Merge 'origin/master' into cistuff

This commit is contained in:
Henri Vasserman 2023-05-06 16:57:21 +03:00
commit 71fac5bbcb
No known key found for this signature in database
GPG key ID: 2995FC0F58B1A986
10 changed files with 225 additions and 33 deletions

View file

@ -262,6 +262,82 @@ jobs:
path: |
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
windows-latest-cmake-cublas:
runs-on: windows-latest
strategy:
matrix:
cuda: ['12.1.0', '11.7.1']
build: ['cublas']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- uses: Jimver/cuda-toolkit@v0.2.10
id: cuda-toolkit
with:
cuda: ${{ matrix.cuda }}
# TODO(green-sky): _dev seems to fail, and non dev are not enought
#sub-packages: '["nvcc", "cudart", "cublas", "cudart_dev", "cublas_dev"]'
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
cmake --build . --config Release
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
if: ${{ matrix.cuda == '12.1.0' }}
# TODO(green-sky): paths are cuda 12 specific
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
mkdir '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_12.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_12.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_12.dll" '.\build\bin\cudart\'
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
- name: Copy and pack Cuda runtime
if: ${{ matrix.cuda == '11.7.1' }}
# TODO(green-sky): paths are cuda 11 specific
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
mkdir '.\build\bin\cudart\'
ls "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin"
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_110.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_11.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_11.dll" '.\build\bin\cudart\'
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
- name: Upload Cuda runtime
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@ -273,6 +349,7 @@ jobs:
- macOS-latest-make
- macOS-latest-cmake
- windows-latest-cmake
- windows-latest-cmake-cublas
steps:
- name: Download artifacts

View file

@ -107,8 +107,12 @@ ifndef LLAMA_NO_ACCELERATE
endif
ifdef LLAMA_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),)
LDFLAGS += -lopenblas -lcblas
else
LDFLAGS += -lopenblas
endif
endif
ifdef LLAMA_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
@ -121,7 +125,12 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
endif
ifdef LLAMA_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
# Mac provides OpenCL as a framework
ifeq ($(UNAME_S),Darwin)
LDFLAGS += -lclblast -framework OpenCL
else
LDFLAGS += -lclblast -lOpenCL
endif
OBJS += ggml-opencl.o
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
$(CC) $(CFLAGS) -c $< -o $@

View file

@ -18,10 +18,12 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework
- AVX2 support for x86 architectures
- AVX, AVX2 and AVX512 support for x86 architectures
- Mixed F16 / F32 precision
- 4-bit integer quantization support
- 4-bit, 5-bit and 8-bit integer quantization support
- Runs on the CPU
- OpenBLAS support
- cuBLAS and CLBlast support
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
@ -43,6 +45,7 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
**Bindings:**
@ -213,7 +216,6 @@ Building the program with BLAS support may lead to some performance improvements
```bash
make LLAMA_OPENBLAS=1
```
Note: In order to build on Arch Linux with OpenBLAS support enabled you must edit the Makefile adding at the end of the line 105: `-lcblas`
- On Windows:

View file

@ -67,6 +67,7 @@ FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
DT_BF16: np.dtype(np.uint16),
DT_F16: np.dtype(np.float16),
DT_F32: np.dtype(np.float32),
DT_I32: np.dtype(np.int32),
@ -276,6 +277,12 @@ class Tensor(metaclass=ABCMeta):
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
fp32_arr = bf16_arr.astype(np.uint32) << 16
return fp32_arr.view(np.float32)
class UnquantizedTensor(Tensor):
def __init__(self, ndarray: NDArray) -> None:
assert isinstance(ndarray, np.ndarray)
@ -284,6 +291,8 @@ class UnquantizedTensor(Tensor):
def astype(self, data_type: DataType) -> Tensor:
dtype = DATA_TYPE_TO_NUMPY[data_type]
if self.data_type == DT_BF16:
self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype))
def to_ggml(self) -> 'UnquantizedTensor':
@ -686,6 +695,7 @@ class LazyUnpickler(pickle.Unpickler):
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
return LazyStorage(load=load, kind=pid[1], description=description)
# @staticmethod
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName]
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
assert isinstance(storage, LazyStorage)
@ -696,12 +706,18 @@ class LazyUnpickler(pickle.Unpickler):
description = f'pickled storage_offset={storage_offset} in {storage.description}'
return LazyTensor(load, list(size), storage.kind.data_type, description)
# @staticmethod
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
CLASSES: Dict[Any, Any] = {
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
('torch', 'Tensor'): LazyTensor,
}
def find_class(self, module: str, name: str) -> Any:
@ -961,7 +977,7 @@ class OutputFile:
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
wq_type = model["layers.0.attention.wq.weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
return GGMLFileType.AllF32
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
return GGMLFileType.MostlyF16

View file

@ -324,6 +324,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.input_prefix = argv[i];
} else if (arg == "--in-suffix") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.input_suffix = argv[i];
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
@ -362,6 +368,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
fprintf(stderr, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " prompt file to start generation.\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);

View file

@ -43,6 +43,7 @@ struct gpt_params {
std::string prompt = "";
std::string path_session = ""; // path to file for saving/loading model eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string lora_adapter = ""; // lora adapter path

View file

@ -112,6 +112,14 @@ The `--in-prefix` flag is used to add a prefix to your input, primarily, this is
./main -r "User:" --in-prefix " "
```
### In-Suffix
The `--in-suffix` flag is used to add a suffix after your input. This is useful for adding an "Assistant:" prompt after the user's input. It's added after the new-line character (`\n`) that's automatically added to the end of the user's input. Here's an example of how to use the `--in-suffix` flag in conjunction with the `--reverse-prompt` flag:
```sh
./main -r "User:" --in-prefix " " --in-suffix "Assistant:"
```
### Instruction Mode
Instruction mode is particularly useful when working with Alpaca models, which are designed to follow user instructions for specific tasks:

View file

@ -260,6 +260,10 @@ int main(int argc, char ** argv) {
if (!params.input_prefix.empty()) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
if (!params.input_suffix.empty()) {
fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
@ -567,6 +571,11 @@ int main(int argc, char ** argv) {
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
buffer += params.input_suffix;
printf("%s", params.input_suffix.c_str());
}
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {

View file

@ -6,7 +6,7 @@
#include <map>
#include <string>
static const std::map<std::string, enum llama_ftype> LLAMA_FTYPE_MAP = {
static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
{"q4_2", LLAMA_FTYPE_MOSTLY_Q4_2},
@ -15,14 +15,38 @@ static const std::map<std::string, enum llama_ftype> LLAMA_FTYPE_MAP = {
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
};
bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
auto it = LLAMA_FTYPE_MAP.find(ftype_str);
if (it != LLAMA_FTYPE_MAP.end()) {
ftype = it->second;
ftype_str_out = it->first;
return true;
}
// try to parse as an integer
try {
int ftype_int = std::stoi(ftype_str);
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
if (it->second == ftype_int) {
ftype = it->second;
ftype_str_out = it->first;
return true;
}
}
}
catch (...) {
// stoi failed
}
return false;
}
// usage:
// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
//
int main(int argc, char ** argv) {
ggml_time_init();
if (argc < 4) {
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type [nthread]\n", argv[0]);
if (argc < 3) {
fprintf(stderr, "usage: %s model-f32.bin [model-quant.bin] type [nthreads]\n", argv[0]);
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
}
@ -36,24 +60,62 @@ int main(int argc, char ** argv) {
ggml_free(ctx);
}
// parse command line arguments
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
std::string fname_out;
int nthread;
llama_ftype ftype;
enum llama_ftype ftype;
if (argv[3][0] == 'q') {
auto it = LLAMA_FTYPE_MAP.find(argv[3]);
if (it == LLAMA_FTYPE_MAP.end()) {
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, argv[3]);
int arg_idx = 2;
std::string ftype_str;
if (try_parse_ftype(argv[arg_idx], ftype, ftype_str)) {
// argv[2] is the ftype
std::string fpath;
const size_t pos = fname_inp.find_last_of('/');
if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1);
}
// export as [inp path]/ggml-model-[ftype].bin
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
arg_idx++;
}
else {
// argv[2] is the output path
fname_out = argv[arg_idx];
arg_idx++;
if (argc <= arg_idx) {
fprintf(stderr, "%s: missing ftype\n", __func__);
return 1;
}
// argv[3] is the ftype
if (!try_parse_ftype(argv[arg_idx], ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
}
arg_idx++;
}
// parse nthreads
if (argc > arg_idx) {
try {
nthread = std::stoi(argv[arg_idx]);
}
catch (const std::exception & e) {
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
return 1;
}
ftype = it->second;
} else {
ftype = (enum llama_ftype)atoi(argv[3]);
nthread = 0;
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
int nthread = argc > 4 ? atoi(argv[4]) : 0;
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
if (nthread > 0) {
fprintf(stderr, " using %d threads", nthread);
}
fprintf(stderr, "\n");
const int64_t t_main_start_us = ggml_time_us();

View file

@ -14,6 +14,7 @@
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
@ -74,7 +75,7 @@ struct llama_file {
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw format("failed to open %s: %s", fname, std::strerror(errno));
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
@ -107,10 +108,10 @@ struct llama_file {
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
throw format("read error: %s", strerror(errno));
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::string("unexpectedly reached end of file");
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
@ -133,7 +134,7 @@ struct llama_file {
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
throw format("write error: %s", strerror(errno));
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
@ -180,7 +181,7 @@ struct llama_mmap {
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw format("mmap failed: %s", strerror(errno));
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch) {
@ -207,7 +208,7 @@ struct llama_mmap {
DWORD error = GetLastError();
if (hMapping == NULL) {
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
@ -215,7 +216,7 @@ struct llama_mmap {
CloseHandle(hMapping);
if (addr == NULL) {
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
@ -245,7 +246,7 @@ struct llama_mmap {
llama_mmap(struct llama_file *, bool prefetch = true) {
(void)prefetch;
throw std::string("mmap not supported");
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};