common : fix mirostat state when using multiple sequences (#3543)
* Fix mirostat state when using multiple sequences * Fix mirostat by completely refactoring sampling! * Try to fix zig build. * Export function to fetch/create default sampler states Code formatting cleanups and add some comments Silence a warning about id not being used when logging is disabled * Apply some renaming suggestions. Fix comments that were out of sync with the pull. * Use more consistant naming convention for sampling contexts
This commit is contained in:
parent
8c70a5ff25
commit
70c29da118
14 changed files with 495 additions and 334 deletions
|
@ -104,6 +104,7 @@ static void sigint_handler(int signo) {
|
|||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
|
@ -206,7 +207,7 @@ int main(int argc, char ** argv) {
|
|||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (params.cfg_scale > 1.f) {
|
||||
if (sparams.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
|
@ -269,9 +270,9 @@ int main(int argc, char ** argv) {
|
|||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
@ -312,7 +313,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (ctx_guidance) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||
|
@ -358,7 +359,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
|
@ -376,8 +377,8 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
|
@ -434,6 +435,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
|
@ -552,7 +554,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue