh, that sounds
|
||||
Hey, is anyone
|
||||
I am disappointed
|
||||
Hello,
|
||||
Hey everyone, I
|
||||
That was such
|
||||
It's okay
|
||||
The artist
|
||||
Whoa
|
||||
I understand that mistakes
|
||||
Can I help
|
||||
Who
|
||||
Hi everyone! I
|
||||
Hey, can you
|
||||
Wow, how
|
||||
Today
|
||||
Oh no, I
|
||||
Oh well, I
|
||||
Well, that
|
||||
This is the
|
||||
Yes! I finally
|
||||
Hey there little
|
||||
Hello everyone!
|
||||
Love is never
|
||||
Look at the
|
||||
This postcard
|
||||
Oh great,
|
||||
Can I
|
||||
Hmm, this is
|
||||
I understand your
|
||||
Oh, look at
|
||||
B
|
||||
I'm so
|
||||
Whoa, this
|
||||
W
|
||||
Oh, this
|
||||
Sometimes
|
||||
This piece of
|
||||
What the
|
||||
That was a
|
||||
Hey, do
|
||||
Oh no
|
||||
Whoa, what
|
||||
I feel like I
|
||||
The documentary
|
||||
Hello
|
||||
Hello little one
|
||||
I understand that my
|
||||
Eww, that
|
||||
Wow, an
|
||||
Yes! Finally,
|
||||
Although the physical location
|
||||
Whoever is watching
|
||||
That movie
|
||||
I remember wondering about
|
||||
Hey there, little
|
||||
Who's
|
||||
Hello, who
|
||||
Hello everyone! Thank
|
||||
Hello, can
|
||||
That's too
|
||||
Hey, just wanted
|
||||
Hey there, I
|
||||
Saying good
|
||||
Hey there!
|
||||
Who is there?
|
||||
Oh my good
|
||||
I am very
|
||||
Oh no, what
|
||||
Wow, thank
|
||||
I was promised
|
||||
Hi, is
|
||||
Hey, I'
|
||||
Guys, the
|
||||
Oh no, that
|
||||
Who is there
|
||||
Hello, this
|
||||
That movie really touched
|
||||
If you have something
|
||||
The documentary was
|
||||
I'm starting
|
||||
Are you kidd
|
||||
That movie really
|
||||
Hey everyone,
|
||||
Thank you for considering
|
||||
I didn'
|
||||
Yes! I
|
||||
Can you
|
||||
Oh my god
|
||||
Hey, whoever
|
||||
That melody really
|
||||
Thank you, little
|
||||
Hello, may I
|
||||
Look
|
||||
Wow, we
|
||||
It looks
|
||||
What do these
|
||||
Oh wow
|
||||
I apologize
|
||||
What are you all
|
||||
It's such
|
||||
It's clear
|
||||
Hey, I was
|
||||
Hey friend,
|
||||
I can only
|
||||
The weather outside is
|
||||
Eww, this
|
||||
I miss you
|
||||
Wow
|
||||
Aww,
|
||||
Hi, is there
|
||||
This artwork
|
||||
Okay,
|
||||
Oh well,
|
||||
This
|
||||
I'
|
||||
Say
|
||||
Hey there little gu
|
||||
Hmm,
|
||||
Whoa, who
|
||||
I am thr
|
||||
Oh man
|
||||
Okay, stay calm
|
||||
I'm happy
|
||||
Oh, this cur
|
||||
Oh man,
|
||||
I'm sorry
|
||||
Hello? Who
|
||||
What?! That
|
||||
This piece
|
||||
Hey everyone
|
||||
That's so
|
||||
Are you okay?
|
||||
What happened? Where
|
||||
Hi there
|
||||
The
|
||||
Who the hell entered
|
||||
I can
|
||||
Guys,
|
||||
What's
|
||||
What in
|
||||
It's important
|
||||
I'm
|
||||
I'm coming
|
||||
It'
|
||||
Yes! Finally
|
||||
Wait, what
|
||||
Wow, reading
|
||||
I'm surprised
|
||||
Hey, did
|
||||
Hey,
|
||||
Okay, let
|
||||
I understand that you
|
||||
Who the hell threw
|
||||
Eww, who
|
||||
Thank you for thinking
|
||||
Who is this?\"
|
||||
I am deeply
|
||||
Thank you for including
|
||||
Oh no, an
|
||||
It looks like you
|
||||
Aww
|
||||
I'm confused
|
||||
Wow, it
|
||||
That poem really
|
||||
Yes
|
||||
Hey there, is
|
||||
Hey, what'
|
||||
Thank you for remember
|
||||
To
|
||||
This is
|
||||
Thank you for making
|
||||
I can'
|
||||
That mel
|
||||
Wow, they
|
||||
I feel like
|
||||
Although the
|
||||
Who are you
|
||||
Love
|
||||
If
|
||||
What the hell are
|
||||
I am so sad
|
||||
Oh, I found
|
||||
Thank you
|
||||
It looks like
|
||||
Well, life is
|
||||
I appreciate that
|
||||
The artist's
|
||||
Whoa, that
|
||||
It's never
|
499
examples/cvector-generator/cvector-generator.cpp
Normal file
499
examples/cvector-generator/cvector-generator.cpp
Normal file
|
@ -0,0 +1,499 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
#include "pca.hpp"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <climits>
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// utils
|
||||
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin) {
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]);
|
||||
printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]);
|
||||
printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
|
||||
// cb_eval is reused for each pair of positive - negative prompt
|
||||
struct callback_data {
|
||||
ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered
|
||||
|
||||
int n_layers = 0;
|
||||
int n_tokens = 0;
|
||||
bool is_eval_pos = true;
|
||||
|
||||
// each element of the vector correspond to one layer
|
||||
std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
|
||||
std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
|
||||
std::vector<struct ggml_tensor *> v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
|
||||
|
||||
// save a tensor into either v_pos or v_neg (decided by is_eval_pos)
|
||||
void save_tensor_for_layer(struct ggml_tensor * t) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_F32);
|
||||
|
||||
if (ctx_ggml == nullptr) {
|
||||
// alloc a new ctx_ggml if needed
|
||||
struct ggml_init_params params_ggml = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx_ggml = ggml_init(params_ggml);
|
||||
}
|
||||
|
||||
// copy tensor data
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
|
||||
t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
|
||||
ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
|
||||
ggml_set_name(t_layer, ggml_get_name(t));
|
||||
//print_debug_tensor(t_layer);
|
||||
|
||||
if (is_eval_pos) {
|
||||
v_pos.push_back(t_layer);
|
||||
} else {
|
||||
v_neg.push_back(t_layer);
|
||||
}
|
||||
}
|
||||
|
||||
// calculate diff (v_pos - v_neg) and place the result back to v_pos
|
||||
// all zero rows in the diff tensor will also be removed
|
||||
// NOTE: final layer is ignored. we only have (n_layers - 1) to process
|
||||
std::vector<struct ggml_tensor *> calc_diff() {
|
||||
for (float il = 0; il < v_pos.size(); il++) {
|
||||
float * a = (float *) v_pos[il]->data;
|
||||
float * b = (float *) v_neg[il]->data;
|
||||
size_t n_elem = ggml_nelements(v_pos[il]);
|
||||
for (size_t j = 0; j < n_elem; j++) {
|
||||
a[j] -= b[j];
|
||||
}
|
||||
//print_debug_tensor(v_pos[i]);
|
||||
auto diff_filtered = filter_nonzero_rows(v_pos[il]);
|
||||
v_diff_filtered.push_back(diff_filtered);
|
||||
}
|
||||
return v_diff_filtered; // for convinient, we return the result std::vector
|
||||
}
|
||||
|
||||
// delete zero rows from a given 2D tensor
|
||||
struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
|
||||
//printf("filter_nonzero_rows\n");
|
||||
auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
|
||||
// check if given row containing all zero elements
|
||||
int n_cols = t->ne[0]; // hint: should be equal to n_embd
|
||||
for (int col = 0; col < n_cols; ++col) {
|
||||
if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
};
|
||||
std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
|
||||
for (int i_row = 0; i_row < a->ne[1]; i_row++) {
|
||||
if (!is_row_all_zeros(a, i_row, 1e-6)) {
|
||||
rows_to_copy.push_back(i_row);
|
||||
}
|
||||
}
|
||||
|
||||
// get "n_nonzero_rows" for the output "diff_filtered"
|
||||
int n_nonzero_rows = rows_to_copy.size();
|
||||
//printf("n_nonzero_rows: %d\n", n_nonzero_rows);
|
||||
int n_embd = a->ne[0];
|
||||
GGML_ASSERT(n_nonzero_rows > 0);
|
||||
|
||||
// diff_filtered: [n_embd, n_nonzero_rows]
|
||||
struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
|
||||
ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
|
||||
ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
|
||||
diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
|
||||
|
||||
// copy non-zero rows
|
||||
for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
|
||||
int src_row = rows_to_copy[dest_row];
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
|
||||
ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
|
||||
}
|
||||
}
|
||||
|
||||
//print_debug_tensor(diff_filtered);
|
||||
|
||||
return diff_filtered;
|
||||
}
|
||||
|
||||
// we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
|
||||
void reset() {
|
||||
for (auto ptr : v_pos) free(ptr->data);
|
||||
for (auto ptr : v_neg) free(ptr->data);
|
||||
for (auto ptr : v_diff_filtered) free(ptr->data);
|
||||
v_pos.clear();
|
||||
v_neg.clear();
|
||||
v_diff_filtered.clear();
|
||||
if (ctx_ggml) {
|
||||
ggml_free(ctx_ggml);
|
||||
}
|
||||
ctx_ggml = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* process_ctx is used to store the ggml context for pre-post processing the diff vectors
|
||||
* in short, input => v_diff and output => v_final
|
||||
*/
|
||||
struct train_context {
|
||||
ggml_context * ctx_ggml;
|
||||
int n_embd;
|
||||
int n_layers;
|
||||
|
||||
/* pair of prompts to be used for generating final vector */
|
||||
std::vector<std::string> positive_entries;
|
||||
std::vector<std::string> negative_entries;
|
||||
|
||||
// each element of the vector correspond to one layer
|
||||
// NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
|
||||
// NOTE (2): v_diff is transposed from v_diff_tmp
|
||||
std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
|
||||
std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
|
||||
|
||||
// to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
|
||||
// v_diff_tmp will get converted unto v_diff later on
|
||||
std::vector<std::vector<uint8_t>> v_diff_tmp;
|
||||
|
||||
train_context(int n_embd_, int n_layers_) {
|
||||
n_embd = n_embd_;
|
||||
n_layers = n_layers_;
|
||||
struct ggml_init_params params_ggml = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx_ggml = ggml_init(params_ggml);
|
||||
for (int il = 0; il < n_layers - 1; il++) {
|
||||
std::vector<uint8_t> empty;
|
||||
v_diff_tmp.push_back(empty);
|
||||
auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
|
||||
t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
|
||||
v_final.push_back(t);
|
||||
}
|
||||
}
|
||||
|
||||
// add new rows into existing tensor in v_diff_tmp
|
||||
void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
|
||||
GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
|
||||
for (int il = 0; il < n_layers - 1; il++) {
|
||||
auto t = diff_filtered[il];
|
||||
auto & diff_tmp = v_diff_tmp[il];
|
||||
size_t curr_size = diff_tmp.size();
|
||||
diff_tmp.resize(curr_size + ggml_nbytes(t));
|
||||
memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
|
||||
}
|
||||
}
|
||||
|
||||
// build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
|
||||
// TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
|
||||
void build_v_diff() {
|
||||
printf("build_v_diff\n");
|
||||
for (int il = 0; il < n_layers - 1; il++) {
|
||||
auto & diff_tmp = v_diff_tmp[il];
|
||||
int n_elem = diff_tmp.size() / sizeof(float);
|
||||
GGML_ASSERT(n_elem % n_embd == 0);
|
||||
int n_rows = n_elem / n_embd;
|
||||
struct ggml_tensor * diff = ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd);
|
||||
ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
|
||||
// copy data & transpose
|
||||
diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
|
||||
float * arr = (float *) diff_tmp.data();
|
||||
for (int ir = 0; ir < n_rows; ++ir) {
|
||||
for (int ic = 0; ic < n_embd; ++ic) {
|
||||
float f = arr[ir*n_embd + ic];
|
||||
ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
|
||||
}
|
||||
}
|
||||
v_diff.push_back(diff);
|
||||
print_debug_tensor(diff);
|
||||
// free memory of diff_tmp
|
||||
diff_tmp.resize(0);
|
||||
}
|
||||
}
|
||||
|
||||
~train_context() {
|
||||
for (auto ptr : v_final) free(ptr->data);
|
||||
for (auto ptr : v_diff) free(ptr->data);
|
||||
// no need to free v_diff_tmp, since we didn't use malloc
|
||||
ggml_free(ctx_ggml);
|
||||
}
|
||||
};
|
||||
|
||||
struct tokenized_prompt {
|
||||
std::vector<llama_token> tokens_pos;
|
||||
std::vector<llama_token> tokens_neg;
|
||||
size_t max_seq_len;
|
||||
|
||||
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
tokens_pos = ::llama_tokenize(ctx, pos, add_bos);
|
||||
tokens_neg = ::llama_tokenize(ctx, neg, add_bos);
|
||||
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
padding_seq(ctx, tokens_pos, max_seq_len);
|
||||
padding_seq(ctx, tokens_neg, max_seq_len);
|
||||
}
|
||||
|
||||
void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
|
||||
// TODO: customize padding token
|
||||
std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
|
||||
llama_token pad_tok = pad_tokens.back();
|
||||
while (tokens.size() < len) {
|
||||
tokens.push_back(pad_tok);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
static std::string to_string(const T & val) {
|
||||
std::stringstream ss;
|
||||
ss << val;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
|
||||
std::vector<std::string> output;
|
||||
std::ifstream file(path);
|
||||
if (!file.is_open()) {
|
||||
fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
|
||||
exit(1);
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(file, line)) {
|
||||
bool is_skip = skip_empty_lines && line.empty();
|
||||
if (!is_skip) {
|
||||
string_process_escapes(line);
|
||||
output.push_back(line);
|
||||
}
|
||||
}
|
||||
file.close();
|
||||
return output;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
auto * cb_data = (callback_data *) user_data;
|
||||
static const char * l_out_name = "l_out";
|
||||
const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
|
||||
|
||||
if (ask) {
|
||||
return is_l_out;
|
||||
}
|
||||
|
||||
if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// save the tensor to current context
|
||||
cb_data->save_tensor_for_layer(t);
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
||||
const std::string arch = "controlvector";
|
||||
gguf_set_val_str(ctx, "general.architecture", arch.c_str());
|
||||
gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
|
||||
gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
|
||||
|
||||
for (size_t i = 0; i < v_ctrl.size(); ++i) {
|
||||
gguf_add_tensor(ctx, v_ctrl[i]);
|
||||
print_debug_tensor(v_ctrl[i]);
|
||||
printf("Added tensor: %s\n", v_ctrl[i]->name);
|
||||
}
|
||||
|
||||
printf("%s: writing file...\n", __func__);
|
||||
gguf_write_to_file(ctx, fname.c_str(), false);
|
||||
printf("%s: wrote file '%s'\n", __func__, fname.c_str());
|
||||
gguf_free(ctx);
|
||||
}
|
||||
|
||||
/**
|
||||
* Load prompt files and completion file.
|
||||
* Then format each pair of prompt + completion to make an entry.
|
||||
*/
|
||||
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
// load prompts
|
||||
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
|
||||
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
|
||||
if (positive_prompts.size() != negative_prompts.size()) {
|
||||
fprintf(stderr, "number of positive and negative prompts must be equal\n");
|
||||
return 1;
|
||||
}
|
||||
if (positive_prompts.empty()) {
|
||||
fprintf(stderr, "must provide at least one prompt pair\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// create templated prompts
|
||||
std::vector<std::string> completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false);
|
||||
auto format_template = [](std::string persona, std::string suffix) {
|
||||
// entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST] "
|
||||
return persona + suffix;
|
||||
};
|
||||
for (size_t i = 0; i < positive_prompts.size(); ++i) {
|
||||
for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) {
|
||||
// TODO replicate the truncations done by the python implementation
|
||||
ctx_train.positive_entries.push_back(format_template(positive_prompts[i], completions[j]));
|
||||
ctx_train.negative_entries.push_back(format_template(negative_prompts[i], completions[j]));
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_pca_iterations % params.n_pca_batch != 0) {
|
||||
fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
callback_data cb_data;
|
||||
|
||||
// pass the callback to the backend scheduler
|
||||
// it will be executed for each node during the graph computation
|
||||
params.cb_eval = cb_eval;
|
||||
params.cb_eval_user_data = &cb_data;
|
||||
params.warmup = false;
|
||||
|
||||
print_build_info();
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model to get hparams
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
int n_layers = llama_n_layer(model);
|
||||
int n_embd = llama_n_embd(model);
|
||||
// get model hint param (a.k.a model arch name)
|
||||
char model_hint[128];
|
||||
llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
|
||||
|
||||
// init train_context
|
||||
train_context ctx_train(n_embd, n_layers);
|
||||
|
||||
// load and prepare entries for training
|
||||
prepare_entries(params, ctx_train);
|
||||
|
||||
// we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
|
||||
std::vector<tokenized_prompt> tokenized_prompts;
|
||||
size_t n_total_tokens = 0;
|
||||
for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
|
||||
tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
|
||||
n_total_tokens += 2 * t.max_seq_len;
|
||||
tokenized_prompts.push_back(std::move(t));
|
||||
}
|
||||
|
||||
std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
|
||||
|
||||
for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
|
||||
bool success = false;
|
||||
tokenized_prompt t = tokenized_prompts[i];
|
||||
cb_data.n_layers = n_layers;
|
||||
cb_data.n_tokens = t.max_seq_len;
|
||||
|
||||
printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
|
||||
(int) i+1, (int) ctx_train.positive_entries.size(),
|
||||
tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
|
||||
tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
|
||||
(int) t.max_seq_len);
|
||||
|
||||
cb_data.is_eval_pos = true;
|
||||
success = get_hidden_layers(ctx, t.tokens_pos);
|
||||
if (!success) break;
|
||||
|
||||
cb_data.is_eval_pos = false;
|
||||
success = get_hidden_layers(ctx, t.tokens_neg);
|
||||
if (!success) break;
|
||||
|
||||
// calculate diff and remove all zero rows
|
||||
auto v_diff_filtered = cb_data.calc_diff();
|
||||
|
||||
// save & concat the filtered v_diff to ctx_train
|
||||
ctx_train.concat_diff_tmp(v_diff_filtered);
|
||||
|
||||
// reset for next iteration
|
||||
cb_data.reset();
|
||||
}
|
||||
|
||||
// done with the model, we can now free it to make gain some memory
|
||||
printf("Done evaluate prompts, unload model...\n");
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
// prepare ctx_train for PCA
|
||||
ctx_train.build_v_diff();
|
||||
|
||||
// run PCA
|
||||
PCA::pca_params pca_params;
|
||||
pca_params.n_threads = params.n_threads;
|
||||
pca_params.n_batch = params.n_pca_batch;
|
||||
pca_params.n_iterations = params.n_pca_iterations;
|
||||
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
|
||||
|
||||
// write output vectors to gguf
|
||||
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
1
examples/cvector-generator/negative.txt
Normal file
1
examples/cvector-generator/negative.txt
Normal file
|
@ -0,0 +1 @@
|
|||
[INST] Act like a person who is extremely sad. [/INST]
|
322
examples/cvector-generator/pca.hpp
Normal file
322
examples/cvector-generator/pca.hpp
Normal file
|
@ -0,0 +1,322 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <cstdio>
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
#define DEBUG_POS 5
|
||||
|
||||
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
|
||||
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
|
||||
if (!with_data) return;
|
||||
printf("%s: %s[0] = [", __func__, t->name);
|
||||
for (size_t i = 0; i <= DEBUG_POS; i++) {
|
||||
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
|
||||
}
|
||||
printf(" ... ]\n");
|
||||
}
|
||||
|
||||
namespace PCA {
|
||||
|
||||
// input params for PCA computations
|
||||
struct pca_params {
|
||||
int n_threads = 1;
|
||||
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
|
||||
int n_iterations = 1000;
|
||||
float tolerance = 1e-7;
|
||||
|
||||
// for debugging
|
||||
int i_layer = 0;
|
||||
int n_layers = 0;
|
||||
};
|
||||
|
||||
// result from each iteration
|
||||
struct pca_result {
|
||||
struct ggml_tensor * calculated_square = NULL;
|
||||
std::vector<struct ggml_tensor *> eigenvectors;
|
||||
std::vector<float> distances;
|
||||
};
|
||||
|
||||
struct pca_model {
|
||||
ggml_backend_t backend = NULL;
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx; // context to compute graph on target device
|
||||
struct ggml_context * ctx_host; // host context to store results
|
||||
|
||||
// tensors on target device
|
||||
struct ggml_tensor * dev_input;
|
||||
struct ggml_tensor * dev_square;
|
||||
struct ggml_tensor * dev_eigenvector;
|
||||
|
||||
pca_model(struct ggml_tensor * t_input) {
|
||||
#ifdef GGML_USE_CUDA
|
||||
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
backend = ggml_backend_cuda_init(0); // init device 0
|
||||
if (!backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
// TODO: enable Metal support when support for GGML_OP_SQRT is added
|
||||
// #ifdef GGML_USE_METAL
|
||||
// fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
// backend = ggml_backend_metal_init();
|
||||
// if (!backend) {
|
||||
// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||||
// }
|
||||
// #endif
|
||||
|
||||
// if there aren't GPU Backends fallback to CPU backend
|
||||
if (!backend) {
|
||||
backend = ggml_backend_cpu_init();
|
||||
}
|
||||
|
||||
const int num_tensors = 4;
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx = ggml_init(params);
|
||||
|
||||
auto n_samples = t_input->ne[0];
|
||||
auto n_embd = t_input->ne[1];
|
||||
|
||||
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
|
||||
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
ggml_set_name(dev_input, "dev_input");
|
||||
ggml_set_name(dev_square, "dev_square");
|
||||
ggml_set_name(dev_eigenvector, "dev_eigenvector");
|
||||
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
|
||||
|
||||
// initialize eigenvector to random normalized vector
|
||||
{
|
||||
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
|
||||
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
|
||||
std::uniform_real_distribution<float> distribution(0.0, 1.0);
|
||||
float sum_sqr = 0.0; // for normalizing random_vec
|
||||
for (size_t i = 0; i < random_vec.size(); ++i) {
|
||||
float f = distribution(generator);
|
||||
sum_sqr += f * f;
|
||||
random_vec[i] = f;
|
||||
}
|
||||
// normalize it
|
||||
float random_vec_norm = std::sqrt(sum_sqr);
|
||||
for (size_t i = 0; i < random_vec.size(); ++i) {
|
||||
random_vec[i] /= random_vec_norm;
|
||||
}
|
||||
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
|
||||
}
|
||||
}
|
||||
|
||||
~pca_model() {
|
||||
ggml_free(ctx);
|
||||
ggml_backend_buffer_free(buffer);
|
||||
ggml_backend_free(backend);
|
||||
}
|
||||
};
|
||||
|
||||
static struct ggml_cgraph * build_graph_piter(
|
||||
const struct pca_params & params,
|
||||
const pca_model & model,
|
||||
bool calc_square = false) {
|
||||
GGML_ASSERT(params.n_batch > 0);
|
||||
// TODO: buf_size must be able to scale with params.n_batch
|
||||
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||||
static std::vector<uint8_t> buf(buf_size);
|
||||
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
|
||||
};
|
||||
// create a temporally context to build the graph
|
||||
struct ggml_context * ctx0 = ggml_init(params0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
// turn v_diff_original into square matrix if needed
|
||||
struct ggml_tensor * tmp_square;
|
||||
if (calc_square) {
|
||||
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
|
||||
ggml_set_name(tmp_square, "tmp_square");
|
||||
}
|
||||
|
||||
struct ggml_tensor * b_tensor;
|
||||
struct ggml_tensor * distance;
|
||||
struct ggml_tensor * old_eigen = model.dev_eigenvector;
|
||||
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
|
||||
|
||||
for (int i = 0; i < params.n_batch; ++i) {
|
||||
// b_tensor = square * eigenvector^T
|
||||
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
|
||||
ggml_set_name(b_tensor, "b_tensor");
|
||||
|
||||
// normalize
|
||||
b_tensor = ggml_div_inplace(ctx0,
|
||||
b_tensor,
|
||||
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
|
||||
);
|
||||
ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
|
||||
|
||||
// calculate distance(new eigenvector - old eigenvector)
|
||||
// we don't use ggml_sub because it may not be implemented on GPU backend
|
||||
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
|
||||
distance = ggml_sqrt_inplace(ctx0,
|
||||
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
|
||||
ggml_format_name(distance, "distance_%d", i);
|
||||
|
||||
old_eigen = b_tensor;
|
||||
|
||||
// build operations nodes
|
||||
ggml_build_forward_expand(gf, distance);
|
||||
}
|
||||
|
||||
// delete the temporally context used to build the graph
|
||||
ggml_free(ctx0);
|
||||
return gf;
|
||||
}
|
||||
|
||||
static ggml_status compute_piter(
|
||||
const struct pca_params & params,
|
||||
const pca_model & model,
|
||||
struct ggml_cgraph * gf,
|
||||
ggml_gallocr_t allocr,
|
||||
struct pca_result & result) {
|
||||
// allocate tensors
|
||||
ggml_gallocr_alloc_graph(allocr, gf);
|
||||
|
||||
if (ggml_backend_is_cpu(model.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
|
||||
}
|
||||
|
||||
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||||
//#ifdef GGML_USE_METAL
|
||||
// if (ggml_backend_is_metal(model.backend)) {
|
||||
// ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
|
||||
// }
|
||||
//#endif
|
||||
|
||||
ggml_status res = ggml_backend_graph_compute(model.backend, gf);
|
||||
if (res == GGML_STATUS_SUCCESS) {
|
||||
auto extract_i = [](std::string prefix, std::string str) -> int {
|
||||
int i = -1;
|
||||
if (str.rfind(prefix, 0) == 0) {
|
||||
sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
|
||||
}
|
||||
return i;
|
||||
};
|
||||
result.calculated_square = NULL;
|
||||
result.eigenvectors.clear();
|
||||
result.distances.clear();
|
||||
result.eigenvectors.resize(params.n_batch);
|
||||
result.distances.resize(params.n_batch);
|
||||
// get output nodes
|
||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||||
auto node = gf->nodes[i];
|
||||
int iter = -1;
|
||||
// find b_tensor (without copying data from device)
|
||||
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
|
||||
result.eigenvectors[iter] = node;
|
||||
}
|
||||
// find distances, then copy data from device
|
||||
if ((iter = extract_i("distance_", node->name)) > -1) {
|
||||
float d;
|
||||
ggml_backend_tensor_get(node, &d, 0, sizeof(float));
|
||||
result.distances[iter] = d;
|
||||
// std::cout << node->name << " = " << d << "\n";
|
||||
}
|
||||
// find tmp_square if it exists (without copying data from device)
|
||||
if (std::string(node->name) == "tmp_square") {
|
||||
result.calculated_square = node;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
static void power_iteration(
|
||||
const struct pca_params & params,
|
||||
struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
|
||||
struct ggml_tensor * output) {
|
||||
//printf("in power iteration\n");
|
||||
struct pca_model model(input);
|
||||
|
||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||
struct pca_result result;
|
||||
struct ggml_tensor * last_eigenvector = NULL;
|
||||
|
||||
int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
|
||||
for (int iter = 0; iter < n_iters; ++iter) {
|
||||
bool calc_square = (iter == 0); // only need to calculate square for first iteration
|
||||
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
|
||||
// ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
|
||||
compute_piter(params, model, gf, allocr, result);
|
||||
|
||||
for (size_t k = 0; k < result.distances.size(); ++k) {
|
||||
last_eigenvector = result.eigenvectors[k];
|
||||
if (result.distances[k] < params.tolerance) {
|
||||
break; // done
|
||||
}
|
||||
}
|
||||
|
||||
if (calc_square) {
|
||||
// copy and store the square matrix if needed
|
||||
GGML_ASSERT(result.calculated_square != NULL);
|
||||
ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
|
||||
}
|
||||
|
||||
{
|
||||
// copy last eigen vector and store as input for next iteration
|
||||
GGML_ASSERT(last_eigenvector != NULL);
|
||||
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
|
||||
}
|
||||
|
||||
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
|
||||
__func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch);
|
||||
}
|
||||
|
||||
// get output tensor
|
||||
GGML_ASSERT(last_eigenvector);
|
||||
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
|
||||
//print_debug_tensor(output);
|
||||
ggml_gallocr_free(allocr);
|
||||
}
|
||||
|
||||
static void run_pca(
|
||||
struct pca_params & params,
|
||||
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
|
||||
const std::vector<struct ggml_tensor *> & v_output) {
|
||||
printf("%s: Running PCA...\n", __func__);
|
||||
for (size_t il = 0; il < v_input.size(); ++il) {
|
||||
|
||||
// prepare output vector
|
||||
struct ggml_tensor * ctrl_out = v_output[il];
|
||||
ggml_format_name(ctrl_out, "direction.%ld", il+1);
|
||||
|
||||
// run power_iteration
|
||||
params.i_layer = il;
|
||||
params.n_layers = v_input.size();
|
||||
power_iteration(params, v_input[il], ctrl_out);
|
||||
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
|
||||
}
|
||||
}
|
||||
|
||||
}
|
1
examples/cvector-generator/positive.txt
Normal file
1
examples/cvector-generator/positive.txt
Normal file
|
@ -0,0 +1 @@
|
|||
[INST] Act like a person who is extremely happy. [/INST]
|
|
@ -17,9 +17,10 @@ static std::vector<std::string> split_lines(const std::string & s) {
|
|||
return lines;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -40,13 +41,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
|||
|
||||
// try to get sequence embeddings - supported only when pooling_type is not NONE
|
||||
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
//TODO: I would also add a parameter here to enable normalization or not.
|
||||
|
@ -97,6 +92,12 @@ int main(int argc, char ** argv) {
|
|||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
|
|
|
@ -44,6 +44,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
|||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
// run model
|
||||
|
@ -98,7 +99,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
|
|||
llama_token eos_token = llama_token_eos(mdl);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
|
||||
|
@ -166,8 +169,7 @@ int main(int argc, char * argv[]) {
|
|||
|
||||
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
|
||||
// create new context - set to embedding mode
|
||||
cparams.embeddings = true;
|
||||
// create generation context
|
||||
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
|
||||
|
||||
// ### Embedding/Representation ###
|
||||
|
|
|
@ -223,7 +223,11 @@ int main(int argc, char ** argv) {
|
|||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
embd_inp = inp_pfx;
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
embd_inp.push_back(llama_token_middle(model));
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||
|
@ -528,7 +532,12 @@ int main(int argc, char ** argv) {
|
|||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
embd_inp = inp_pfx;
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
embd_inp.push_back(llama_token_middle(model));
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
|
|
|
@ -293,6 +293,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
params.output_format = cmd_params_defaults.output_format;
|
||||
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
|
||||
params.reps = cmd_params_defaults.reps;
|
||||
params.numa = cmd_params_defaults.numa;
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
|
@ -713,7 +714,6 @@ struct test {
|
|||
static const bool kompute;
|
||||
static const bool metal;
|
||||
static const bool sycl;
|
||||
static const bool rpc;
|
||||
static const bool gpu_blas;
|
||||
static const bool blas;
|
||||
static const std::string cpu_info;
|
||||
|
@ -725,6 +725,7 @@ struct test {
|
|||
int n_batch;
|
||||
int n_ubatch;
|
||||
int n_threads;
|
||||
bool has_rpc;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_gpu_layers;
|
||||
|
@ -750,6 +751,7 @@ struct test {
|
|||
n_batch = inst.n_batch;
|
||||
n_ubatch = inst.n_ubatch;
|
||||
n_threads = inst.n_threads;
|
||||
has_rpc = !inst.rpc_servers.empty();
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
n_gpu_layers = inst.n_gpu_layers;
|
||||
|
@ -809,9 +811,6 @@ struct test {
|
|||
if (sycl) {
|
||||
return GGML_SYCL_NAME;
|
||||
}
|
||||
if (rpc) {
|
||||
return "RPC";
|
||||
}
|
||||
if (gpu_blas) {
|
||||
return "GPU BLAS";
|
||||
}
|
||||
|
@ -881,7 +880,7 @@ struct test {
|
|||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
|
||||
std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
|
||||
std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||
|
@ -915,7 +914,6 @@ const bool test::metal = !!ggml_cpu_has_metal();
|
|||
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
||||
const bool test::blas = !!ggml_cpu_has_blas();
|
||||
const bool test::sycl = !!ggml_cpu_has_sycl();
|
||||
const bool test::rpc = !!ggml_cpu_has_rpc();
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
|
@ -1181,6 +1179,9 @@ struct markdown_printer : public printer {
|
|||
value = buf;
|
||||
} else if (field == "backend") {
|
||||
value = test::get_backend();
|
||||
if (t.has_rpc) {
|
||||
value += "+RPC";
|
||||
}
|
||||
} else if (field == "test") {
|
||||
if (t.n_prompt > 0 && t.n_gen == 0) {
|
||||
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
|
||||
|
|
|
@ -131,22 +131,29 @@ class LlamaState: ObservableObject {
|
|||
|
||||
messageLog += "\(text)"
|
||||
|
||||
while await llamaContext.n_cur < llamaContext.n_len {
|
||||
let result = await llamaContext.completion_loop()
|
||||
messageLog += "\(result)"
|
||||
Task.detached {
|
||||
while await llamaContext.n_cur < llamaContext.n_len {
|
||||
let result = await llamaContext.completion_loop()
|
||||
await MainActor.run {
|
||||
self.messageLog += "\(result)"
|
||||
}
|
||||
}
|
||||
|
||||
let t_end = DispatchTime.now().uptimeNanoseconds
|
||||
let t_generation = Double(t_end - t_heat_end) / self.NS_PER_S
|
||||
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
|
||||
|
||||
await llamaContext.clear()
|
||||
|
||||
await MainActor.run {
|
||||
self.messageLog += """
|
||||
\n
|
||||
Done
|
||||
Heat up took \(t_heat)s
|
||||
Generated \(tokens_per_second) t/s\n
|
||||
"""
|
||||
}
|
||||
}
|
||||
|
||||
let t_end = DispatchTime.now().uptimeNanoseconds
|
||||
let t_generation = Double(t_end - t_heat_end) / NS_PER_S
|
||||
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
|
||||
|
||||
await llamaContext.clear()
|
||||
messageLog += """
|
||||
\n
|
||||
Done
|
||||
Heat up took \(t_heat)s
|
||||
Generated \(tokens_per_second) t/s\n
|
||||
"""
|
||||
}
|
||||
|
||||
func bench() async {
|
||||
|
|
|
@ -16,41 +16,41 @@ struct quant_option {
|
|||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
||||
|
|
|
@ -73,9 +73,10 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
|
|||
return chunks;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -160,6 +161,12 @@ int main(int argc, char ** argv) {
|
|||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
|
|
|
@ -1594,7 +1594,7 @@ struct server_context {
|
|||
} else {
|
||||
std::string prompt;
|
||||
if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
|
||||
json_value(task.data, "prompt", std::string());
|
||||
prompt = json_value(task.data, "prompt", std::string());
|
||||
}
|
||||
|
||||
slot = get_available_slot(prompt);
|
||||
|
@ -2038,7 +2038,12 @@ struct server_context {
|
|||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
if (middle_token >= 0) {
|
||||
prefix_tokens.push_back(middle_token);
|
||||
}
|
||||
|
||||
prompt_tokens = prefix_tokens;
|
||||
} else {
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
|
||||
|
|
|
@ -13,16 +13,16 @@ if %errorlevel% neq 0 goto ERROR
|
|||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -G "Ninja" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
cmake --build . -j
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
cd ..
|
||||
|
|
6
flake.lock
generated
6
flake.lock
generated
|
@ -20,11 +20,11 @@
|
|||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1717786204,
|
||||
"narHash": "sha256-4q0s6m0GUcN7q+Y2DqD27iLvbcd1G50T2lv08kKxkSI=",
|
||||
"lastModified": 1718318537,
|
||||
"narHash": "sha256-4Zu0RYRcAY/VWuu6awwq4opuiD//ahpc2aFHg2CWqFY=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "051f920625ab5aabe37c920346e3e69d7d34400e",
|
||||
"rev": "e9ee548d90ff586a6471b4ae80ae9cfcbceb3420",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
|
98
ggml-alloc.c
98
ggml-alloc.c
|
@ -339,6 +339,7 @@ struct hash_node {
|
|||
};
|
||||
|
||||
struct tensor_alloc {
|
||||
int buffer_id;
|
||||
size_t offset;
|
||||
size_t size_max; // 0 = pre-allocated, unused, or view
|
||||
};
|
||||
|
@ -349,7 +350,6 @@ struct leaf_alloc {
|
|||
};
|
||||
|
||||
struct node_alloc {
|
||||
int buffer_id;
|
||||
struct tensor_alloc dst;
|
||||
struct tensor_alloc src[GGML_MAX_SRC];
|
||||
};
|
||||
|
@ -386,8 +386,19 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
|
|||
for (int i = 0; i < n_bufs; i++) {
|
||||
galloc->bufts[i] = bufts[i];
|
||||
galloc->buffers[i] = NULL;
|
||||
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
|
||||
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
|
||||
|
||||
// check if the same buffer type is used multiple times and reuse the same allocator
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (bufts[i] == bufts[j]) {
|
||||
galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (galloc->buf_tallocs[i] == NULL) {
|
||||
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
|
||||
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
|
||||
}
|
||||
}
|
||||
galloc->n_buffers = n_bufs;
|
||||
|
||||
|
@ -405,10 +416,30 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
|||
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
if (galloc->buffers != NULL) {
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
// skip if already freed
|
||||
bool freed = false;
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (galloc->buffers[j] == galloc->buffers[i]) {
|
||||
freed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!freed) {
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
}
|
||||
}
|
||||
if (galloc->buf_tallocs != NULL) {
|
||||
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
|
||||
// skip if already freed
|
||||
bool freed = false;
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
|
||||
freed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!freed) {
|
||||
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -511,17 +542,18 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
|||
}
|
||||
}
|
||||
|
||||
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
|
||||
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
||||
// graph outputs are never freed
|
||||
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
|
||||
AT_PRINTF("not freeing output %s\n", node->name);
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
size_t offset = hn->offset;
|
||||
int buffer_id = hn->buffer_id;
|
||||
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
||||
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
|
||||
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
|
||||
hn->allocated = false;
|
||||
|
@ -626,11 +658,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
|||
AT_PRINTF("view_src %s: %d children, %d views\n",
|
||||
view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
|
||||
ggml_gallocr_free_node(galloc, view_src, buffer_id);
|
||||
ggml_gallocr_free_node(galloc, view_src);
|
||||
}
|
||||
}
|
||||
else if (p_hn->allocated) {
|
||||
ggml_gallocr_free_node(galloc, parent, buffer_id);
|
||||
ggml_gallocr_free_node(galloc, parent);
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
|
@ -674,22 +706,25 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
|||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i);
|
||||
if (node->view_src || node->data) {
|
||||
node_alloc->dst.buffer_id = -1;
|
||||
node_alloc->dst.offset = SIZE_MAX;
|
||||
node_alloc->dst.size_max = 0;
|
||||
} else {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
node_alloc->dst.offset = hn->offset;
|
||||
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
||||
node_alloc->dst.buffer_id = hn->buffer_id;
|
||||
node_alloc->dst.offset = hn->offset;
|
||||
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (!src || src->view_src || src->data) {
|
||||
node_alloc->src[j].buffer_id = -1;
|
||||
node_alloc->src[j].offset = SIZE_MAX;
|
||||
node_alloc->src[j].size_max = 0;
|
||||
} else {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
|
||||
node_alloc->src[j].buffer_id = hn->buffer_id;
|
||||
node_alloc->src[j].offset = hn->offset;
|
||||
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
|
||||
}
|
||||
|
@ -706,9 +741,11 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
|||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
|
||||
if (leaf->view_src || leaf->data) {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = -1;
|
||||
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
|
||||
galloc->leaf_allocs[i].leaf.size_max = 0;
|
||||
} else {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
|
||||
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
||||
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
}
|
||||
|
@ -716,6 +753,14 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
|||
|
||||
// reallocate buffers if needed
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
// if the buffer type is used multiple times, we reuse the same buffer
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
|
||||
galloc->buffers[i] = galloc->buffers[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
|
||||
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
|
||||
|
||||
|
@ -724,6 +769,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
|||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
|
||||
if (galloc->buffers[i] == NULL) {
|
||||
|
@ -740,7 +786,8 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
|||
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
|
||||
}
|
||||
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) {
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
|
||||
int buffer_id = tensor_alloc->buffer_id;
|
||||
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
|
||||
if (tensor->view_src != NULL) {
|
||||
|
@ -768,8 +815,8 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
|||
}
|
||||
}
|
||||
|
||||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) {
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id];
|
||||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
|
||||
ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL;
|
||||
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
|
||||
return talloc->size_max >= node_size;
|
||||
}
|
||||
|
@ -793,7 +840,7 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
|
|||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) {
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
|
||||
#endif
|
||||
|
@ -805,7 +852,7 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
|
|||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) {
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
|
||||
#endif
|
||||
|
@ -846,7 +893,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
|||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
|
||||
ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf);
|
||||
ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
|
||||
}
|
||||
// nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
|
@ -857,9 +904,9 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
|||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
|
||||
ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
|
||||
ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -871,6 +918,15 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
|||
if (galloc->buffers[buffer_id] == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (int i = 0; i < buffer_id; i++) {
|
||||
if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
|
||||
// this buffer is the same as a previous one due to the same buffer type being used multiple times
|
||||
// only return the buffer size the first time it appears to avoid double counting
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
|
||||
}
|
||||
|
||||
|
|
|
@ -17,13 +17,15 @@ extern "C" {
|
|||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
||||
// allocate a buffer of this type
|
||||
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
|
||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||
// tensor alignment
|
||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft);
|
||||
// max buffer size that can be allocated
|
||||
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft);
|
||||
// data size needed to allocate the tensor, including padding
|
||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
// check if tensor data is in host memory
|
||||
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
|
||||
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
||||
};
|
||||
|
||||
|
@ -92,27 +94,37 @@ extern "C" {
|
|||
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
||||
|
||||
// compute graph with a plan (not used currently)
|
||||
// create a new plan for a graph
|
||||
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
|
||||
void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
||||
// compute the graph with the plan
|
||||
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph with a plan
|
||||
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// compute graph without a plan (async)
|
||||
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if the backend supports an operation
|
||||
// check if the backend can compute an operation
|
||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend can use tensors allocated in a buffer type
|
||||
bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
|
||||
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||
// even if the weight has to be copied from the CPU temporarily
|
||||
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
// create a new event that can record events on this backend instance
|
||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||
// record an event on the backend instance that created it
|
||||
void (*GGML_CALL event_record) (ggml_backend_event_t event);
|
||||
// wait for an event on on a different backend instance
|
||||
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
// block until an event is recorded
|
||||
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
|
|
255
ggml-backend.c
255
ggml-backend.c
|
@ -44,10 +44,6 @@ GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buf
|
|||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return buft->iface.supports_backend(buft, backend);
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.is_host) {
|
||||
return buft->iface.is_host(buft);
|
||||
|
@ -286,6 +282,10 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
|
|||
return backend->iface.supports_op(backend, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return backend->iface.supports_buft(backend, buft);
|
||||
}
|
||||
|
||||
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
if (backend->iface.offload_op != NULL) {
|
||||
return backend->iface.offload_op(backend, op);
|
||||
|
@ -639,12 +639,6 @@ GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_cpu(backend);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
|
@ -659,7 +653,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
|||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
|
@ -715,7 +708,6 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
|||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
|
@ -836,6 +828,12 @@ GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const
|
|||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i cpu_backend_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
|
@ -846,9 +844,11 @@ static struct ggml_backend_i cpu_backend_i = {
|
|||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cpu_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
@ -1055,6 +1055,9 @@ struct ggml_backend_sched {
|
|||
int * node_backend_ids; // [graph_size]
|
||||
int * leaf_backend_ids; // [graph_size]
|
||||
|
||||
int * prev_node_backend_ids; // [graph_size]
|
||||
int * prev_leaf_backend_ids; // [graph_size]
|
||||
|
||||
// copy of the graph with modified inputs
|
||||
struct ggml_cgraph * graph;
|
||||
|
||||
|
@ -1075,6 +1078,8 @@ struct ggml_backend_sched {
|
|||
ggml_backend_sched_eval_callback callback_eval;
|
||||
void * callback_eval_user_data;
|
||||
|
||||
bool debug;
|
||||
|
||||
// align context_buffer to GGML_MEM_ALIGN
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(GGML_MEM_ALIGN))
|
||||
|
@ -1097,22 +1102,24 @@ static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backen
|
|||
return -1;
|
||||
}
|
||||
|
||||
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
|
||||
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
|
||||
ggml_backend_buffer_t buffer = tensor->buffer;
|
||||
if (buffer == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// find highest prio backend that supports the buffer type
|
||||
// find highest prio backend that supports the buffer type and the op
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
||||
if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
|
||||
ggml_backend_supports_op(sched->backends[i], op)) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
|
||||
__func__, ggml_backend_buffer_name(buffer), tensor->name);
|
||||
GGML_ASSERT(false);
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
|
||||
__func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
|
||||
#endif
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
@ -1131,7 +1138,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
|||
// TODO: use supports_op to check if the backend supports the op
|
||||
|
||||
// assign pre-allocated nodes to their backend
|
||||
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
||||
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
|
||||
if (cur_backend_id != -1) {
|
||||
SET_CAUSE(tensor, "1.dst");
|
||||
return cur_backend_id;
|
||||
|
@ -1139,7 +1146,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
|||
|
||||
// view_src
|
||||
if (tensor->view_src != NULL) {
|
||||
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
||||
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
|
||||
if (cur_backend_id != -1) {
|
||||
SET_CAUSE(tensor, "1.vsrc");
|
||||
return cur_backend_id;
|
||||
|
@ -1161,11 +1168,11 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
|||
continue;
|
||||
}
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
|
||||
// check if a backend with higher prio wants to offload the op
|
||||
if (src_backend_id == sched->n_backends - 1) {
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
SET_CAUSE(tensor, "1.off");
|
||||
return b;
|
||||
}
|
||||
|
@ -1223,10 +1230,33 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
|
|||
}
|
||||
}
|
||||
|
||||
//#define DEBUG_PASS1
|
||||
//#define DEBUG_PASS2
|
||||
//#define DEBUG_PASS3
|
||||
//#define DEBUG_PASS4
|
||||
static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
|
||||
ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
|
||||
ggml_backend_buffer_type_t buft = NULL;
|
||||
|
||||
if (buf) {
|
||||
// the tensor is already allocated
|
||||
buft = buf->buft;
|
||||
} else {
|
||||
// see if the tensor already has a backend assigned, and use the buffer type of that backend
|
||||
int tensor_backend_id = tensor_backend_id(t);
|
||||
if (tensor_backend_id == -1 && t->view_src) {
|
||||
tensor_backend_id = tensor_backend_id(t->view_src);
|
||||
}
|
||||
if (tensor_backend_id != -1) {
|
||||
buft = sched->bufts[tensor_backend_id];
|
||||
}
|
||||
}
|
||||
|
||||
return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
|
||||
if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.sup");
|
||||
}
|
||||
}
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
|
@ -1280,17 +1310,13 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_PASS1
|
||||
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 2: expand current backend assignments
|
||||
// assign the same backend to adjacent nodes
|
||||
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
|
||||
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
|
||||
|
||||
|
||||
// pass 2.2 expand gpu down
|
||||
// ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
|
||||
// expand gpu down
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
|
@ -1306,13 +1332,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
} else {
|
||||
cur_backend_id = *node_backend_id;
|
||||
}
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.2");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.1 expand gpu up
|
||||
// expand gpu up
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
|
@ -1328,13 +1353,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
} else {
|
||||
cur_backend_id = *node_backend_id;
|
||||
}
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.1");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.4 expand rest down
|
||||
// expand rest down
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
|
@ -1345,13 +1369,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
cur_backend_id = *node_backend_id;
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.4");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.3 expand rest up
|
||||
// expand rest up
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
|
@ -1362,24 +1385,80 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
cur_backend_id = *node_backend_id;
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.3");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PASS2
|
||||
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
// pass 3: upgrade nodes to higher prio backends with compatible buffer types
|
||||
// if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
|
||||
// however, we also need to verify that the sources are in compatible buffer types
|
||||
// (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
|
||||
// however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
|
||||
// this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
|
||||
// additionally, set remaining unassigned nodes to the backend with the most supported inputs
|
||||
// only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id == -1) {
|
||||
// unassigned node: find the backend with the most supported inputs
|
||||
int n_supported_best = -1;
|
||||
for (int b = 0; b < sched->n_backends; b++) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], node)) {
|
||||
int n_supported = 0;
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
|
||||
n_supported++;
|
||||
}
|
||||
}
|
||||
if (n_supported > n_supported_best) {
|
||||
n_supported_best = n_supported;
|
||||
*node_backend_id = b;
|
||||
SET_CAUSE(node, "3.best");
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// assigned node: upgrade to higher prio backend if possible
|
||||
for (int b = 0; b < *node_backend_id; b++) {
|
||||
if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
|
||||
bool supported = true;
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
|
||||
supported = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (supported) {
|
||||
*node_backend_id = b;
|
||||
SET_CAUSE(node, "3.upg");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pass 3: assign backends to remaining src from dst and view_src
|
||||
// pass 4: assign backends to remaining src from dst and view_src
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
int * cur_backend_id = &tensor_backend_id(node);
|
||||
if (node->view_src != NULL && *cur_backend_id == -1) {
|
||||
*cur_backend_id = tensor_backend_id(node->view_src);
|
||||
SET_CAUSE(node, "3.vsrc");
|
||||
SET_CAUSE(node, "4.vsrc");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
|
@ -1391,17 +1470,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
if (src->view_src != NULL) {
|
||||
// views are always on the same backend as the source
|
||||
*src_backend_id = tensor_backend_id(src->view_src);
|
||||
SET_CAUSE(src, "3.vsrc");
|
||||
SET_CAUSE(src, "4.vsrc");
|
||||
} else {
|
||||
*src_backend_id = *cur_backend_id;
|
||||
SET_CAUSE(src, "3.cur");
|
||||
SET_CAUSE(src, "4.cur");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_PASS3
|
||||
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 4: split graph, find tensors that need to be copied
|
||||
{
|
||||
|
@ -1448,10 +1524,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
}
|
||||
}
|
||||
// check if the split has too many inputs
|
||||
// FIXME: count the number of inputs instead of only checking when full
|
||||
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
||||
const size_t id = hash_id(src);
|
||||
int src_backend_id = sched->tensor_backend_id[id];
|
||||
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
|
||||
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
|
||||
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) {
|
||||
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
||||
need_new_split = true;
|
||||
break;
|
||||
|
@ -1486,7 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
const int src_backend_id = tensor_backend_id(src);
|
||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||
size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
||||
ggml_backend_t backend = sched->backends[src_backend_id];
|
||||
|
@ -1511,7 +1589,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
}
|
||||
}
|
||||
|
||||
if (src_backend_id != node_backend_id) {
|
||||
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
|
||||
if (src_backend_id != cur_backend_id && !supported) {
|
||||
// create a copy of the input in the split's backend
|
||||
const size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
||||
|
@ -1537,9 +1616,21 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
split->i_end = graph->n_nodes;
|
||||
sched->n_splits = i_split + 1;
|
||||
}
|
||||
#ifdef DEBUG_PASS4
|
||||
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
if (sched->debug) {
|
||||
ggml_backend_sched_print_assignments(sched, graph);
|
||||
}
|
||||
|
||||
// swap node_backend_ids and leaf_backend_ids and prevs
|
||||
{
|
||||
int * tmp = sched->node_backend_ids;
|
||||
sched->node_backend_ids = sched->prev_node_backend_ids;
|
||||
sched->prev_node_backend_ids = tmp;
|
||||
|
||||
tmp = sched->leaf_backend_ids;
|
||||
sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
|
||||
sched->prev_leaf_backend_ids = tmp;
|
||||
}
|
||||
|
||||
// create copies of the graph for each split
|
||||
// TODO: avoid this copy
|
||||
|
@ -1613,8 +1704,26 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
|||
}
|
||||
|
||||
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
bool backend_ids_changed = false;
|
||||
for (int i = 0; i < sched->graph->n_nodes; i++) {
|
||||
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
|
||||
sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
|
||||
backend_ids_changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!backend_ids_changed) {
|
||||
for (int i = 0; i < sched->graph->n_leafs; i++) {
|
||||
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
|
||||
sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
|
||||
backend_ids_changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate graph
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
#ifndef NDEBUG
|
||||
|
@ -1727,6 +1836,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
|||
|
||||
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
|
||||
|
||||
sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
|
||||
|
@ -1735,6 +1846,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
|||
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
||||
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
||||
sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
|
||||
sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
|
||||
|
@ -1747,7 +1860,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
|||
for (int b = 0; b < n_backends; b++) {
|
||||
sched->backends[b] = backends[b];
|
||||
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
|
||||
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
|
||||
GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
|
||||
if (sched->n_copies > 1) {
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
sched->events[b][c] = ggml_backend_event_new(backends[b]);
|
||||
|
@ -1779,6 +1892,8 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
|||
free(sched->tensor_copies);
|
||||
free(sched->node_backend_ids);
|
||||
free(sched->leaf_backend_ids);
|
||||
free(sched->prev_node_backend_ids);
|
||||
free(sched->prev_leaf_backend_ids);
|
||||
free(sched);
|
||||
}
|
||||
|
||||
|
@ -1864,6 +1979,15 @@ int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
|
|||
return sched->n_copies;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
|
||||
return sched->n_backends;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
|
||||
GGML_ASSERT(i >= 0 && i < sched->n_backends);
|
||||
return sched->backends[i];
|
||||
}
|
||||
|
||||
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
@ -1875,6 +1999,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
|
|||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
tensor_backend_id(node) = backend_index;
|
||||
SET_CAUSE(node, "usr");
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
|
|
|
@ -23,7 +23,6 @@ extern "C" {
|
|||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
|
||||
// buffer
|
||||
|
@ -74,6 +73,7 @@ extern "C" {
|
|||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// tensor copy between different backends
|
||||
|
@ -90,7 +90,7 @@ extern "C" {
|
|||
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
|
||||
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
|
@ -119,7 +119,7 @@ extern "C" {
|
|||
|
||||
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
|
||||
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
||||
|
@ -182,6 +182,9 @@ extern "C" {
|
|||
// Initialize backend buffers from a measure graph
|
||||
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
|
||||
GGML_API int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i);
|
||||
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
||||
|
|
363
ggml-blas.cpp
Normal file
363
ggml-blas.cpp
Normal file
|
@ -0,0 +1,363 @@
|
|||
#include "ggml-blas.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <future>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
# include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
# include <mkl.h>
|
||||
#else
|
||||
# include <cblas.h>
|
||||
# ifdef BLIS_ENABLE_CBLAS
|
||||
# include <blis.h>
|
||||
# endif
|
||||
#endif
|
||||
|
||||
struct ggml_backend_blas_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
#ifndef GGML_USE_OPENMP
|
||||
std::vector<std::future<void>> tasks;
|
||||
#endif
|
||||
};
|
||||
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
// for large matrices, BLAS is faster
|
||||
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// TODO: find the optimal values for these
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
|
||||
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
||||
|
||||
if (ctx->work_size < desired_wsize) {
|
||||
ctx->work_data.reset(new char[desired_wsize]);
|
||||
ctx->work_size = desired_wsize;
|
||||
}
|
||||
void * wdata = ctx->work_data.get();
|
||||
|
||||
// convert src0 to float
|
||||
if (type != GGML_TYPE_F32) {
|
||||
ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
|
||||
ggml_to_float_t const to_float = type_traits.to_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
|
||||
const int min_cols_per_thread = 4096;
|
||||
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
||||
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
#pragma omp parallel for num_threads(n_threads)
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
#else
|
||||
for (int i = 1; i < n_threads; i++) {
|
||||
const int64_t start = i*ne01/n_threads;
|
||||
const int64_t end = (i + 1)*ne01/n_threads;
|
||||
if (start < end) {
|
||||
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}));
|
||||
}
|
||||
}
|
||||
{
|
||||
// reuse the current thread for the first task
|
||||
const int64_t start = 0;
|
||||
const int64_t end = ne01/n_threads;
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_USE_OPENMP
|
||||
// wait for all tasks to finish
|
||||
for (auto & task : ctx->tasks) {
|
||||
task.get();
|
||||
}
|
||||
ctx->tasks.clear();
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(OPENBLAS_VERSION)
|
||||
openblas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(BLIS_ENABLE_CBLAS)
|
||||
bli_thread_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
// GGML_ASSERT(nb0 <= nb1);
|
||||
// GGML_ASSERT(nb1 <= nb2);
|
||||
// GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
CBLAS_TRANSPOSE transposeA;
|
||||
int lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
GGML_UNUSED(ctx);
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_backend_blas_out_prod(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
|
||||
(op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i blas_backend_i = {
|
||||
/* .get_name = */ ggml_backend_blas_name,
|
||||
/* .free = */ ggml_backend_blas_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_blas_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_blas_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_blas_init(void) {
|
||||
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
||||
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
||||
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
||||
fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
||||
fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
||||
#endif
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
||||
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
23
ggml-blas.h
Normal file
23
ggml-blas.h
Normal file
|
@ -0,0 +1,23 @@
|
|||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for conversion to float
|
||||
// for openblas and blis, this will also set the number of threads used for blas operations
|
||||
GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
56
ggml-cuda.cu
56
ggml-cuda.cu
|
@ -188,13 +188,15 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||
info.default_tensor_split[id] = total_vram;
|
||||
total_vram += prop.totalGlobalMem;
|
||||
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
|
||||
#else
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
}
|
||||
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
|
@ -543,6 +545,10 @@ GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_bu
|
|||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
|
||||
|
@ -585,24 +591,12 @@ GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backen
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
if (!ggml_backend_is_cuda(backend)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
return buft_ctx->device == cuda_ctx->device;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
|
@ -641,7 +635,7 @@ static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> &
|
|||
}
|
||||
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc, get_mmq_x_max_host(cc)));
|
||||
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
|
||||
}
|
||||
return row_rounding;
|
||||
}
|
||||
|
@ -863,6 +857,10 @@ GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_back
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
|
||||
// instead, we allocate them for each tensor separately in init_tensor
|
||||
|
@ -906,12 +904,6 @@ GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_
|
|||
return total_size;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_cuda(backend);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
|
@ -924,7 +916,6 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
|
|||
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
|
||||
};
|
||||
|
||||
|
@ -1024,7 +1015,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
|||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .context = */ nullptr,
|
||||
|
@ -2277,6 +2267,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_SQR:
|
||||
ggml_cuda_op_sqr(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQRT:
|
||||
ggml_cuda_op_sqrt(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
ggml_cuda_op_clamp(ctx, dst);
|
||||
break;
|
||||
|
@ -2840,6 +2833,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
|
@ -2879,6 +2873,20 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (ggml_backend_buft_is_cuda_split(buft)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ggml_backend_buft_is_cuda(buft)) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
return buft_ctx->device == cuda_ctx->device;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
|
||||
|
@ -2951,9 +2959,11 @@ static ggml_backend_i ggml_backend_cuda_interface = {
|
|||
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cuda_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_cuda_offload_op,
|
||||
/* .event_new = */ ggml_backend_cuda_event_new,
|
||||
/* .event_free = */ ggml_backend_cuda_event_free,
|
||||
|
|
|
@ -73,6 +73,7 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
|||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
|
|
|
@ -331,6 +331,10 @@ static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int
|
|||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
|
||||
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
#define FAST_FP16_AVAILABLE
|
||||
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
@ -648,8 +652,8 @@ static int get_mmq_x_max_host(const int cc) {
|
|||
}
|
||||
|
||||
// Round rows to this value for --split-mode row:
|
||||
static int get_mmq_y_host(const int cc, const int mmq_x) {
|
||||
return cc >= CC_VOLTA && mmq_x >= 32 ? 128 : 64;
|
||||
static int get_mmq_y_host(const int cc) {
|
||||
return cc >= CC_VOLTA ? 128 : 64;
|
||||
}
|
||||
|
||||
//////////////////////
|
||||
|
@ -661,6 +665,7 @@ struct ggml_cuda_device_info {
|
|||
int cc; // compute capability
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
|
|
|
@ -30,34 +30,34 @@ void ggml_cuda_op_mul_mat_q(
|
|||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_0>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_1>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q5_0>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_q_case<GGML_TYPE_Q5_1>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_q_case<GGML_TYPE_Q8_0>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q2_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q3_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q4_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q5_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_q_case<GGML_TYPE_Q6_K>(args, stream);
|
||||
mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
|
|
1079
ggml-cuda/mmq.cuh
1079
ggml-cuda/mmq.cuh
File diff suppressed because it is too large
Load diff
|
@ -117,7 +117,7 @@ static __global__ void mul_mat_vec_q(
|
|||
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
||||
}
|
||||
|
||||
if (threadIdx.x < rows_per_cuda_block) {
|
||||
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
|
||||
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
||||
}
|
||||
}
|
||||
|
|
|
@ -130,6 +130,7 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
|
|||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
|
|
|
@ -92,6 +92,15 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
|||
dst[i] = x[i] * x[i];
|
||||
}
|
||||
|
||||
static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = sqrtf(x[i]);
|
||||
}
|
||||
|
||||
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
|
@ -142,6 +151,11 @@ static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
|
|||
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
|
||||
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
|
@ -284,3 +298,17 @@ void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
|
||||
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
#define CUDA_SQRT_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
|
@ -28,3 +29,5 @@ void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|||
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
@ -265,36 +265,31 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
|||
|
||||
// contiguous u/y values
|
||||
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
|
||||
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
||||
const half2 & dm2, const float & d8) {
|
||||
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8) {
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
int sumi_d = 0;
|
||||
int sumi_m = 0;
|
||||
float sumf_d = 0.0f;
|
||||
float sumf_m = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
|
||||
int sumi_d_sc = 0;
|
||||
|
||||
const int sc = scales[i0 / (QI8_1/2)];
|
||||
|
||||
// fill int with 4x m
|
||||
int m = sc >> 4;
|
||||
m |= m << 8;
|
||||
m |= m << 16;
|
||||
const float2 dm2f = __half22float2(dm2[i0/(QI8_1/2)]);
|
||||
int sumi_d = 0;
|
||||
int sumi_m = 0;
|
||||
|
||||
const int vi0 = v[i0/(QI8_1/2)];
|
||||
#pragma unroll
|
||||
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
||||
sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
|
||||
sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
|
||||
const int vi = (vi0 >> (2*(i % (QI8_1/2)))) & 0x03030303;
|
||||
sumi_d = __dp4a(vi, u[i], sumi_d); // SIMD dot product
|
||||
sumi_m = __dp4a(0x01010101, u[i], sumi_m);
|
||||
}
|
||||
|
||||
sumi_d += sumi_d_sc * (sc & 0xF);
|
||||
sumf_d += dm2f.x * sumi_d;
|
||||
sumf_m += dm2f.y * sumi_m;
|
||||
}
|
||||
|
||||
const float2 dm2f = __half22float2(dm2);
|
||||
|
||||
return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
|
||||
return d8*(sumf_d - sumf_m);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
|
@ -352,8 +347,10 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
|
|||
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
||||
int sumi_sc = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
||||
sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
||||
const int vi = __vsubss4((v[i/2] >> (4*(i%2))) & 0x0F0F0F0F, 0x04040404);
|
||||
sumi_sc = __dp4a(vi, u[i], sumi_sc); // SIMD dot product
|
||||
}
|
||||
|
||||
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
#if defined(_WIN32)
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
|
|
@ -1902,18 +1902,12 @@ static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_
|
|||
return ctx->max_alloc;
|
||||
}
|
||||
|
||||
static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
GGML_UNUSED(buft);
|
||||
return ggml_backend_is_kompute(backend);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
|
@ -1973,6 +1967,11 @@ static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struc
|
|||
return ggml_vk_supports_op(op);
|
||||
}
|
||||
|
||||
static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
GGML_UNUSED(backend);
|
||||
return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name;
|
||||
}
|
||||
|
||||
static struct ggml_backend_i kompute_backend_i = {
|
||||
/* .get_name = */ ggml_backend_kompute_name,
|
||||
/* .free = */ ggml_backend_kompute_free,
|
||||
|
@ -1983,9 +1982,11 @@ static struct ggml_backend_i kompute_backend_i = {
|
|||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
|
24
ggml-metal.m
24
ggml-metal.m
|
@ -735,6 +735,12 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs
|
|||
}
|
||||
|
||||
static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
|
||||
for (size_t i = 0, n = 3; i < n; ++i) {
|
||||
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
|
@ -1862,9 +1868,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
// ne21 = n_rows
|
||||
const int dst_rows = ne20*ne21;
|
||||
const int dst_rows_min = n_as;
|
||||
const int dst_rows_max = (ctx->device.maxThreadgroupMemoryLength - 32 - 8192)/4;
|
||||
|
||||
// max size of the rowids array in the kernel shared buffer
|
||||
GGML_ASSERT(dst_rows <= 2048);
|
||||
GGML_ASSERT(dst_rows <= dst_rows_max);
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
|
@ -3044,12 +3051,6 @@ GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend
|
|||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
|
@ -3064,7 +3065,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
|||
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
|
@ -3179,6 +3179,12 @@ GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, con
|
|||
return ggml_metal_supports_op(metal_ctx, op);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i ggml_backend_metal_i = {
|
||||
/* .get_name = */ ggml_backend_metal_name,
|
||||
/* .free = */ ggml_backend_metal_free,
|
||||
|
@ -3189,9 +3195,11 @@ static struct ggml_backend_i ggml_backend_metal_i = {
|
|||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_metal_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
|
1346
ggml-quants.c
1346
ggml-quants.c
File diff suppressed because it is too large
Load diff
36
ggml-rpc.cpp
36
ggml-rpc.cpp
|
@ -73,9 +73,13 @@ struct rpc_tensor {
|
|||
uint64_t view_offs;
|
||||
uint64_t data;
|
||||
char name[GGML_MAX_NAME];
|
||||
|
||||
char padding[4];
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
|
||||
|
||||
// RPC commands
|
||||
enum rpc_cmd {
|
||||
ALLOC_BUFFER = 0,
|
||||
|
@ -540,22 +544,12 @@ GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend
|
|||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
if (!ggml_backend_is_rpc(backend)) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
return buft_ctx->endpoint == rpc_ctx->endpoint;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_rpc_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_rpc_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
|
@ -609,9 +603,8 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & o
|
|||
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
|
||||
output.resize(output_size, 0);
|
||||
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
|
||||
uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
|
||||
memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
|
||||
}
|
||||
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
|
||||
*out_ntensors = n_tensors;
|
||||
|
@ -634,8 +627,17 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t
|
|||
GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
UNUSED(backend);
|
||||
UNUSED(op);
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
return false;
|
||||
//TODO: call the remote backend and cache the results
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
return buft_ctx->endpoint == rpc_ctx->endpoint;
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_rpc_interface = {
|
||||
|
@ -648,9 +650,11 @@ static ggml_backend_i ggml_backend_rpc_interface = {
|
|||
/* .synchronize = */ ggml_backend_rpc_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_rpc_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_rpc_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
@ -1035,7 +1039,9 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<u
|
|||
}
|
||||
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
|
||||
int64_t id;
|
||||
memcpy(&id, &nodes[i], sizeof(id));
|
||||
graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
|
||||
}
|
||||
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
||||
// output serialization format: | status (1 byte) |
|
||||
|
|
12398
ggml-sycl.cpp
12398
ggml-sycl.cpp
File diff suppressed because it is too large
Load diff
11
ggml-sycl.h
11
ggml-sycl.h
|
@ -8,14 +8,12 @@
|
|||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-sycl/presets.hpp"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_SYCL_MAX_DEVICES 48
|
||||
#define GGML_SYCL_NAME "SYCL"
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
|
||||
|
@ -33,13 +31,6 @@ GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
|||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
|
||||
|
||||
// TODO: these are temporary
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
|
||||
|
||||
// SYCL doesn't support registering host memory, keep here for reference
|
||||
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
|
|
23
ggml-sycl/backend.hpp
Normal file
23
ggml-sycl/backend.hpp
Normal file
|
@ -0,0 +1,23 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_BACKEND_HPP
|
||||
#define GGML_SYCL_BACKEND_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
#include "convert.hpp"
|
||||
#include "dequantize.hpp"
|
||||
#include "dmmv.hpp"
|
||||
#include "mmq.hpp"
|
||||
#include "mmvq.hpp"
|
||||
|
||||
#endif // GGML_SYCL_BACKEND_HPP
|
53
ggml-sycl/common.cpp
Normal file
53
ggml-sycl/common.cpp
Normal file
|
@ -0,0 +1,53 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
int get_current_device_id() {
|
||||
return dpct::dev_mgr::instance().current_device_id();
|
||||
}
|
||||
|
||||
void* ggml_sycl_host_malloc(size_t size) try {
|
||||
if (getenv("GGML_SYCL_NO_PINNED") != nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void* ptr = nullptr;
|
||||
// allow to use dpct::get_in_order_queue() for host malloc
|
||||
dpct::err0 err = CHECK_TRY_ERROR(
|
||||
ptr = (void*)sycl::malloc_host(size, dpct::get_in_order_queue()));
|
||||
|
||||
if (err != 0) {
|
||||
// clear the error
|
||||
fprintf(
|
||||
stderr,
|
||||
"WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
||||
size / 1024.0 / 1024.0,
|
||||
"syclGetErrorString is not supported");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return ptr;
|
||||
} catch (sycl::exception const& exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
<< ", line:" << __LINE__ << std::endl;
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
void ggml_sycl_host_free(void* ptr) try {
|
||||
// allow to use dpct::get_in_order_queue() for host malloc
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, dpct::get_in_order_queue())));
|
||||
} catch (sycl::exception const& exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
<< ", line:" << __LINE__ << std::endl;
|
||||
std::exit(1);
|
||||
}
|
298
ggml-sycl/common.hpp
Normal file
298
ggml-sycl/common.hpp
Normal file
|
@ -0,0 +1,298 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_COMMON_HPP
|
||||
#define GGML_SYCL_COMMON_HPP
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#include "dpct/helper.hpp"
|
||||
#include "presets.hpp"
|
||||
|
||||
#define GGML_COMMON_DECL_SYCL
|
||||
#define GGML_COMMON_IMPL_SYCL
|
||||
#include "ggml-common.h"
|
||||
|
||||
void* ggml_sycl_host_malloc(size_t size);
|
||||
void ggml_sycl_host_free(void* ptr);
|
||||
|
||||
static int g_ggml_sycl_debug = 0;
|
||||
#define GGML_SYCL_DEBUG(...) \
|
||||
do { \
|
||||
if (g_ggml_sycl_debug) \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
} while (0)
|
||||
|
||||
#define CHECK_TRY_ERROR(expr) \
|
||||
[&]() { \
|
||||
try { \
|
||||
expr; \
|
||||
return dpct::success; \
|
||||
} catch (std::exception const& e) { \
|
||||
std::cerr << e.what() << "\nException caught at file:" << __FILE__ \
|
||||
<< ", line:" << __LINE__ << ", func:" << __func__ \
|
||||
<< std::endl; \
|
||||
return dpct::default_error; \
|
||||
} \
|
||||
}()
|
||||
|
||||
// #define DEBUG_SYCL_MALLOC
|
||||
|
||||
static int g_work_group_size = 0;
|
||||
// typedef sycl::half ggml_fp16_t;
|
||||
|
||||
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
|
||||
#define VER_4VEC 610 // todo for hardward optimize.
|
||||
#define VER_GEN9 700 // todo for hardward optimize.
|
||||
#define VER_GEN12 1000000 // todo for hardward optimize.
|
||||
#define VER_GEN13 (VER_GEN12 + 1030) // todo for hardward optimize.
|
||||
|
||||
#define GGML_SYCL_MAX_NODES 8192 // TODO: adapt to hardwares
|
||||
|
||||
// define for XMX in Intel GPU
|
||||
// TODO: currently, it's not used for XMX really.
|
||||
#if !defined(GGML_SYCL_FORCE_MMQ)
|
||||
#define SYCL_USE_XMX
|
||||
#endif
|
||||
|
||||
// max batch size to use MMQ kernels when tensor cores are available
|
||||
#define MMQ_MAX_BATCH_SIZE 32
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable : 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
#ifndef GGML_SYCL_DMMV_X
|
||||
#define GGML_SYCL_DMMV_X 32
|
||||
#endif
|
||||
#ifndef GGML_SYCL_MMV_Y
|
||||
#define GGML_SYCL_MMV_Y 1
|
||||
#endif
|
||||
|
||||
typedef sycl::queue *queue_ptr;
|
||||
|
||||
enum ggml_sycl_backend_gpu_mode {
|
||||
SYCL_UNSET_GPU_MODE = -1,
|
||||
SYCL_SINGLE_GPU_MODE = 0,
|
||||
SYCL_MUL_GPU_MODE
|
||||
};
|
||||
|
||||
static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
|
||||
static void crash() {
|
||||
int* ptr = NULL;
|
||||
*ptr = 0;
|
||||
}
|
||||
|
||||
[[noreturn]] static void ggml_sycl_error(
|
||||
const char* stmt,
|
||||
const char* func,
|
||||
const char* file,
|
||||
const int line,
|
||||
const char* msg) {
|
||||
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
|
||||
fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
|
||||
GGML_ASSERT(!"SYCL error");
|
||||
}
|
||||
|
||||
#define SYCL_CHECK(err) \
|
||||
do { \
|
||||
auto err_ = (err); \
|
||||
if (err_ != 0) \
|
||||
ggml_sycl_error( \
|
||||
#err, \
|
||||
__func__, \
|
||||
__FILE__, \
|
||||
__LINE__, \
|
||||
"Meet error in this line code!"); \
|
||||
} while (0)
|
||||
|
||||
#if DPCT_COMPAT_RT_VERSION >= 11100
|
||||
#define GGML_SYCL_ASSUME(x) __builtin_assume(x)
|
||||
#else
|
||||
#define GGML_SYCL_ASSUME(x)
|
||||
#endif // DPCT_COMPAT_RT_VERSION >= 11100
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
typedef sycl::half dfloat; // dequantize float
|
||||
typedef sycl::half2 dfloat2;
|
||||
#else
|
||||
typedef float dfloat; // dequantize float
|
||||
typedef sycl::float2 dfloat2;
|
||||
#endif // GGML_SYCL_F16
|
||||
|
||||
#define MMVQ_MAX_BATCH_SIZE 8
|
||||
|
||||
static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
static int g_all_sycl_device_count = -1;
|
||||
static bool g_ggml_backend_sycl_buffer_type_initialized = false;
|
||||
|
||||
static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode =
|
||||
SYCL_UNSET_GPU_MODE;
|
||||
|
||||
static void* g_scratch_buffer = nullptr;
|
||||
static size_t g_scratch_size = 0; // disabled by default
|
||||
static size_t g_scratch_offset = 0;
|
||||
|
||||
[[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) {
|
||||
stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
|
||||
"current GPU architecture.\n";
|
||||
// __trap();
|
||||
std::exit(1);
|
||||
|
||||
(void)bad_arch; // suppress unused function warning
|
||||
}
|
||||
|
||||
int get_current_device_id();
|
||||
|
||||
inline dpct::err0 ggml_sycl_set_device(const int device) try {
|
||||
|
||||
int current_device_id;
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id()));
|
||||
|
||||
// GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d,
|
||||
// current_device_id=%d\n", device, current_device);
|
||||
if (device == current_device_id) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return CHECK_TRY_ERROR(dpct::select_device(device));
|
||||
} catch (sycl::exception const& exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
<< ", line:" << __LINE__ << std::endl;
|
||||
crash();
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
//////////////////////
|
||||
|
||||
struct ggml_sycl_device_info {
|
||||
int device_count;
|
||||
|
||||
struct sycl_device_info {
|
||||
int cc; // compute capability
|
||||
// int nsm; // number of streaming multiprocessors
|
||||
// size_t smpb; // max. shared memory per block
|
||||
bool vmm; // virtual memory support
|
||||
size_t total_vram;
|
||||
};
|
||||
|
||||
sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};
|
||||
|
||||
std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};
|
||||
};
|
||||
|
||||
const ggml_sycl_device_info & ggml_sycl_info();
|
||||
|
||||
struct ggml_sycl_pool {
|
||||
virtual ~ggml_sycl_pool() = default;
|
||||
|
||||
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||
virtual void free(void * ptr, size_t size) = 0;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct ggml_sycl_pool_alloc {
|
||||
ggml_sycl_pool * pool = nullptr;
|
||||
T * ptr = nullptr;
|
||||
size_t actual_size = 0;
|
||||
|
||||
explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) {
|
||||
}
|
||||
|
||||
ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) {
|
||||
alloc(size);
|
||||
}
|
||||
|
||||
~ggml_sycl_pool_alloc() {
|
||||
if (ptr != nullptr) {
|
||||
pool->free(ptr, actual_size);
|
||||
}
|
||||
}
|
||||
|
||||
// size is in number of elements
|
||||
T * alloc(size_t size) {
|
||||
GGML_ASSERT(pool != nullptr);
|
||||
GGML_ASSERT(ptr == nullptr);
|
||||
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
T * alloc(ggml_sycl_pool & pool, size_t size) {
|
||||
this->pool = &pool;
|
||||
return alloc(size);
|
||||
}
|
||||
|
||||
T * get() {
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ggml_sycl_pool_alloc() = default;
|
||||
ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete;
|
||||
ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete;
|
||||
ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete;
|
||||
ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete;
|
||||
};
|
||||
|
||||
// backend interface
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split
|
||||
// tensors
|
||||
dpct::event_ptr events[GGML_SYCL_MAX_DEVICES]
|
||||
[GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||
};
|
||||
|
||||
struct ggml_backend_sycl_context {
|
||||
int device;
|
||||
std::string name;
|
||||
|
||||
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };
|
||||
|
||||
explicit ggml_backend_sycl_context(int device) :
|
||||
device(device),
|
||||
name(GGML_SYCL_NAME + std::to_string(device)) {
|
||||
}
|
||||
|
||||
queue_ptr stream(int device, int stream) {
|
||||
if (qptrs[device][stream] == nullptr) {
|
||||
qptrs[device][stream] = &(dpct::get_current_device().default_queue());
|
||||
}
|
||||
return qptrs[device][stream];
|
||||
}
|
||||
|
||||
queue_ptr stream() {
|
||||
return stream(device, 0);
|
||||
}
|
||||
|
||||
// pool
|
||||
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
|
||||
|
||||
static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device);
|
||||
|
||||
ggml_sycl_pool & pool(int device) {
|
||||
if (pools[device] == nullptr) {
|
||||
pools[device] = new_pool_for_device(stream(device,0), device);
|
||||
}
|
||||
return *pools[device];
|
||||
}
|
||||
|
||||
ggml_sycl_pool & pool() {
|
||||
return pool(device);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#endif // GGML_SYCL_COMMON_HPP
|
544
ggml-sycl/convert.cpp
Normal file
544
ggml-sycl/convert.cpp
Normal file
|
@ -0,0 +1,544 @@
|
|||
#include "convert.hpp"
|
||||
#include "dequantize.hpp"
|
||||
#include "presets.hpp"
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2));
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int ib = i/qk; // block index
|
||||
const int iqs = (i%qk)/qr; // quant index
|
||||
const int iybs = i - i%qk; // y block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(vx, ib, iqs, v);
|
||||
|
||||
y[iybs + iqs + 0] = v.x();
|
||||
y[iybs + iqs + y_offset] = v.y();
|
||||
}
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static void dequantize_block_sycl(const void *__restrict__ vx,
|
||||
dst_t *__restrict__ y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(
|
||||
sycl::range<3>(1, 1, num_blocks) *
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q2_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q2_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q3_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q3_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb32 = k / 32;
|
||||
const int nb = (k + 255) / 256;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_0(vx, y, nb32, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb32 = k / 32;
|
||||
const int nb = (k + 255) / 256;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_1(vx, y, nb32, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q4_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q5_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q5_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
#if QK_K == 256
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 64),
|
||||
sycl::range<3>(1, 1, 64)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q6_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_q6_K(vx, y, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq1_s(
|
||||
vx, y, item_ct1, iq1s_grid_gpu
|
||||
);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq1_m(
|
||||
vx, y, item_ct1, iq1s_grid_gpu
|
||||
);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq2_xxs(
|
||||
vx, y, item_ct1, iq2xxs_grid,
|
||||
ksigns_iq2xs, kmask_iq2xs);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq2_xs(
|
||||
vx, y, item_ct1, iq2xs_grid,
|
||||
ksigns_iq2xs, kmask_iq2xs);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq2_s(vx, y, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq3_xxs(
|
||||
vx, y, item_ct1, iq3xxs_grid,
|
||||
ksigns_iq2xs, kmask_iq2xs);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq3_s(
|
||||
vx, y, item_ct1, kmask_iq2xs, iq3s_grid);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
#if QK_K == 64
|
||||
dequantize_row_iq4_nl_sycl(vx, y, k, stream);
|
||||
#else
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq4_xs(vx, y, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
sycl::range<3>(1, 1, 32)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
dequantize_block_iq4_nl(vx, y, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const src_t * x = (src_t *) vx;
|
||||
|
||||
y[i] = x[i];
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_sycl(const void *__restrict__ vx,
|
||||
dst_t *__restrict__ y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(
|
||||
sycl::range<3>(1, 1, num_blocks) *
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
convert_unary<src_t>(vx, y, k, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return dequantize_row_q2_K_sycl;
|
||||
case GGML_TYPE_Q3_K:
|
||||
return dequantize_row_q3_K_sycl;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return dequantize_row_q4_K_sycl;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return dequantize_row_q5_K_sycl;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return dequantize_row_q6_K_sycl;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_sycl;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_sycl;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return dequantize_row_iq2_xxs_sycl;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_sycl;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_sycl;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_sycl;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_sycl;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_sycl;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_sycl;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_sycl<float>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_sycl;
|
||||
case GGML_TYPE_Q4_1:
|
||||
return dequantize_row_q4_1_sycl;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return dequantize_row_q2_K_sycl;
|
||||
case GGML_TYPE_Q3_K:
|
||||
return dequantize_row_q3_K_sycl;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return dequantize_row_q4_K_sycl;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return dequantize_row_q5_K_sycl;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return dequantize_row_q6_K_sycl;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_sycl;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_sycl;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return dequantize_row_iq2_xxs_sycl;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_sycl;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
return dequantize_row_iq2_s_sycl;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_sycl;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return dequantize_row_iq3_s_sycl;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
return dequantize_row_iq4_xs_sycl;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_sycl;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_sycl<sycl::half>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
}
|
27
ggml-sycl/convert.hpp
Normal file
27
ggml-sycl/convert.hpp
Normal file
|
@ -0,0 +1,27 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_CONVERT_HPP
|
||||
#define GGML_SYCL_CONVERT_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
template <typename T>
|
||||
using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
|
||||
int k, dpct::queue_ptr stream);
|
||||
typedef to_t_sycl_t<float> to_fp32_sycl_t;
|
||||
typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
|
||||
|
||||
to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type);
|
||||
to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type);
|
||||
|
||||
#endif // GGML_SYCL_CONVERT_HPP
|
690
ggml-sycl/dequantize.hpp
Normal file
690
ggml-sycl/dequantize.hpp
Normal file
|
@ -0,0 +1,690 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_DEQUANTIZE_HPP
|
||||
#define GGML_SYCL_DEQUANTIZE_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
||||
|
||||
static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x() = vui & 0xF;
|
||||
v.y() = vui >> 4;
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v - {8.0f, 8.0f};
|
||||
// v = v * {d, d};
|
||||
v.s0() = (v.s0() - 8.0f) * d;
|
||||
v.s1() = (v.s1() - 8.0f) * d;
|
||||
|
||||
#else
|
||||
v.x() = (v.x() - 8.0f) * d;
|
||||
v.y() = (v.y() - 8.0f) * d;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const dfloat d = x[ib].dm[0];
|
||||
const dfloat m = x[ib].dm[1];
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x() = vui & 0xF;
|
||||
v.y() = vui >> 4;
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
// v = v + {m, m};
|
||||
v.s0() = (v.s0() * d) + m;
|
||||
v.s1() = (v.s1() * d) + m;
|
||||
|
||||
#else
|
||||
v.x() = (v.x() * d) + m;
|
||||
v.y() = (v.y() * d) + m;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||
|
||||
v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v - {16.0f, 16.0f};
|
||||
// v = v * {d, d};
|
||||
v.s0() = (v.s0() - 16.0f) * d;
|
||||
v.s1() = (v.s1() - 16.0f) * d;
|
||||
|
||||
#else
|
||||
v.x() = (v.x() - 16.0f) * d;
|
||||
v.y() = (v.y() - 16.0f) * d;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const dfloat d = x[ib].dm[0];
|
||||
const dfloat m = x[ib].dm[1];
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
||||
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
||||
|
||||
v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
// v = v + {m, m};
|
||||
v.s0() = (v.s0() * d) + m;
|
||||
v.s1() = (v.s1() * d) + m;
|
||||
#else
|
||||
v.x() = (v.x() * d) + m;
|
||||
v.y() = (v.y() * d) + m;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
|
||||
const int iqs, dfloat2 &v) {
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
|
||||
v.x() = x[ib].qs[iqs + 0];
|
||||
v.y() = x[ib].qs[iqs + 1];
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
v.s0() *= d;
|
||||
v.s1() *= d;
|
||||
#else
|
||||
v.x() *= d;
|
||||
v.y() *= d;
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||
|
||||
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
|
||||
const float d = sycl::vec<sycl::half, 1>(x->d)
|
||||
.convert<float, sycl::rounding_mode::automatic>()[0];
|
||||
const float dm = -8*d;
|
||||
|
||||
const uint8_t * q = x->qs + 4*il;
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
y[l+ 0] = d * (q[l] & 0xF) + dm;
|
||||
y[l+16] = d * (q[l] >> 4) + dm;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int ib = 8*i + ir;
|
||||
if (ib >= nb32) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
||||
|
||||
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
|
||||
const sycl::float2 d =
|
||||
x->dm.convert<float, sycl::rounding_mode::automatic>();
|
||||
|
||||
const uint8_t * q = x->qs + 4*il;
|
||||
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
y[l + 0] = d.x() * (q[l] & 0xF) + d.y();
|
||||
y[l + 16] = d.x() * (q[l] >> 4) + d.y();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//================================== k-quants
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_q2_K * x = (const block_q2_K *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int n = tid/32;
|
||||
const int l = tid - 32*n;
|
||||
const int is = 8*n + l/16;
|
||||
|
||||
const uint8_t q = x[i].qs[32*n + l];
|
||||
dst_t * y = yy + i*QK_K + 128*n;
|
||||
|
||||
float dall = x[i].dm[0];
|
||||
float dmin = x[i].dm[1];
|
||||
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||
#else
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int il = tid%16; // 0...15
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
float dall = x[i].dm[0];
|
||||
float dmin = x[i].dm[1];
|
||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_q3_K * x = (const block_q3_K *) vx;
|
||||
|
||||
#if QK_K == 256
|
||||
const int r = item_ct1.get_local_id(2) / 4;
|
||||
const int tid = r/2;
|
||||
const int is0 = r%2;
|
||||
const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
|
||||
const int n = tid / 4;
|
||||
const int j = tid - 4*n;
|
||||
|
||||
uint8_t m = 1 << (4*n + j);
|
||||
int is = 8*n + 2*j + is0;
|
||||
int shift = 2*j;
|
||||
|
||||
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
||||
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
||||
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
||||
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
||||
float d_all = x[i].d;
|
||||
float dl = d_all * (us - 32);
|
||||
|
||||
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
||||
const uint8_t * q = x[i].qs + 32*n;
|
||||
const uint8_t * hm = x[i].hmask;
|
||||
|
||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int is = tid/16; // 0 or 1
|
||||
const int il = tid%16; // 0...15
|
||||
const int im = il/8; // 0...1
|
||||
const int in = il%8; // 0...7
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
||||
|
||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
||||
const float d = (float)x[i].d;
|
||||
|
||||
if (is == 0) {
|
||||
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
} else {
|
||||
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
||||
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||
if (j < 4) {
|
||||
d = q[j] & 63; m = q[j + 4] & 63;
|
||||
} else {
|
||||
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q4_K * x = (const block_q4_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8;
|
||||
const int ir = tid%8;
|
||||
const int is = 2*il;
|
||||
const int n = 4;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
||||
|
||||
const float dall = x[i].dm[0];
|
||||
const float dmin = x[i].dm[1];
|
||||
|
||||
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||
}
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const uint8_t * q = x[i].qs;
|
||||
dst_t * y = yy + i*QK_K;
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q5_K * x = (const block_q5_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
|
||||
#if QK_K == 256
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/16; // il is in 0...3
|
||||
const int ir = tid%16; // ir is in 0...15
|
||||
const int is = 2*il; // is is in 0...6
|
||||
|
||||
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
||||
|
||||
const float dall = x[i].dm[0];
|
||||
const float dmin = x[i].dm[1];
|
||||
|
||||
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
||||
const uint8_t * qh = x[i].qh + 2*ir;
|
||||
|
||||
uint8_t sc, m;
|
||||
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
||||
const float d1 = dall * sc; const float m1 = dmin * m;
|
||||
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
||||
const float d2 = dall * sc; const float m2 = dmin * m;
|
||||
|
||||
uint8_t hm = 1 << (2*il);
|
||||
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
||||
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
||||
hm <<= 1;
|
||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||
#else
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const uint8_t q = x[i].qs[tid];
|
||||
const int im = tid/8; // 0...3
|
||||
const int in = tid%8; // 0...7
|
||||
const int is = tid/16; // 0 or 1
|
||||
const uint8_t h = x[i].qh[in] >> im;
|
||||
const float d = x[i].d;
|
||||
dst_t * y = yy + i*QK_K + tid;
|
||||
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
||||
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const block_q6_K * x = (const block_q6_K *) vx;
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
#if QK_K == 256
|
||||
|
||||
// assume 64 threads - this is very slightly better than the one below
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int ip = tid/32; // ip is 0 or 1
|
||||
const int il = tid - 32*ip; // 0...32
|
||||
const int is = 8*ip + il/16;
|
||||
|
||||
dst_t * y = yy + i*QK_K + 128*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * ql = x[i].ql + 64*ip + il;
|
||||
const uint8_t qh = x[i].qh[32*ip + il];
|
||||
const int8_t * sc = x[i].scales + is;
|
||||
|
||||
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||
#else
|
||||
|
||||
// assume 32 threads
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int ip = tid/16; // 0 or 1
|
||||
const int il = tid - 16*ip; // 0...15
|
||||
|
||||
dst_t * y = yy + i*QK_K + 16*ip + il;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t ql = x[i].ql[16*ip + il];
|
||||
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
||||
const int8_t * sc = x[i].scales;
|
||||
|
||||
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
||||
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint64_t *iq2xxs_grid_ptr,
|
||||
const uint8_t *ksigns_iq2xs_ptr,
|
||||
const uint8_t *kmask_iq2xs_ptr) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * aux8 = (const uint8_t *)q2;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid_ptr + aux8[il]);
|
||||
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint64_t *iq2xs_grid,
|
||||
const uint8_t *ksigns_iq2xs,
|
||||
const uint8_t *kmask_iq2xs) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * q2 = x[i].qs + 4*ib;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; ++j)
|
||||
y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||
#else
|
||||
assert(false);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq3xxs_grid,
|
||||
const uint8_t *ksigns_iq2xs,
|
||||
const uint8_t *kmask_iq2xs) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * qs = x[i].qs + 8*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
||||
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
||||
const uint8_t signs = x[i].signs[4*ib + il];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq1s_grid_gpu) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
||||
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq1s_grid_gpu) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
||||
iq1m_scale_t scale;
|
||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||
const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
||||
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
||||
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
y[j] = d * (q[j] + delta);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[ib].qs + 4*il;
|
||||
const float d = (float)x[ib].d;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <typename dst_t>
|
||||
__dpct_inline__ static void
|
||||
dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = item_ct1.get_group(2);
|
||||
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
||||
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
||||
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // GGML_SYCL_DEQUANTIZE_HPP
|
1022
ggml-sycl/dmmv.cpp
Normal file
1022
ggml-sycl/dmmv.cpp
Normal file
File diff suppressed because it is too large
Load diff
27
ggml-sycl/dmmv.hpp
Normal file
27
ggml-sycl/dmmv.hpp
Normal file
|
@ -0,0 +1,27 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_DMMV_HPP
|
||||
#define GGML_SYCL_DMMV_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
|
||||
void ggml_sycl_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr &stream);
|
||||
|
||||
#endif // GGML_SYCL_DMMV_HPP
|
2936
ggml-sycl/dpct/helper.hpp
Normal file
2936
ggml-sycl/dpct/helper.hpp
Normal file
File diff suppressed because it is too large
Load diff
3031
ggml-sycl/mmq.cpp
Normal file
3031
ggml-sycl/mmq.cpp
Normal file
File diff suppressed because it is too large
Load diff
33
ggml-sycl/mmq.hpp
Normal file
33
ggml-sycl/mmq.hpp
Normal file
|
@ -0,0 +1,33 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_MMQ_HPP
|
||||
#define GGML_SYCL_MMQ_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
void ggml_sycl_op_mul_mat_q(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
ggml_tensor* dst,
|
||||
const char* src0_dd_i,
|
||||
const float* src1_ddf_i,
|
||||
const char* src1_ddq_i,
|
||||
float* dst_dd_i,
|
||||
const int64_t row_low,
|
||||
const int64_t row_high,
|
||||
const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr& stream);
|
||||
|
||||
#endif // GGML_SYCL_MMQ_HPP
|
1024
ggml-sycl/mmvq.cpp
Normal file
1024
ggml-sycl/mmvq.cpp
Normal file
File diff suppressed because it is too large
Load diff
27
ggml-sycl/mmvq.hpp
Normal file
27
ggml-sycl/mmvq.hpp
Normal file
|
@ -0,0 +1,27 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_MMVQ_HPP
|
||||
#define GGML_SYCL_MMVQ_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
|
||||
void ggml_sycl_op_mul_mat_vec_q(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr &stream);
|
||||
|
||||
#endif // GGML_SYCL_MMVQ_HPP
|
67
ggml-sycl/presets.hpp
Normal file
67
ggml-sycl/presets.hpp
Normal file
|
@ -0,0 +1,67 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_PRESETS_HPP
|
||||
#define GGML_SYCL_PRESETS_HPP
|
||||
|
||||
#define GGML_SYCL_MAX_STREAMS 8
|
||||
#define GGML_SYCL_MAX_BUFFERS 256
|
||||
#define GGML_SYCL_MAX_DEVICES 48
|
||||
#define GGML_SYCL_NAME "SYCL"
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#define SYCL_GELU_BLOCK_SIZE 256
|
||||
#define SYCL_SILU_BLOCK_SIZE 256
|
||||
#define SYCL_TANH_BLOCK_SIZE 256
|
||||
#define SYCL_RELU_BLOCK_SIZE 256
|
||||
#define SYCL_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define SYCL_HARDSWISH_BLOCK_SIZE 256
|
||||
#define SYCL_SQR_BLOCK_SIZE 256
|
||||
#define SYCL_CPY_BLOCK_SIZE 32
|
||||
#define SYCL_SCALE_BLOCK_SIZE 256
|
||||
#define SYCL_CLAMP_BLOCK_SIZE 256
|
||||
#define SYCL_ROPE_BLOCK_SIZE 256
|
||||
#define SYCL_ALIBI_BLOCK_SIZE 32
|
||||
#define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||
#define SYCL_QUANTIZE_BLOCK_SIZE 256
|
||||
#define SYCL_DEQUANTIZE_BLOCK_SIZE 256
|
||||
#define SYCL_GET_ROWS_BLOCK_SIZE 256
|
||||
#define SYCL_UPSCALE_BLOCK_SIZE 256
|
||||
#define SYCL_CONCAT_BLOCK_SIZE 256
|
||||
#define SYCL_PAD_BLOCK_SIZE 256
|
||||
#define SYCL_ACC_BLOCK_SIZE 256
|
||||
#define SYCL_IM2COL_BLOCK_SIZE 256
|
||||
#define SYCL_POOL2D_BLOCK_SIZE 256
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
#ifndef GGML_SYCL_DMMV_X
|
||||
#define GGML_SYCL_DMMV_X 32
|
||||
#endif
|
||||
#ifndef GGML_SYCL_MMV_Y
|
||||
#define GGML_SYCL_MMV_Y 1
|
||||
#endif
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
#else
|
||||
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SYCL_PEER_MAX_BATCH_SIZE
|
||||
#define GGML_SYCL_PEER_MAX_BATCH_SIZE 128
|
||||
#endif // GGML_SYCL_PEER_MAX_BATCH_SIZE
|
||||
|
||||
#define MUL_MAT_SRC1_COL_STRIDE 128
|
||||
|
||||
#endif // GGML_SYCL_PRESETS_HPP
|
1161
ggml-sycl/vecdotq.hpp
Normal file
1161
ggml-sycl/vecdotq.hpp
Normal file
File diff suppressed because it is too large
Load diff
40774
ggml-vulkan-shaders.hpp
40774
ggml-vulkan-shaders.hpp
File diff suppressed because it is too large
Load diff
668
ggml-vulkan.cpp
668
ggml-vulkan.cpp
File diff suppressed because it is too large
Load diff
404
ggml.c
404
ggml.c
|
@ -297,12 +297,6 @@ inline static void * ggml_calloc(size_t num, size_t size) {
|
|||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_USE_OPENBLAS)
|
||||
#if defined(GGML_BLAS_USE_MKL)
|
||||
#include <mkl.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// floating point type used to accumulate sums
|
||||
|
@ -1759,9 +1753,8 @@ struct ggml_compute_state_shared {
|
|||
int n_threads;
|
||||
|
||||
// synchronization primitives
|
||||
atomic_int n_active; // num active threads
|
||||
atomic_int node_n; // active graph node
|
||||
atomic_int node_task; // active graph node task phase
|
||||
atomic_int n_barrier;
|
||||
atomic_int n_barrier_passed;
|
||||
|
||||
ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
|
||||
void* abort_callback_data;
|
||||
|
@ -12179,39 +12172,6 @@ static void ggml_compute_forward_group_norm(
|
|||
|
||||
// ggml_compute_forward_mul_mat
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
// for large matrices, BLAS is faster
|
||||
static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
//const int64_t ne00 = src0->ne[0];
|
||||
//const int64_t ne01 = src0->ne[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
|
||||
// all the experts for each batch element and the processing would become incredibly slow
|
||||
// TODO: find the optimal values for these
|
||||
if (dst->op != GGML_OP_MUL_MAT_ID &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
//src0->type == GGML_TYPE_F32 &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
|
||||
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_compute_forward_mul_mat_one_chunk(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
|
@ -12349,73 +12309,6 @@ static void ggml_compute_forward_mul_mat(
|
|||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
|
||||
UNUSED(desired_wsize);
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
if (type != GGML_TYPE_F32) {
|
||||
assert(params->wsize >= desired_wsize);
|
||||
// parallelize by src0 rows
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
// broadcast src0 into src1 across 2nd,3rd dimension
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
|
||||
ggml_to_float_t const to_float = type_traits[type].to_float;
|
||||
|
||||
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||||
to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// perform sgemm, parallelization controlled by blas lib
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
//const int64_t tgemm0 = ggml_perf_time_us();
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
//printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
|
||||
|
||||
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if GGML_USE_LLAMAFILE
|
||||
const bool src1_cont = ggml_is_contiguous(src1);
|
||||
|
||||
|
@ -12796,19 +12689,7 @@ static void ggml_compute_forward_out_prod_f32(
|
|||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
bool use_blas = ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1));
|
||||
#endif
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
|
||||
if (use_blas) {
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
@ -12820,50 +12701,6 @@ static void ggml_compute_forward_out_prod_f32(
|
|||
return;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (use_blas) {
|
||||
if (params->ith != 0) { // All threads other than the first do no work.
|
||||
return;
|
||||
}
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
int transposeA, lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
// dst[:,:,:,:] = 0
|
||||
// for i2,i3:
|
||||
// for i1:
|
||||
|
@ -12993,8 +12830,6 @@ static void ggml_compute_forward_out_prod_q_f32(
|
|||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
|
@ -13391,6 +13226,8 @@ static void ggml_compute_forward_get_rows_q(
|
|||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
|
@ -13434,6 +13271,8 @@ static void ggml_compute_forward_get_rows_f16(
|
|||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_fp16_to_fp32_row(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
|
@ -13477,7 +13316,9 @@ static void ggml_compute_forward_get_rows_bf16(
|
|||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
ggml_bf16_to_fp32_row(
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_bf16_to_fp32_row(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
|
@ -13520,6 +13361,8 @@ static void ggml_compute_forward_get_rows_f32(
|
|||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
|
||||
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
|
||||
|
@ -18893,6 +18736,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
|||
switch (node->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_ACC:
|
||||
|
@ -18977,7 +18821,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
|||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
|
@ -19128,41 +18971,49 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
|||
return n_tasks;
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_node_n = * node_n;
|
||||
#ifdef GGML_USE_OPENMP
|
||||
static void ggml_barrier(struct ggml_compute_state * state) {
|
||||
if (state->shared->n_threads == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
#pragma omp barrier
|
||||
}
|
||||
#else
|
||||
static void ggml_barrier(struct ggml_compute_state * state) {
|
||||
if (state->shared->n_threads == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
atomic_int * n_barrier = &state->shared->n_barrier;
|
||||
atomic_int * n_barrier_passed = &state->shared->n_barrier_passed;
|
||||
|
||||
int n_threads = state->shared->n_threads;
|
||||
int passed_old = atomic_load(n_barrier_passed);
|
||||
|
||||
if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
|
||||
// last thread
|
||||
atomic_store(n_barrier, 0);
|
||||
atomic_fetch_add(n_barrier_passed, 1);
|
||||
} else {
|
||||
// wait for other threads
|
||||
//while (atomic_load(n_barrier_passed) == passed_old) {
|
||||
//}
|
||||
const int n_spin_before_sleep = 100000;
|
||||
while (true) {
|
||||
for (int i = 0; i < n_spin_before_sleep; i++) {
|
||||
if (atomic_load(n_barrier_passed) != passed_old) {
|
||||
return;
|
||||
}
|
||||
#if defined(__SSE3__)
|
||||
_mm_pause();
|
||||
#endif
|
||||
}
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
* node_n = atomic_load(&state->shared->node_n);
|
||||
if (* node_n != last_node_n) break;
|
||||
#if defined(__SSE3__)
|
||||
// Tell the processor we're spinning. It's a processor hint for spinlocks.
|
||||
_mm_pause();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_task_phase = * task_phase;
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
* task_phase = atomic_load(&state->shared->node_task);
|
||||
if (* task_phase != last_task_phase) break;
|
||||
#if defined(__SSE3__)
|
||||
// Tell the processor we're spinning. It's a processor hint for spinlocks.
|
||||
_mm_pause();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||||
|
@ -19170,136 +19021,54 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
const struct ggml_cgraph * cgraph = state->shared->cgraph;
|
||||
const struct ggml_cplan * cplan = state->shared->cplan;
|
||||
|
||||
const int n_threads = state->shared->n_threads;
|
||||
const int ith = state->ith;
|
||||
const int n_threads = state->shared->n_threads;
|
||||
|
||||
set_numa_thread_affinity(state->ith);
|
||||
set_numa_thread_affinity(ith);
|
||||
|
||||
int node_n = -1;
|
||||
int task_phase = GGML_TASK_TYPE_FINALIZE;
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_TYPE_INIT,
|
||||
/*.ith =*/ ith,
|
||||
/*.nth =*/ state->shared->n_threads,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
|
||||
while (true) {
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
|
||||
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
state->shared->node_n += 1;
|
||||
state->ec = GGML_STATUS_ABORTED;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
// all other threads are finished and spinning
|
||||
// do finalize and init here so we don't have synchronize again
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_TYPE_FINALIZE,
|
||||
/*.ith =*/ 0,
|
||||
/*.nth =*/ 0,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
|
||||
if (node_n != -1) {
|
||||
/* FINALIZE */
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
ggml_graph_compute_perf_stats_node(node, state->shared);
|
||||
}
|
||||
|
||||
// distribute new work or execute it direct if 1T
|
||||
while (++node_n < cgraph->n_nodes) {
|
||||
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
|
||||
|
||||
state->shared->perf_node_start_cycles = ggml_perf_cycles();
|
||||
state->shared->perf_node_start_time_us = ggml_perf_time_us();
|
||||
|
||||
params.nth = n_tasks;
|
||||
|
||||
if (n_tasks == 1) {
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
params.type = GGML_TASK_TYPE_INIT;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
|
||||
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
|
||||
// they do something more efficient than spinning (?)
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
params.type = GGML_TASK_TYPE_FINALIZE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
|
||||
ggml_graph_compute_perf_stats_node(node, state->shared);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
|
||||
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
task_phase = GGML_TASK_TYPE_INIT;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_n, node_n);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
} else {
|
||||
ggml_graph_compute_thread_sync_node(&node_n, state, false);
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
|
||||
}
|
||||
|
||||
// check if we should stop
|
||||
if (node_n >= cgraph->n_nodes) break;
|
||||
|
||||
/* INIT & COMPUTE */
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_TYPE_INIT,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ n_tasks,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
};
|
||||
params.nth = n_tasks;
|
||||
|
||||
if (state->ith < n_tasks) {
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
if (ith < n_tasks) {
|
||||
params.type = GGML_TASK_TYPE_INIT;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
ggml_barrier(state);
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
task_phase = GGML_TASK_TYPE_COMPUTE;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
}
|
||||
else {
|
||||
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
|
||||
// depending on the workload and the operating system.
|
||||
// since it is not clear what is the best approach, it should potentially become user-configurable
|
||||
// ref: https://github.com/ggerganov/ggml/issues/291
|
||||
// UPD: adding the do_yield flag seems to resolve the issue universally
|
||||
const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
|
||||
}
|
||||
|
||||
if (state->ith < n_tasks) {
|
||||
/* COMPUTE */
|
||||
if (ith < n_tasks) {
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
task_phase = GGML_TASK_TYPE_FINALIZE;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
}
|
||||
else {
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
|
||||
ggml_barrier(state);
|
||||
|
||||
/* FINALIZE */
|
||||
if (GGML_OP_HAS_FINALIZE[node->op]) {
|
||||
if (params.ith == 0) {
|
||||
params.type = GGML_TASK_TYPE_FINALIZE;
|
||||
ggml_compute_forward(¶ms, node, state);
|
||||
}
|
||||
ggml_barrier(state);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -19356,17 +19125,6 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
|||
{
|
||||
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node)) {
|
||||
if (node->src[0]->type != GGML_TYPE_F32) {
|
||||
// here we need memory for fully dequantized matrix from src0
|
||||
// take into account that src0 can be broadcasted into src1[2,3]
|
||||
cur = ggml_type_size(GGML_TYPE_F32)
|
||||
* node->src[0]->ne[0]*node->src[0]->ne[1]
|
||||
* node->src[1]->ne[2]*node->src[1]->ne[3];
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
if (node->src[1]->type != vec_dot_type) {
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
}
|
||||
|
@ -19497,7 +19255,6 @@ static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state *
|
|||
// update the number of threads from the actual number of threads that we got from OpenMP
|
||||
n_threads = omp_get_num_threads();
|
||||
workers[0].shared->n_threads = n_threads;
|
||||
workers[0].shared->n_active = n_threads;
|
||||
}
|
||||
ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
|
||||
}
|
||||
|
@ -19560,9 +19317,8 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
|||
/*.perf_node_start_cycles =*/ 0,
|
||||
/*.perf_node_start_time_us =*/ 0,
|
||||
/*.n_threads =*/ n_threads,
|
||||
/*.n_active =*/ n_threads,
|
||||
/*.node_n =*/ -1,
|
||||
/*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
|
||||
/*.n_barrier =*/ 0,
|
||||
/*.n_barrier_passed =*/ 0,
|
||||
/*.abort_callback =*/ NULL,
|
||||
/*.abort_callback_data =*/ NULL,
|
||||
/*.current_chunk; =*/ 0,
|
||||
|
@ -22664,7 +22420,7 @@ int ggml_cpu_has_wasm_simd(void) {
|
|||
}
|
||||
|
||||
int ggml_cpu_has_blas(void) {
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
|
||||
#if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
|
|
6
ggml.h
6
ggml.h
|
@ -312,6 +312,12 @@
|
|||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -33,21 +33,22 @@ class Keys:
|
|||
FILE_TYPE = "general.file_type"
|
||||
|
||||
class LLM:
|
||||
VOCAB_SIZE = "{arch}.vocab_size"
|
||||
CONTEXT_LENGTH = "{arch}.context_length"
|
||||
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
BLOCK_COUNT = "{arch}.block_count"
|
||||
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
||||
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
||||
POOLING_TYPE = "{arch}.pooling_type"
|
||||
LOGIT_SCALE = "{arch}.logit_scale"
|
||||
VOCAB_SIZE = "{arch}.vocab_size"
|
||||
CONTEXT_LENGTH = "{arch}.context_length"
|
||||
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
BLOCK_COUNT = "{arch}.block_count"
|
||||
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
|
||||
EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
||||
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
||||
POOLING_TYPE = "{arch}.pooling_type"
|
||||
LOGIT_SCALE = "{arch}.logit_scale"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
|
|
|
@ -394,6 +394,9 @@ class GGUFWriter:
|
|||
def add_expert_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_expert_shared_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_parallel_residual(self, use: bool) -> None:
|
||||
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ import numpy as np
|
|||
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
from gguf import GGUFReader, GGUFValueType # noqa: E402
|
||||
from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
|
||||
|
||||
logger = logging.getLogger("gguf-dump")
|
||||
|
||||
|
@ -101,25 +101,285 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
|
|||
json.dump(result, sys.stdout)
|
||||
|
||||
|
||||
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
|
||||
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
|
||||
|
||||
# Alignment Utility Function
|
||||
def strAlign(padding: int, alignMode: str | None, strVal: str):
|
||||
if alignMode == 'center':
|
||||
return strVal.center(padding)
|
||||
elif alignMode == 'right':
|
||||
return strVal.rjust(padding - 1) + ' '
|
||||
elif alignMode == 'left':
|
||||
return ' ' + strVal.ljust(padding - 1)
|
||||
else: # default left
|
||||
return ' ' + strVal.ljust(padding - 1)
|
||||
|
||||
def dashAlign(padding: int, alignMode: str | None):
|
||||
if alignMode == 'center':
|
||||
return ':' + '-' * (padding - 2) + ':'
|
||||
elif alignMode == 'right':
|
||||
return '-' * (padding - 1) + ':'
|
||||
elif alignMode == 'left':
|
||||
return ':' + '-' * (padding - 1)
|
||||
else: # default left
|
||||
return '-' * (padding)
|
||||
|
||||
# Calculate Padding For Each Column Based On Header and Data Length
|
||||
rowsPadding = {}
|
||||
for index, columnEntry in enumerate(header_map):
|
||||
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
|
||||
headerPadCount = len(columnEntry['header_name']) + 2
|
||||
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
|
||||
|
||||
# Render Markdown Header
|
||||
rows = []
|
||||
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
|
||||
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
|
||||
|
||||
# Render Tabular Data
|
||||
for item in data:
|
||||
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
|
||||
|
||||
# Convert Tabular String Rows Into String
|
||||
tableString = ""
|
||||
for row in rows:
|
||||
tableString += f'|{row}|\n'
|
||||
|
||||
return tableString
|
||||
|
||||
|
||||
def element_count_rounded_notation(count: int) -> str:
|
||||
if count > 1e15 :
|
||||
# Quadrillion
|
||||
scaled_amount = count * 1e-15
|
||||
scale_suffix = "Q"
|
||||
elif count > 1e12 :
|
||||
# Trillions
|
||||
scaled_amount = count * 1e-12
|
||||
scale_suffix = "T"
|
||||
elif count > 1e9 :
|
||||
# Billions
|
||||
scaled_amount = count * 1e-9
|
||||
scale_suffix = "B"
|
||||
elif count > 1e6 :
|
||||
# Millions
|
||||
scaled_amount = count * 1e-6
|
||||
scale_suffix = "M"
|
||||
elif count > 1e3 :
|
||||
# Thousands
|
||||
scaled_amount = count * 1e-3
|
||||
scale_suffix = "K"
|
||||
else:
|
||||
# Under Thousands
|
||||
scaled_amount = count
|
||||
scale_suffix = ""
|
||||
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
|
||||
|
||||
|
||||
def translate_tensor_name(name):
|
||||
words = name.split(".")
|
||||
|
||||
# Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
|
||||
abbreviation_dictionary = {
|
||||
'token_embd': 'Token embedding',
|
||||
'pos_embd': 'Position embedding',
|
||||
'output_norm': 'Output normalization',
|
||||
'output': 'Output',
|
||||
'attn_norm': 'Attention normalization',
|
||||
'attn_norm_2': 'Attention normalization',
|
||||
'attn_qkv': 'Attention query-key-value',
|
||||
'attn_q': 'Attention query',
|
||||
'attn_k': 'Attention key',
|
||||
'attn_v': 'Attention value',
|
||||
'attn_output': 'Attention output',
|
||||
'ffn_norm': 'Feed-forward network normalization',
|
||||
'ffn_up': 'Feed-forward network "up"',
|
||||
'ffn_gate': 'Feed-forward network "gate"',
|
||||
'ffn_down': 'Feed-forward network "down"',
|
||||
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
|
||||
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
|
||||
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
|
||||
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
|
||||
'ssm_in': 'State space model input projections',
|
||||
'ssm_conv1d': 'State space model rolling/shift',
|
||||
'ssm_x': 'State space model selective parametrization',
|
||||
'ssm_a': 'State space model state compression',
|
||||
'ssm_d': 'State space model skip connection',
|
||||
'ssm_dt': 'State space model time step',
|
||||
'ssm_out': 'State space model output projection',
|
||||
'blk': 'Block'
|
||||
}
|
||||
|
||||
expanded_words = []
|
||||
for word in words:
|
||||
word_norm = word.strip().lower()
|
||||
if word_norm in abbreviation_dictionary:
|
||||
expanded_words.append(abbreviation_dictionary[word_norm].title())
|
||||
else:
|
||||
expanded_words.append(word.title())
|
||||
|
||||
return ' '.join(expanded_words)
|
||||
|
||||
|
||||
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||
host_endian, file_endian = get_file_host_endian(reader)
|
||||
markdown_content = ""
|
||||
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
|
||||
markdown_content += f'- Endian: {file_endian} endian\n'
|
||||
markdown_content += '\n'
|
||||
markdown_content += '## Key Value Metadata Store\n\n'
|
||||
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
|
||||
markdown_content += '\n'
|
||||
|
||||
kv_dump_table: list[dict[str, str | int]] = []
|
||||
for n, field in enumerate(reader.fields.values(), 1):
|
||||
if not field.types:
|
||||
pretty_type = 'N/A'
|
||||
elif field.types[0] == GGUFValueType.ARRAY:
|
||||
nest_count = len(field.types) - 1
|
||||
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
|
||||
else:
|
||||
pretty_type = str(field.types[-1].name)
|
||||
|
||||
total_elements = len(field.data)
|
||||
value = ""
|
||||
if len(field.types) == 1:
|
||||
curr_type = field.types[0]
|
||||
if curr_type == GGUFValueType.STRING:
|
||||
value = repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])
|
||||
elif curr_type in reader.gguf_scalar_to_np:
|
||||
value = str(field.parts[-1][0])
|
||||
else:
|
||||
if field.types[0] == GGUFValueType.ARRAY:
|
||||
curr_type = field.types[1]
|
||||
if curr_type == GGUFValueType.STRING:
|
||||
render_element = min(5, total_elements)
|
||||
for element_pos in range(render_element):
|
||||
value += repr(str(bytes(field.parts[-1 - element_pos]), encoding='utf-8')[:5]) + (", " if total_elements > 1 else "")
|
||||
elif curr_type in reader.gguf_scalar_to_np:
|
||||
render_element = min(7, total_elements)
|
||||
for element_pos in range(render_element):
|
||||
value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "")
|
||||
value = f'[ {value}{" ..." if total_elements > 1 else ""} ]'
|
||||
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
|
||||
|
||||
kv_dump_table_header_map = [
|
||||
{'key_name':'n', 'header_name':'POS', 'align':'right'},
|
||||
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
|
||||
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
|
||||
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
|
||||
{'key_name':'value', 'header_name':'Value', 'align':'left'},
|
||||
]
|
||||
|
||||
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
|
||||
|
||||
markdown_content += "\n"
|
||||
|
||||
if not args.no_tensors:
|
||||
# Group tensors by their prefix and maintain order
|
||||
tensor_prefix_order: list[str] = []
|
||||
tensor_name_to_key: dict[str, int] = {}
|
||||
tensor_groups: dict[str, list[ReaderTensor]] = {}
|
||||
total_elements = sum(tensor.n_elements for tensor in reader.tensors)
|
||||
|
||||
# Parsing Tensors Record
|
||||
for key, tensor in enumerate(reader.tensors):
|
||||
tensor_components = tensor.name.split('.')
|
||||
|
||||
# Classify Tensor Group
|
||||
tensor_group_name = "base"
|
||||
if tensor_components[0] == 'blk':
|
||||
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
|
||||
|
||||
# Check if new Tensor Group
|
||||
if tensor_group_name not in tensor_groups:
|
||||
tensor_groups[tensor_group_name] = []
|
||||
tensor_prefix_order.append(tensor_group_name)
|
||||
|
||||
# Record Tensor and Tensor Position
|
||||
tensor_groups[tensor_group_name].append(tensor)
|
||||
tensor_name_to_key[tensor.name] = key
|
||||
|
||||
# Tensors Mapping Dump
|
||||
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
|
||||
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
|
||||
markdown_content += '\n'
|
||||
|
||||
for group in tensor_prefix_order:
|
||||
tensors = tensor_groups[group]
|
||||
group_elements = sum(tensor.n_elements for tensor in tensors)
|
||||
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
|
||||
|
||||
markdown_content += "\n"
|
||||
|
||||
for group in tensor_prefix_order:
|
||||
tensors = tensor_groups[group]
|
||||
group_elements = sum(tensor.n_elements for tensor in tensors)
|
||||
group_percentage = group_elements / total_elements * 100
|
||||
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
|
||||
|
||||
# Precalculate column sizing for visual consistency
|
||||
prettify_element_est_count_size: int = 1
|
||||
prettify_element_count_size: int = 1
|
||||
prettify_dimension_max_widths: dict[int, int] = {}
|
||||
for tensor in tensors:
|
||||
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
|
||||
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
|
||||
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
|
||||
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
|
||||
|
||||
# Generate Tensor Layer Table Content
|
||||
tensor_dump_table: list[dict[str, str | int]] = []
|
||||
for tensor in tensors:
|
||||
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
|
||||
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
|
||||
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
|
||||
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
|
||||
type_name_string = f"{tensor.tensor_type.name}"
|
||||
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
|
||||
|
||||
tensor_dump_table_header_map = [
|
||||
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
|
||||
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
|
||||
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
|
||||
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
|
||||
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
|
||||
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
|
||||
]
|
||||
|
||||
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
|
||||
|
||||
markdown_content += "\n"
|
||||
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
|
||||
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
|
||||
markdown_content += "\n\n"
|
||||
|
||||
print(markdown_content) # noqa: NP100
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
|
||||
parser.add_argument("model", type=str, help="GGUF format model filename")
|
||||
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
|
||||
parser.add_argument("--json", action="store_true", help="Produce JSON output")
|
||||
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
|
||||
parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
if not args.json:
|
||||
if not args.json and not args.markdown:
|
||||
logger.info(f'* Loading: {args.model}')
|
||||
|
||||
reader = GGUFReader(args.model, 'r')
|
||||
|
||||
if args.json:
|
||||
dump_metadata_json(reader, args)
|
||||
elif args.markdown:
|
||||
dump_markdown_metadata(reader, args)
|
||||
else:
|
||||
dump_metadata(reader, args)
|
||||
|
||||
|
|
7
llama.h
7
llama.h
|
@ -86,6 +86,7 @@ extern "C" {
|
|||
LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
|
||||
LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
|
||||
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
|
||||
LLAMA_VOCAB_PRE_TYPE_PORO = 15,
|
||||
};
|
||||
|
||||
// note: these values should be synchronized with ggml_rope
|
||||
|
@ -173,6 +174,7 @@ extern "C" {
|
|||
LLAMA_POOLING_TYPE_NONE = 0,
|
||||
LLAMA_POOLING_TYPE_MEAN = 1,
|
||||
LLAMA_POOLING_TYPE_CLS = 2,
|
||||
LLAMA_POOLING_TYPE_LAST = 3,
|
||||
};
|
||||
|
||||
enum llama_split_mode {
|
||||
|
@ -292,7 +294,6 @@ extern "C" {
|
|||
|
||||
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||||
// (ignored if no pooling layer)
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
|
@ -785,6 +786,10 @@ extern "C" {
|
|||
// Get the number of threads used for prompt and batch processing (multiple token).
|
||||
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
|
||||
|
||||
// Set whether the model is in embeddings model or not
|
||||
// If true, embeddings will be returned but logits will not
|
||||
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
|
||||
|
||||
// Set whether to use causal attention or not
|
||||
// If set to true, the model will only attend to the past tokens
|
||||
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
-r ./requirements-convert-legacy-llama.txt
|
||||
torch~=2.1.1
|
||||
torch~=2.2.1
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
-r ./requirements-convert-legacy-llama.txt
|
||||
torch~=2.1.1
|
||||
torch~=2.2.1
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
numpy~=1.24.4
|
||||
numpy~=1.26.4
|
||||
sentencepiece~=0.2.0
|
||||
transformers>=4.40.1,<5.0.0
|
||||
gguf>=0.1.0
|
||||
|
|
|
@ -1,83 +1,143 @@
|
|||
import regex
|
||||
import ctypes
|
||||
import array
|
||||
import unicodedata
|
||||
|
||||
|
||||
class CoodepointFlags (ctypes.Structure):
|
||||
_fields_ = [ # see definition in unicode.h
|
||||
("is_undefined", ctypes.c_uint16, 1),
|
||||
("is_number", ctypes.c_uint16, 1), # regex: \p{N}
|
||||
("is_letter", ctypes.c_uint16, 1), # regex: \p{L}
|
||||
("is_separator", ctypes.c_uint16, 1), # regex: \p{Z}
|
||||
("is_accent_mark", ctypes.c_uint16, 1), # regex: \p{M}
|
||||
("is_punctuation", ctypes.c_uint16, 1), # regex: \p{P}
|
||||
("is_symbol", ctypes.c_uint16, 1), # regex: \p{S}
|
||||
("is_control", ctypes.c_uint16, 1), # regex: \p{C}
|
||||
]
|
||||
|
||||
|
||||
assert (ctypes.sizeof(CoodepointFlags) == 2)
|
||||
import requests
|
||||
|
||||
|
||||
MAX_CODEPOINTS = 0x110000
|
||||
|
||||
regex_number = regex.compile(r'\p{N}')
|
||||
regex_letter = regex.compile(r'\p{L}')
|
||||
regex_separator = regex.compile(r'\p{Z}')
|
||||
regex_accent_mark = regex.compile(r'\p{M}')
|
||||
regex_punctuation = regex.compile(r'\p{P}')
|
||||
regex_symbol = regex.compile(r'\p{S}')
|
||||
regex_control = regex.compile(r'\p{C}')
|
||||
regex_whitespace = regex.compile(r'\s')
|
||||
UNICODE_DATA_URL = "https://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt"
|
||||
|
||||
codepoint_flags = (CoodepointFlags * MAX_CODEPOINTS)()
|
||||
|
||||
# see https://www.unicode.org/L2/L1999/UnicodeData.html
|
||||
def unicode_data_iter():
|
||||
res = requests.get(UNICODE_DATA_URL)
|
||||
res.raise_for_status()
|
||||
data = res.content.decode()
|
||||
|
||||
prev = []
|
||||
|
||||
for line in data.splitlines():
|
||||
# ej: 0000;<control>;Cc;0;BN;;;;;N;NULL;;;;
|
||||
line = line.split(";")
|
||||
|
||||
cpt = int(line[0], base=16)
|
||||
assert cpt < MAX_CODEPOINTS
|
||||
|
||||
cpt_lower = int(line[-2] or "0", base=16)
|
||||
assert cpt_lower < MAX_CODEPOINTS
|
||||
|
||||
cpt_upper = int(line[-3] or "0", base=16)
|
||||
assert cpt_upper < MAX_CODEPOINTS
|
||||
|
||||
categ = line[2].strip()
|
||||
assert len(categ) == 2
|
||||
|
||||
bidir = line[4].strip()
|
||||
assert len(categ) == 2
|
||||
|
||||
name = line[1]
|
||||
if name.endswith(", First>"):
|
||||
prev = (cpt, cpt_lower, cpt_upper, categ, bidir)
|
||||
continue
|
||||
if name.endswith(", Last>"):
|
||||
assert prev[1:] == (0, 0, categ, bidir)
|
||||
for c in range(prev[0], cpt):
|
||||
yield (c, cpt_lower, cpt_upper, categ, bidir)
|
||||
|
||||
yield (cpt, cpt_lower, cpt_upper, categ, bidir)
|
||||
|
||||
|
||||
# see definition in unicode.h
|
||||
CODEPOINT_FLAG_UNDEFINED = 0x0001 #
|
||||
CODEPOINT_FLAG_NUMBER = 0x0002 # \p{N}
|
||||
CODEPOINT_FLAG_LETTER = 0x0004 # \p{L}
|
||||
CODEPOINT_FLAG_SEPARATOR = 0x0008 # \p{Z}
|
||||
CODEPOINT_FLAG_MARK = 0x0010 # \p{M}
|
||||
CODEPOINT_FLAG_PUNCTUATION = 0x0020 # \p{P}
|
||||
CODEPOINT_FLAG_SYMBOL = 0x0040 # \p{S}
|
||||
CODEPOINT_FLAG_CONTROL = 0x0080 # \p{C}
|
||||
|
||||
UNICODE_CATEGORY_TO_FLAG = {
|
||||
"Cn": CODEPOINT_FLAG_UNDEFINED, # Undefined
|
||||
"Cc": CODEPOINT_FLAG_CONTROL, # Control
|
||||
"Cf": CODEPOINT_FLAG_CONTROL, # Format
|
||||
"Co": CODEPOINT_FLAG_CONTROL, # Private Use
|
||||
"Cs": CODEPOINT_FLAG_CONTROL, # Surrrogate
|
||||
"Ll": CODEPOINT_FLAG_LETTER, # Lowercase Letter
|
||||
"Lm": CODEPOINT_FLAG_LETTER, # Modifier Letter
|
||||
"Lo": CODEPOINT_FLAG_LETTER, # Other Letter
|
||||
"Lt": CODEPOINT_FLAG_LETTER, # Titlecase Letter
|
||||
"Lu": CODEPOINT_FLAG_LETTER, # Uppercase Letter
|
||||
"L&": CODEPOINT_FLAG_LETTER, # Cased Letter
|
||||
"Mc": CODEPOINT_FLAG_MARK, # Spacing Mark
|
||||
"Me": CODEPOINT_FLAG_MARK, # Enclosing Mark
|
||||
"Mn": CODEPOINT_FLAG_MARK, # Nonspacing Mark
|
||||
"Nd": CODEPOINT_FLAG_NUMBER, # Decimal Number
|
||||
"Nl": CODEPOINT_FLAG_NUMBER, # Letter Number
|
||||
"No": CODEPOINT_FLAG_NUMBER, # Other Number
|
||||
"Pc": CODEPOINT_FLAG_PUNCTUATION, # Connector Punctuation
|
||||
"Pd": CODEPOINT_FLAG_PUNCTUATION, # Dash Punctuation
|
||||
"Pe": CODEPOINT_FLAG_PUNCTUATION, # Close Punctuation
|
||||
"Pf": CODEPOINT_FLAG_PUNCTUATION, # Final Punctuation
|
||||
"Pi": CODEPOINT_FLAG_PUNCTUATION, # Initial Punctuation
|
||||
"Po": CODEPOINT_FLAG_PUNCTUATION, # Other Punctuation
|
||||
"Ps": CODEPOINT_FLAG_PUNCTUATION, # Open Punctuation
|
||||
"Sc": CODEPOINT_FLAG_SYMBOL, # Currency Symbol
|
||||
"Sk": CODEPOINT_FLAG_SYMBOL, # Modifier Symbol
|
||||
"Sm": CODEPOINT_FLAG_SYMBOL, # Math Symbol
|
||||
"So": CODEPOINT_FLAG_SYMBOL, # Other Symbol
|
||||
"Zl": CODEPOINT_FLAG_SEPARATOR, # Line Separator
|
||||
"Zp": CODEPOINT_FLAG_SEPARATOR, # Paragraph Separator
|
||||
"Zs": CODEPOINT_FLAG_SEPARATOR, # Space Separator
|
||||
}
|
||||
|
||||
|
||||
codepoint_flags = array.array('H', [CODEPOINT_FLAG_UNDEFINED]) * MAX_CODEPOINTS
|
||||
table_whitespace = []
|
||||
table_lowercase = []
|
||||
table_uppercase = []
|
||||
table_nfd = []
|
||||
|
||||
for codepoint in range(MAX_CODEPOINTS):
|
||||
for (cpt, cpt_lower, cpt_upper, categ, bidir) in unicode_data_iter():
|
||||
# convert codepoint to unicode character
|
||||
char = chr(codepoint)
|
||||
char = chr(cpt)
|
||||
|
||||
# regex categories
|
||||
flags = codepoint_flags[codepoint]
|
||||
flags.is_number = bool(regex_number.match(char))
|
||||
flags.is_letter = bool(regex_letter.match(char))
|
||||
flags.is_separator = bool(regex_separator.match(char))
|
||||
flags.is_accent_mark = bool(regex_accent_mark.match(char))
|
||||
flags.is_punctuation = bool(regex_punctuation.match(char))
|
||||
flags.is_symbol = bool(regex_symbol.match(char))
|
||||
flags.is_control = bool(regex_control.match(char))
|
||||
flags.is_undefined = bytes(flags)[0] == 0
|
||||
assert (not flags.is_undefined)
|
||||
|
||||
# whitespaces
|
||||
if bool(regex_whitespace.match(char)):
|
||||
table_whitespace.append(codepoint)
|
||||
# codepoint category flags
|
||||
codepoint_flags[cpt] = UNICODE_CATEGORY_TO_FLAG[categ]
|
||||
|
||||
# lowercase conversion
|
||||
lower = ord(char.lower()[0])
|
||||
if codepoint != lower:
|
||||
table_lowercase.append((codepoint, lower))
|
||||
if cpt_lower:
|
||||
table_lowercase.append((cpt, cpt_lower))
|
||||
|
||||
# uppercase conversion
|
||||
upper = ord(char.upper()[0])
|
||||
if codepoint != upper:
|
||||
table_uppercase.append((codepoint, upper))
|
||||
if cpt_upper:
|
||||
table_uppercase.append((cpt, cpt_upper))
|
||||
|
||||
# NFD normalization
|
||||
norm = ord(unicodedata.normalize('NFD', char)[0])
|
||||
if codepoint != norm:
|
||||
table_nfd.append((codepoint, norm))
|
||||
if cpt != norm:
|
||||
table_nfd.append((cpt, norm))
|
||||
|
||||
|
||||
# whitespaces, see "<White_Space>" https://www.unicode.org/Public/UCD/latest/ucd/PropList.txt
|
||||
table_whitespace.extend(range(0x0009, 0x000D + 1))
|
||||
table_whitespace.extend(range(0x2000, 0x200A + 1))
|
||||
table_whitespace.extend([0x0020, 0x0085, 0x00A0, 0x1680, 0x2028, 0x2029, 0x202F, 0x205F, 0x3000])
|
||||
|
||||
|
||||
# sort by codepoint
|
||||
table_whitespace.sort()
|
||||
table_lowercase.sort()
|
||||
table_uppercase.sort()
|
||||
table_nfd.sort()
|
||||
|
||||
|
||||
# group ranges with same flags
|
||||
ranges_flags = [(0, codepoint_flags[0])] # start, flags
|
||||
for codepoint, flags in enumerate(codepoint_flags):
|
||||
if bytes(flags) != bytes(ranges_flags[-1][1]):
|
||||
if flags != ranges_flags[-1][1]:
|
||||
ranges_flags.append((codepoint, flags))
|
||||
ranges_flags.append((MAX_CODEPOINTS, CoodepointFlags()))
|
||||
ranges_flags.append((MAX_CODEPOINTS, 0x0000))
|
||||
|
||||
|
||||
# group ranges with same nfd
|
||||
|
@ -90,8 +150,8 @@ for codepoint, norm in table_nfd:
|
|||
ranges_nfd[-1] = (start, codepoint, norm)
|
||||
|
||||
|
||||
# Generate 'unicode-data.cpp'
|
||||
|
||||
# Generate 'unicode-data.cpp':
|
||||
# python ./scripts//gen-unicode-data.py > unicode-data.cpp
|
||||
|
||||
def out(line=""):
|
||||
print(line, end='\n') # noqa
|
||||
|
@ -110,12 +170,12 @@ out("""\
|
|||
|
||||
out("const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags = { // start, flags // last=next_start-1")
|
||||
for codepoint, flags in ranges_flags:
|
||||
flags = int.from_bytes(bytes(flags), "little")
|
||||
out("{0x%06X, 0x%04X}," % (codepoint, flags))
|
||||
out("};\n")
|
||||
|
||||
out("const std::unordered_set<uint32_t> unicode_set_whitespace = {")
|
||||
out(", ".join("0x%06X" % cpt for cpt in table_whitespace))
|
||||
for codepoint in table_whitespace:
|
||||
out("0x%06X," % codepoint)
|
||||
out("};\n")
|
||||
|
||||
out("const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {")
|
||||
|
|
|
@ -1 +1 @@
|
|||
2aae01fd9b8f9399f343cf18f46f38996ef52e2c
|
||||
5653a195935ea3ac54652644c9daf154dbc1571b
|
||||
|
|
|
@ -43,8 +43,10 @@
|
|||
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
|
||||
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Wpedantic"
|
||||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||||
#endif
|
||||
|
||||
#include "sgemm.h"
|
||||
#include "ggml-impl.h"
|
||||
|
|
|
@ -1063,6 +1063,33 @@ struct test_sqr : public test_case {
|
|||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SQRT
|
||||
struct test_sqrt : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR2(type, ne);
|
||||
}
|
||||
|
||||
test_sqrt(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10})
|
||||
: type(type), ne(ne) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * out = ggml_sqrt(ctx, a);
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
// fill with positive values
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
init_tensor_uniform(t, 0.0f, 100.0f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_CLAMP
|
||||
struct test_clamp : public test_case {
|
||||
const ggml_type type;
|
||||
|
@ -2200,6 +2227,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
}
|
||||
|
||||
test_cases.emplace_back(new test_sqr());
|
||||
test_cases.emplace_back(new test_sqrt());
|
||||
test_cases.emplace_back(new test_clamp());
|
||||
|
||||
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "unicode.h"
|
||||
#include <cassert>
|
||||
#include <string>
|
||||
|
@ -15,6 +16,10 @@
|
|||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//#define INCLUDE_FAILING_TESTS 1
|
||||
|
||||
static llama_grammar* build_grammar(const std::string & grammar_str) {
|
||||
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
|
||||
|
||||
|
@ -88,6 +93,23 @@ static void test(const std::string & test_desc, const std::string & grammar_str,
|
|||
|
||||
if (!matched) {
|
||||
fprintf(stderr, "❌ (failed to match)\n");
|
||||
|
||||
// DEBUG: Write strings to files so that we can analyze more easily with gbnf-validator program to see exactly where things failed.
|
||||
// DEBUG: Write the grammar_str to test-grammar-integration.grammar.gbnf
|
||||
FILE* grammar_file = fopen("test-grammar-integration.grammar.gbnf", "w");
|
||||
if (grammar_file) {
|
||||
fprintf(grammar_file, "%s", grammar_str.c_str());
|
||||
fclose(grammar_file);
|
||||
}
|
||||
|
||||
// DEBUG: Write the test string to test-grammar-integration.string.txt
|
||||
FILE* string_file = fopen("test-grammar-integration.string.txt", "w");
|
||||
if (string_file) {
|
||||
fprintf(string_file, "%s", test_string.c_str());
|
||||
fclose(string_file);
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n NOTE: Debug grammar file generated. To analyze this failure in detail, run the following command: ./llama-gbnf-validator test-grammar-integration.grammar.gbnf test-grammar-integration.string.txt\n\n");
|
||||
} else {
|
||||
fprintf(stdout, "✅︎\n");
|
||||
}
|
||||
|
@ -555,10 +577,11 @@ static void test_quantifiers() {
|
|||
static void test_failure_missing_root() {
|
||||
fprintf(stderr, "⚫ Testing missing root node:\n");
|
||||
// Test case for a grammar that is missing a root rule
|
||||
const std::string grammar_str = R"""(rot ::= expr
|
||||
expr ::= term ("+" term)*
|
||||
term ::= number
|
||||
number ::= [0-9]+)""";
|
||||
const std::string grammar_str = R"""(
|
||||
rot ::= expr
|
||||
expr ::= term ("+" term)*
|
||||
term ::= number
|
||||
number ::= [0-9]+)""";
|
||||
|
||||
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
|
||||
|
||||
|
@ -575,10 +598,10 @@ static void test_failure_missing_reference() {
|
|||
|
||||
// Test case for a grammar that is missing a referenced rule
|
||||
const std::string grammar_str =
|
||||
R"""(root ::= expr
|
||||
expr ::= term ("+" term)*
|
||||
term ::= numero
|
||||
number ::= [0-9]+)""";
|
||||
R"""(root ::= expr
|
||||
expr ::= term ("+" term)*
|
||||
term ::= numero
|
||||
number ::= [0-9]+)""";
|
||||
|
||||
fprintf(stderr, " Expected error: ");
|
||||
|
||||
|
@ -600,29 +623,558 @@ static void test_failure_left_recursion() {
|
|||
|
||||
// Test more complicated left recursion detection
|
||||
const std::string medium_str = R"""(
|
||||
root ::= asdf
|
||||
asdf ::= "a" | asdf "a"
|
||||
)""";
|
||||
root ::= asdf
|
||||
asdf ::= "a" | asdf "a"
|
||||
)""";
|
||||
assert(test_build_grammar_fails(medium_str));
|
||||
|
||||
// Test even more complicated left recursion detection
|
||||
const std::string hard_str = R"""(
|
||||
root ::= asdf
|
||||
asdf ::= "a" | foo "b"
|
||||
foo ::= "c" | asdf "d" | "e")""";
|
||||
root ::= asdf
|
||||
asdf ::= "a" | foo "b"
|
||||
foo ::= "c" | asdf "d" | "e")""";
|
||||
assert(test_build_grammar_fails(hard_str));
|
||||
|
||||
// Test yet even more complicated left recursion detection
|
||||
const std::string hardest_str = R"""(
|
||||
root ::= asdf
|
||||
asdf ::= "a" | foo "b"
|
||||
foo ::= "c" | empty asdf "d" | "e"
|
||||
empty ::= "blah" | )""";
|
||||
root ::= asdf
|
||||
asdf ::= "a" | foo "b"
|
||||
foo ::= "c" | empty asdf "d" | "e"
|
||||
empty ::= "blah" | )""";
|
||||
assert(test_build_grammar_fails(hardest_str));
|
||||
|
||||
fprintf(stderr, " ✅︎ Passed\n");
|
||||
}
|
||||
|
||||
static void test_json_schema() {
|
||||
// Note that this is similar to the regular grammar tests,
|
||||
// but we convert each json schema to a grammar before parsing.
|
||||
// Otherwise, this test structure is the same.
|
||||
|
||||
test_schema(
|
||||
"empty schema (object)",
|
||||
// Schema
|
||||
R"""(
|
||||
{}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"{}",
|
||||
R"""({"foo": "bar"})""",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"[]",
|
||||
"null",
|
||||
"\"\"",
|
||||
"true",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"exotic formats (list)",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"items": [
|
||||
{ "format": "date" },
|
||||
{ "format": "uuid" },
|
||||
{ "format": "time" },
|
||||
{ "format": "date-time" }
|
||||
]
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
// "{}", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
// "[]", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
R"""(["2012-04-23", "12345678-1234-1234-1234-1234567890ab", "18:25:43.511Z", "2012-04-23T18:25:43.511Z"])""",
|
||||
//R"""(["2012-04-23","12345678-1234-1234-1234-1234567890ab"])""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
//R"""({"foo": "bar"})""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
R"""(["foo", "bar"])""",
|
||||
R"""(["12345678-1234-1234-1234-1234567890ab"])""",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"{}",
|
||||
"\"foo\": \"bar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ min length 1",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"minLength": 1
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"{}",
|
||||
"\"foo\": \"bar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ min length 3",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"minLength": 3
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"foobar\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"\"f\"",
|
||||
"\"fo\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ max length",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"maxLength": 3
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"\"",
|
||||
"\"f\"",
|
||||
"\"fo\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"foobar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string w/ min & max length",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "string",
|
||||
"minLength": 1,
|
||||
"maxLength": 4
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
"\"bar\"",
|
||||
"\"f\"",
|
||||
"\"barf\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"\"barfo\"",
|
||||
"\"foobar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"boolean",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "boolean"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"true",
|
||||
"false",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"\"\"",
|
||||
"\"true\"",
|
||||
"True",
|
||||
"FALSE",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"integer",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "integer"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"0",
|
||||
"12345",
|
||||
"1234567890123456"
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"01",
|
||||
"007",
|
||||
"12345678901234567"
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"string const",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"const": "foo"
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"foo\"",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"foo",
|
||||
"\"bar\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"non-string const",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"const": true
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"true",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"foo",
|
||||
"\"true\"",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"non-string const",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"enum": ["red", "amber", "green", null, 42, ["foo"]]
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"\"red\"",
|
||||
"null",
|
||||
"42",
|
||||
"[\"foo\"]",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"",
|
||||
"420",
|
||||
"true",
|
||||
"foo",
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
test_schema(
|
||||
"min+max items",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"items": {
|
||||
"type": ["number", "integer"]
|
||||
},
|
||||
"minItems": 3,
|
||||
"maxItems": 5
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
"[1, 2, 3]",
|
||||
"[1, 2, 3, 4]",
|
||||
"[1, 2, 3, 4, 5]",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
"[1, 2]",
|
||||
"[1, 2, 3, 4, 5, 6]",
|
||||
"1"
|
||||
}
|
||||
);
|
||||
|
||||
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
|
||||
test_schema(
|
||||
"object properties",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": { "type": "number" },
|
||||
"street_name": { "type": "string" },
|
||||
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
|
||||
}
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
// "By default, leaving out properties is valid"
|
||||
R"""({ "street_name": "Pennsylvania" })""",
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
|
||||
// "By extension, even an empty object is valid"
|
||||
R"""({})""",
|
||||
// "By default, providing additional properties is valid"
|
||||
#ifdef INCLUDE_FAILING_TESTS
|
||||
// TODO: The following should pass, but currently FAILS. Additional properties should be permitted by default.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
|
||||
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
|
||||
#endif
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
// Change datatype from number to string
|
||||
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
// Reorder properties
|
||||
R"""({ "street_name": "Pennsylvania", "number": 1600 })""",
|
||||
// Reorder properties
|
||||
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
|
||||
test_schema(
|
||||
"object properties, additionalProperties: true",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": { "type": "number" },
|
||||
"street_name": { "type": "string" },
|
||||
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
|
||||
},
|
||||
"additionalProperties": true
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
// "By extension, even an empty object is valid"
|
||||
R"""({})""",
|
||||
#ifdef INCLUDE_FAILING_TESTS
|
||||
// TODO: Following line should pass and doesn't
|
||||
R"""({"number":1600,"street_name":"Pennsylvania","street_type":"Avenue"})""",
|
||||
// "By default, leaving out properties is valid"
|
||||
// TODO: Following line should pass and doesn't
|
||||
R"""({ "street_name": "Pennsylvania" })""",
|
||||
// TODO: Following line should pass and doesn't
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
|
||||
// "By default, providing additional properties is valid"
|
||||
// TODO: The following should pass, but currently FAILS. Additional properties should be permitted by default.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
|
||||
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
|
||||
#endif
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
// Change datatype from number to string
|
||||
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
// Reorder properties
|
||||
R"""({ "street_name": "Pennsylvania", "number": 1600, "street_type":"Avenue"})""",
|
||||
}
|
||||
);
|
||||
|
||||
// Additional properties: false
|
||||
test_schema(
|
||||
"required + optional props each in original order",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"number": { "type": "number" },
|
||||
"street_name": { "type": "string" },
|
||||
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
|
||||
},
|
||||
"additionalProperties": false
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({ "street_name": "Pennsylvania" })""",
|
||||
R"""({ "number": 1600, "street_type":"Avenue"})""",
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
|
||||
#ifdef INCLUDE_FAILING_TESTS
|
||||
// TODO: Spaces should be permitted around enum values, but currently they fail to pass.
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
|
||||
#endif
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
// Reorder properties
|
||||
R"""({ "street_type": "Avenue", "number": 1600 })""",
|
||||
// Add "direction"
|
||||
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue", "direction": "NW" })""",
|
||||
}
|
||||
);
|
||||
|
||||
test_schema(
|
||||
"required + optional props each in original order",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"properties": {
|
||||
"b": {"type": "string"},
|
||||
"a": {"type": "string"},
|
||||
"d": {"type": "string"},
|
||||
"c": {"type": "string"}
|
||||
},
|
||||
"required": ["a", "b"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({"b": "foo", "a": "bar"})""",
|
||||
R"""({"b":"foo","a":"bar","d":"qux"})""",
|
||||
R"""({"b":"foo", "a":"bar", "d":"qux", "c":"baz"})""",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
R"""({"a": "foo", "b": "bar"})""",
|
||||
R"""({"b": "bar"})""",
|
||||
R"""({"a": "foo", "c": "baz"})""",
|
||||
R"""({"a":"foo", "b":"bar", "c":"baz", "d":"qux"})""",
|
||||
}
|
||||
);
|
||||
|
||||
// NOTE: Example from https://json-schema.org/learn/getting-started-step-by-step#define-required-properties
|
||||
test_schema(
|
||||
"required props",
|
||||
// Schema
|
||||
R"""(
|
||||
{
|
||||
"$schema": "https://json-schema.org/draft/2020-12/schema",
|
||||
"$id": "https://example.com/product.schema.json",
|
||||
"title": "Product",
|
||||
"description": "A product from Acme's catalog",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"productId": {
|
||||
"description": "The unique identifier for a product",
|
||||
"type": "integer"
|
||||
},
|
||||
"productName": {
|
||||
"description": "Name of the product",
|
||||
"type": "string"
|
||||
},
|
||||
"price": {
|
||||
"description": "The price of the product",
|
||||
"type": "number",
|
||||
"exclusiveMinimum": 0
|
||||
},
|
||||
"tags": {
|
||||
"description": "Tags for the product",
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
},
|
||||
"minItems": 1,
|
||||
"uniqueItems": true
|
||||
},
|
||||
"dimensions": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"length": {
|
||||
"type": "number"
|
||||
},
|
||||
"width": {
|
||||
"type": "number"
|
||||
},
|
||||
"height": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
"required": [ "length", "width", "height" ]
|
||||
}
|
||||
},
|
||||
"required": [ "productId", "productName", "price" ]
|
||||
}
|
||||
)""",
|
||||
// Passing strings
|
||||
{
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50})""",
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"]})""",
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"], "dimensions": {"length": 785, "width": 250.5, "height": -0.359}})""",
|
||||
},
|
||||
// Failing strings
|
||||
{
|
||||
R"""({})""", // Missing all required properties
|
||||
R"""({"productName": "A green door", "price": 12.50, "productId": 1})""", // Out of order properties
|
||||
// TODO: The following line should fail, but currently it passes. `exclusiveMinimum` is not supported, as it would likely be too difficult to implement.
|
||||
// Perhaps special checks for minimum and maximum values of 0 could be added (since that's relatively easy to do with grammars), but anything else would likely be too complex.
|
||||
// R"""({"productId": 1, "productName": "A green door", "price": -12.50})""",
|
||||
R"""({"productId": 1, "productName": "A green door"})""", // Missing required property (price)
|
||||
R"""({"productName": "A green door", "price": 12.50})""", // Missing required property (productId)
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": []})""", // tags is empty, but minItems is 1
|
||||
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "dimensions": {"length": 785, "width": 250.5, "height": -0.359}, "tags": ["home", "green"]})""", // Tags and dimensions are out of order
|
||||
// TODO: The following line should fail, but currently it passes. `uniqueItems` is not supported, as it would likely be too difficult to implement.
|
||||
// R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green", "home"]})""",
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
int main() {
|
||||
fprintf(stdout, "Running grammar integration tests...\n");
|
||||
test_simple_grammar();
|
||||
|
@ -632,6 +1184,7 @@ int main() {
|
|||
test_failure_missing_root();
|
||||
test_failure_missing_reference();
|
||||
test_failure_left_recursion();
|
||||
test_json_schema();
|
||||
fprintf(stdout, "All tests passed.\n");
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -11,13 +11,15 @@ import logging
|
|||
import argparse
|
||||
import subprocess
|
||||
import random
|
||||
import unicodedata
|
||||
|
||||
from typing import Callable, Iterator
|
||||
|
||||
import cffi
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random-bpe")
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random")
|
||||
|
||||
|
||||
class LibLlama:
|
||||
|
@ -155,9 +157,14 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
|
|||
'Cửa Việt', # llama-3, ignore_merges = true
|
||||
'<s>a', # Phi-3 fail
|
||||
'<unk><|endoftext|><s>', # Phi-3 fail
|
||||
'a\na', # TODO: Bert fail
|
||||
'a </s> b', # rstrip phi-3
|
||||
'a <mask> b', # lstrip jina-v2
|
||||
'a\na', # bert fail
|
||||
'"`', # falcon
|
||||
' \u2e4e', # falcon
|
||||
'a\xa0\xa0\x00b', # jina-v2-es
|
||||
'one <mask>', # jina-v2-es <mask> lstrip=true
|
||||
'a </s> b', # rstrip phi-3
|
||||
'a <mask> b', # lstrip jina-v2
|
||||
'\xa0aC', # deepseek
|
||||
]
|
||||
|
||||
|
||||
|
@ -189,17 +196,23 @@ def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
|
|||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
words = rand.choices(all_tokens, k=500)
|
||||
if words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||||
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||||
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
|
||||
words.pop(0)
|
||||
if tokenizer.add_bos_token: # drop all starting BOS
|
||||
words.pop(0)
|
||||
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
|
||||
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
|
||||
words.pop(-1)
|
||||
if tokenizer.add_bos_token: # drop all trailing EOS
|
||||
words.pop(-1)
|
||||
yield "".join(words)
|
||||
|
||||
|
||||
def generator_random_chars(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with simple characters"""
|
||||
|
||||
NUM_WORDS = 400
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
CHARS = list(sorted(set("""
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
|
@ -213,12 +226,50 @@ def generator_random_chars(iterations=100) -> Iterator[str]:
|
|||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
for _ in range(NUM_WORDS):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(CHARS, k=k)
|
||||
space = rand.choice(WHITESPACES)
|
||||
text.append("".join(word) + space)
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_unicodes() -> Iterator[str]:
|
||||
"""Iterate unicode characters"""
|
||||
|
||||
MAX_CODEPOINTS = 0x30000 # 0x110000
|
||||
|
||||
def _valid(cpt):
|
||||
if cpt >= 0x30000: # unassigned and supplementary
|
||||
return False
|
||||
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
|
||||
return False
|
||||
if unicodedata.category(chr(cpt)) == "Cn":
|
||||
return False
|
||||
return True
|
||||
|
||||
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
|
||||
|
||||
yield from characters
|
||||
|
||||
|
||||
def generator_random_unicodes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with unicode characters"""
|
||||
|
||||
NUM_WORDS = 200
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
||||
characters = list(generator_unicodes())
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
for _ in range(NUM_WORDS):
|
||||
k = rand.randint(1, 7)
|
||||
word = rand.choices(characters, k=k)
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
|
@ -256,25 +307,7 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_bytes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random bytes"""
|
||||
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
text = []
|
||||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 8)
|
||||
word = [chr(r) for r in rand.randbytes(k) if r]
|
||||
word.append(rand.choice(WHITESPACES))
|
||||
text.append("".join(word))
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
|
||||
def find_first_mismatch(ids1: list[int], ids2: list[int]):
|
||||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||||
|
@ -284,20 +317,34 @@ def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, g
|
|||
return -1
|
||||
return min(len(ids1), len(ids2))
|
||||
|
||||
t0 = time.perf_counter()
|
||||
t_tokenizer1 = 0
|
||||
t_tokenizer2 = 0
|
||||
t_start = time.perf_counter()
|
||||
num_errors = 10
|
||||
|
||||
logger.info("%s: %s" % (generator.__name__, "ini"))
|
||||
for text in generator:
|
||||
# print(repr(text), hex(ord(text[0])), text.encode())
|
||||
t0 = time.perf_counter()
|
||||
ids1 = func_tokenize1(text)
|
||||
t1 = time.perf_counter()
|
||||
ids2 = func_tokenize2(text)
|
||||
t2 = time.perf_counter()
|
||||
t_tokenizer1 += t1 - t0
|
||||
t_tokenizer2 += t2 - t1
|
||||
if ids1 != ids2:
|
||||
i = find_first_mismatch(ids1, ids2)
|
||||
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
||||
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
||||
logger.info(" TokenIDs: " + str(ids1))
|
||||
logger.info(" Expected: " + str(ids2))
|
||||
raise Exception()
|
||||
t1 = time.perf_counter()
|
||||
logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
|
||||
logger.error(" TokenIDs: " + str(ids1))
|
||||
logger.error(" Expected: " + str(ids2))
|
||||
# raise Exception()
|
||||
num_errors += 1
|
||||
if num_errors > 10:
|
||||
break
|
||||
|
||||
t_total = time.perf_counter() - t_start
|
||||
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
|
||||
|
||||
|
||||
def main(argv: list[str] = None):
|
||||
|
@ -307,7 +354,8 @@ def main(argv: list[str] = None):
|
|||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
|
||||
logger.info(f"VOCABFILE: '{args.vocab_file}'")
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||
|
@ -321,18 +369,22 @@ def main(argv: list[str] = None):
|
|||
ids = func_tokenize2("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
|
||||
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
|
||||
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
|
||||
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
|
||||
|
||||
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
# test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
|
||||
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
|
||||
model.free()
|
||||
|
||||
|
@ -340,20 +392,40 @@ def main(argv: list[str] = None):
|
|||
if __name__ == "__main__":
|
||||
# main()
|
||||
|
||||
logging.basicConfig(
|
||||
level = logging.DEBUG,
|
||||
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
||||
datefmt = "%Y-%m-%d %H:%M:%S",
|
||||
filename = logger.name + ".log",
|
||||
filemode = "a"
|
||||
)
|
||||
|
||||
path_tokenizers = "./models/tokenizers/"
|
||||
path_vocab_format = "./models/ggml-vocab-%s.gguf"
|
||||
|
||||
# import os
|
||||
# tokenizers = os.listdir(path_tokenizers)
|
||||
tokenizers = [
|
||||
"llama-spm", # SPM
|
||||
"phi-3", # SPM
|
||||
"jina-v2-en", # WPM
|
||||
"bert-bge", # WPM
|
||||
# "llama-spm", # SPM
|
||||
# "phi-3", # SPM
|
||||
# "bert-bge", # WPM
|
||||
# "jina-v2-en", # WPM
|
||||
"gpt-2", # BPE
|
||||
"llama-bpe", # BPE
|
||||
"falcon", # BPE
|
||||
"starcoder", # BPE
|
||||
"jina-v2-es", # BPE
|
||||
"jina-v2-de", # BPE
|
||||
"jina-v2-code", # BPE
|
||||
"smaug-bpe", # BPE
|
||||
"phi-2", # BPE
|
||||
"deepseek-coder", # BPE
|
||||
"deepseek-llm", # BPE
|
||||
]
|
||||
|
||||
for tokenizer in tokenizers:
|
||||
print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa
|
||||
logger.info("=" * 50)
|
||||
logger.info(f"TOKENIZER: '{tokenizer}'")
|
||||
vocab_file = path_vocab_format % tokenizer
|
||||
dir_tokenizer = path_tokenizers + "/" + tokenizer
|
||||
main([vocab_file, dir_tokenizer, "--verbose"])
|
||||
|
|
1652
unicode-data.cpp
1652
unicode-data.cpp
File diff suppressed because it is too large
Load diff
52
unicode.cpp
52
unicode.cpp
|
@ -226,8 +226,9 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
assert(offset_end <= cpts.size());
|
||||
start = offset_end;
|
||||
|
||||
auto _get_cpt = [&] (const size_t pos) -> char32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
|
||||
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
|
||||
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
|
||||
};
|
||||
|
||||
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
|
||||
|
@ -253,18 +254,18 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
};
|
||||
|
||||
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
|
||||
const char32_t cpt = _get_cpt(pos);
|
||||
const uint32_t cpt = _get_cpt(pos);
|
||||
const auto flags = _get_flags(pos);
|
||||
|
||||
// regex: 's|'t|'re|'ve|'m|'ll|'d
|
||||
if (cpt == '\'' && pos+1 < offset_end) {
|
||||
char32_t cpt_next = _get_cpt(pos+1);
|
||||
uint32_t cpt_next = _get_cpt(pos+1);
|
||||
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
|
||||
pos += _add_token(pos+2);
|
||||
continue;
|
||||
}
|
||||
if (pos+2 < offset_end) {
|
||||
char32_t cpt_next_next = _get_cpt(pos+2);
|
||||
uint32_t cpt_next_next = _get_cpt(pos+2);
|
||||
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'v' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'l' && cpt_next_next == 'l')) {
|
||||
|
@ -309,7 +310,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
|
|||
}
|
||||
|
||||
// regex: \s+(?!\S)
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
|
||||
pos += num_whitespaces - 1;
|
||||
_add_token(pos);
|
||||
continue;
|
||||
|
@ -344,8 +345,9 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
assert(offset_end <= cpts.size());
|
||||
start = offset_end;
|
||||
|
||||
auto _get_cpt = [&] (const size_t pos) -> char32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
|
||||
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
|
||||
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
|
||||
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
|
||||
};
|
||||
|
||||
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
|
||||
|
@ -371,18 +373,18 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
};
|
||||
|
||||
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
|
||||
const char32_t cpt = _get_cpt(pos);
|
||||
const uint32_t cpt = _get_cpt(pos);
|
||||
const auto flags = _get_flags(pos);
|
||||
|
||||
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
|
||||
if (cpt == '\'' && pos+1 < offset_end) {
|
||||
char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
|
||||
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
|
||||
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
|
||||
pos += _add_token(pos+2);
|
||||
continue;
|
||||
}
|
||||
if (pos+2 < offset_end) {
|
||||
char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
|
||||
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
|
||||
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'v' && cpt_next_next == 'e') ||
|
||||
(cpt_next == 'l' && cpt_next_next == 'l')) {
|
||||
|
@ -424,7 +426,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
|
||||
flags2 = _get_flags(++pos);
|
||||
}
|
||||
char32_t cpt2 = _get_cpt(pos);
|
||||
uint32_t cpt2 = _get_cpt(pos);
|
||||
while (cpt2 == '\r' || cpt2 == '\n') {
|
||||
cpt2 = _get_cpt(++pos);
|
||||
}
|
||||
|
@ -435,7 +437,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
size_t num_whitespaces = 0;
|
||||
size_t last_end_r_or_n = 0;
|
||||
while (_get_flags(pos+num_whitespaces).is_whitespace) {
|
||||
char32_t cpt2 = _get_cpt(pos+num_whitespaces);
|
||||
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
|
||||
if (cpt2 == '\r' || cpt2 == '\n') {
|
||||
last_end_r_or_n = pos + num_whitespaces + 1;
|
||||
}
|
||||
|
@ -450,7 +452,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
|||
}
|
||||
|
||||
// regex: \s+(?!\S)
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
|
||||
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
|
||||
pos += num_whitespaces - 1;
|
||||
_add_token(pos);
|
||||
continue;
|
||||
|
@ -594,6 +596,7 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
|
|||
|
||||
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
|
||||
std::vector<uint32_t> result;
|
||||
result.reserve(utf8.size());
|
||||
size_t offset = 0;
|
||||
while (offset < utf8.size()) {
|
||||
result.push_back(unicode_cpt_from_utf8(utf8, offset));
|
||||
|
@ -626,7 +629,7 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
|
|||
return map.at(utf8);
|
||||
}
|
||||
|
||||
char32_t unicode_tolower(char32_t cp) {
|
||||
uint32_t unicode_tolower(uint32_t cp) {
|
||||
auto it = unicode_map_lowercase.find(cp);
|
||||
return it == unicode_map_lowercase.end() ? cp : it->second;
|
||||
}
|
||||
|
@ -679,10 +682,14 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
continue;
|
||||
}
|
||||
|
||||
const int cpt_flag = unicode_cpt_flags(cpts[i]).category_flag();
|
||||
const auto flags = unicode_cpt_flags(cpts[i]);
|
||||
|
||||
if (k_ucat_cpt.find(cpt_flag) != k_ucat_cpt.end()) {
|
||||
text_collapsed[i] = k_ucat_cpt.at(cpt_flag);
|
||||
if (flags.is_whitespace) {
|
||||
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
|
||||
//text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
|
||||
text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
|
||||
} else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
|
||||
text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
|
||||
} else {
|
||||
text_collapsed[i] = (char) 0xD0; // fallback
|
||||
}
|
||||
|
@ -766,9 +773,16 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
|
||||
} else {
|
||||
// no unicode category used, we can use std::wregex directly
|
||||
const std::wstring wtext = unicode_wstring_from_utf8(text);
|
||||
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
|
||||
|
||||
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
|
||||
std::wstring wtext(cpts.begin(), cpts.end());
|
||||
for (size_t i = 0; i < wtext.size(); ++i) {
|
||||
if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
|
||||
wtext[i] = 0x0B;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("text: %s\n", text.c_str());
|
||||
//printf("regex_expr: %s\n", regex_expr.c_str());
|
||||
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
|
||||
|
|
|
@ -58,6 +58,6 @@ codepoint_flags unicode_cpt_flags(const std::string & utf8);
|
|||
std::string unicode_byte_to_utf8(uint8_t byte);
|
||||
uint8_t unicode_utf8_to_byte(const std::string & utf8);
|
||||
|
||||
char32_t unicode_tolower(char32_t cp);
|
||||
uint32_t unicode_tolower(uint32_t cp);
|
||||
|
||||
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);
|
||||
|
|
12
vulkan-shaders/add.comp
Normal file
12
vulkan-shaders/add.comp
Normal file
|
@ -0,0 +1,12 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
|
||||
}
|
71
vulkan-shaders/argsort.comp
Normal file
71
vulkan-shaders/argsort.comp
Normal file
|
@ -0,0 +1,71 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
|
||||
#define BLOCK_SIZE 1024
|
||||
#define ASC 0
|
||||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) buffer D {int data_d[];};
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint ncols;
|
||||
uint ncols_pad;
|
||||
uint order;
|
||||
} p;
|
||||
|
||||
shared int dst_row[BLOCK_SIZE];
|
||||
|
||||
void swap(uint idx0, uint idx1) {
|
||||
int tmp = dst_row[idx0];
|
||||
dst_row[idx0] = dst_row[idx1];
|
||||
dst_row[idx1] = tmp;
|
||||
}
|
||||
|
||||
void main() {
|
||||
// bitonic sort
|
||||
const int col = int(gl_LocalInvocationID.x);
|
||||
const uint row = gl_WorkGroupID.y;
|
||||
|
||||
if (col >= p.ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint row_offset = row * p.ncols;
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
barrier();
|
||||
|
||||
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
|
||||
for (uint j = k / 2; j > 0; j /= 2) {
|
||||
const uint ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= p.ncols ||
|
||||
(dst_row[ixj] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= p.ncols ||
|
||||
(dst_row[col] < p.ncols && (p.order == ASC ?
|
||||
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
|
||||
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
|
||||
) {
|
||||
swap(col, ixj);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
}
|
||||
|
||||
if (col < p.ncols) {
|
||||
data_d[row_offset + col] = dst_row[col];
|
||||
}
|
||||
}
|
13
vulkan-shaders/clamp.comp
Normal file
13
vulkan-shaders/clamp.comp
Normal file
|
@ -0,0 +1,13 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
|
||||
}
|
16
vulkan-shaders/copy.comp
Normal file
16
vulkan-shaders/copy.comp
Normal file
|
@ -0,0 +1,16 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
|
||||
#else
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)];
|
||||
#endif
|
||||
}
|
20
vulkan-shaders/dequant_f32.comp
Normal file
20
vulkan-shaders/dequant_f32.comp
Normal file
|
@ -0,0 +1,20 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {float data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_GlobalInvocationID.x * 16;
|
||||
|
||||
if (i >= p.nel) {
|
||||
return;
|
||||
}
|
||||
|
||||
[[unroll]] for (uint l = 0; l < 16; l++) {
|
||||
data_b[i + l] = D_TYPE(data_a[i + l]);
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue