Merge 'origin/master' into cistuff
This commit is contained in:
commit
71fac5bbcb
10 changed files with 225 additions and 33 deletions
77
.github/workflows/build.yml
vendored
77
.github/workflows/build.yml
vendored
|
@ -262,6 +262,82 @@ jobs:
|
|||
path: |
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cublas:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.1.0', '11.7.1']
|
||||
build: ['cublas']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- uses: Jimver/cuda-toolkit@v0.2.10
|
||||
id: cuda-toolkit
|
||||
with:
|
||||
cuda: ${{ matrix.cuda }}
|
||||
# TODO(green-sky): _dev seems to fail, and non dev are not enought
|
||||
#sub-packages: '["nvcc", "cudart", "cublas", "cudart_dev", "cublas_dev"]'
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_CUBLAS=ON
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '12.1.0' }}
|
||||
# TODO(green-sky): paths are cuda 12 specific
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
mkdir '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_12.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_12.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_12.dll" '.\build\bin\cudart\'
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '11.7.1' }}
|
||||
# TODO(green-sky): paths are cuda 11 specific
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
mkdir '.\build\bin\cudart\'
|
||||
ls "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin"
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_110.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_11.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_11.dll" '.\build\bin\cudart\'
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
||||
|
@ -273,6 +349,7 @@ jobs:
|
|||
- macOS-latest-make
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-cublas
|
||||
|
||||
steps:
|
||||
- name: Download artifacts
|
||||
|
|
9
Makefile
9
Makefile
|
@ -107,8 +107,12 @@ ifndef LLAMA_NO_ACCELERATE
|
|||
endif
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),)
|
||||
LDFLAGS += -lopenblas -lcblas
|
||||
else
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
endif
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
|
@ -121,7 +125,12 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
|||
endif
|
||||
ifdef LLAMA_CLBLAST
|
||||
CFLAGS += -DGGML_USE_CLBLAST
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
LDFLAGS += -lclblast -lOpenCL
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
|
|
@ -18,10 +18,12 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
|
|||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework
|
||||
- AVX2 support for x86 architectures
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- 4-bit integer quantization support
|
||||
- 4-bit, 5-bit and 8-bit integer quantization support
|
||||
- Runs on the CPU
|
||||
- OpenBLAS support
|
||||
- cuBLAS and CLBlast support
|
||||
|
||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
|
||||
|
@ -43,6 +45,7 @@ as the main playground for developing new features for the [ggml](https://github
|
|||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
|
@ -213,7 +216,6 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
```bash
|
||||
make LLAMA_OPENBLAS=1
|
||||
```
|
||||
Note: In order to build on Arch Linux with OpenBLAS support enabled you must edit the Makefile adding at the end of the line 105: `-lcblas`
|
||||
|
||||
- On Windows:
|
||||
|
||||
|
|
18
convert.py
18
convert.py
|
@ -67,6 +67,7 @@ FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
|
|||
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
|
||||
|
||||
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
|
||||
DT_BF16: np.dtype(np.uint16),
|
||||
DT_F16: np.dtype(np.float16),
|
||||
DT_F32: np.dtype(np.float32),
|
||||
DT_I32: np.dtype(np.int32),
|
||||
|
@ -276,6 +277,12 @@ class Tensor(metaclass=ABCMeta):
|
|||
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
|
||||
|
||||
|
||||
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
|
||||
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
|
||||
fp32_arr = bf16_arr.astype(np.uint32) << 16
|
||||
return fp32_arr.view(np.float32)
|
||||
|
||||
|
||||
class UnquantizedTensor(Tensor):
|
||||
def __init__(self, ndarray: NDArray) -> None:
|
||||
assert isinstance(ndarray, np.ndarray)
|
||||
|
@ -284,6 +291,8 @@ class UnquantizedTensor(Tensor):
|
|||
|
||||
def astype(self, data_type: DataType) -> Tensor:
|
||||
dtype = DATA_TYPE_TO_NUMPY[data_type]
|
||||
if self.data_type == DT_BF16:
|
||||
self.ndarray = bf16_to_fp32(self.ndarray)
|
||||
return UnquantizedTensor(self.ndarray.astype(dtype))
|
||||
|
||||
def to_ggml(self) -> 'UnquantizedTensor':
|
||||
|
@ -686,6 +695,7 @@ class LazyUnpickler(pickle.Unpickler):
|
|||
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
||||
return LazyStorage(load=load, kind=pid[1], description=description)
|
||||
|
||||
# @staticmethod
|
||||
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName]
|
||||
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
|
||||
assert isinstance(storage, LazyStorage)
|
||||
|
@ -696,12 +706,18 @@ class LazyUnpickler(pickle.Unpickler):
|
|||
description = f'pickled storage_offset={storage_offset} in {storage.description}'
|
||||
return LazyTensor(load, list(size), storage.kind.data_type, description)
|
||||
|
||||
# @staticmethod
|
||||
def rebuild_from_type_v2(func, new_type, args, state):
|
||||
return func(*args)
|
||||
|
||||
CLASSES: Dict[Any, Any] = {
|
||||
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
|
||||
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
|
||||
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
|
||||
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
|
||||
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
|
||||
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
|
||||
('torch', 'Tensor'): LazyTensor,
|
||||
}
|
||||
|
||||
def find_class(self, module: str, name: str) -> Any:
|
||||
|
@ -961,7 +977,7 @@ class OutputFile:
|
|||
|
||||
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
|
||||
wq_type = model["layers.0.attention.wq.weight"].data_type
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
|
||||
return GGMLFileType.AllF32
|
||||
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
|
||||
return GGMLFileType.MostlyF16
|
||||
|
|
|
@ -324,6 +324,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.input_prefix = argv[i];
|
||||
} else if (arg == "--in-suffix") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.input_suffix = argv[i];
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
|
@ -362,6 +368,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
|
||||
fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
|
||||
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
|
||||
fprintf(stderr, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
fprintf(stderr, " prompt file to start generation.\n");
|
||||
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
|
||||
|
|
|
@ -43,6 +43,7 @@ struct gpt_params {
|
|||
std::string prompt = "";
|
||||
std::string path_session = ""; // path to file for saving/loading model eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
|
|
|
@ -112,6 +112,14 @@ The `--in-prefix` flag is used to add a prefix to your input, primarily, this is
|
|||
./main -r "User:" --in-prefix " "
|
||||
```
|
||||
|
||||
### In-Suffix
|
||||
|
||||
The `--in-suffix` flag is used to add a suffix after your input. This is useful for adding an "Assistant:" prompt after the user's input. It's added after the new-line character (`\n`) that's automatically added to the end of the user's input. Here's an example of how to use the `--in-suffix` flag in conjunction with the `--reverse-prompt` flag:
|
||||
|
||||
```sh
|
||||
./main -r "User:" --in-prefix " " --in-suffix "Assistant:"
|
||||
```
|
||||
|
||||
### Instruction Mode
|
||||
|
||||
Instruction mode is particularly useful when working with Alpaca models, which are designed to follow user instructions for specific tasks:
|
||||
|
|
|
@ -260,6 +260,10 @@ int main(int argc, char ** argv) {
|
|||
if (!params.input_prefix.empty()) {
|
||||
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
|
@ -567,6 +571,11 @@ int main(int argc, char ** argv) {
|
|||
// Add tokens to embd only if the input buffer is non-empty
|
||||
// Entering a empty line lets the user pass control back
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
buffer += params.input_suffix;
|
||||
printf("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
// instruct mode: insert instruction prefix
|
||||
if (params.instruct && !is_antiprompt) {
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
#include <map>
|
||||
#include <string>
|
||||
|
||||
static const std::map<std::string, enum llama_ftype> LLAMA_FTYPE_MAP = {
|
||||
static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
|
||||
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
|
||||
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
|
||||
{"q4_2", LLAMA_FTYPE_MOSTLY_Q4_2},
|
||||
|
@ -15,14 +15,38 @@ static const std::map<std::string, enum llama_ftype> LLAMA_FTYPE_MAP = {
|
|||
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
|
||||
};
|
||||
|
||||
bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
|
||||
auto it = LLAMA_FTYPE_MAP.find(ftype_str);
|
||||
if (it != LLAMA_FTYPE_MAP.end()) {
|
||||
ftype = it->second;
|
||||
ftype_str_out = it->first;
|
||||
return true;
|
||||
}
|
||||
// try to parse as an integer
|
||||
try {
|
||||
int ftype_int = std::stoi(ftype_str);
|
||||
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
||||
if (it->second == ftype_int) {
|
||||
ftype = it->second;
|
||||
ftype_str_out = it->first;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (...) {
|
||||
// stoi failed
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// usage:
|
||||
// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
||||
// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
||||
//
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
if (argc < 4) {
|
||||
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type [nthread]\n", argv[0]);
|
||||
if (argc < 3) {
|
||||
fprintf(stderr, "usage: %s model-f32.bin [model-quant.bin] type [nthreads]\n", argv[0]);
|
||||
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
||||
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
|
||||
}
|
||||
|
@ -36,24 +60,62 @@ int main(int argc, char ** argv) {
|
|||
ggml_free(ctx);
|
||||
}
|
||||
|
||||
// parse command line arguments
|
||||
const std::string fname_inp = argv[1];
|
||||
const std::string fname_out = argv[2];
|
||||
std::string fname_out;
|
||||
int nthread;
|
||||
llama_ftype ftype;
|
||||
|
||||
enum llama_ftype ftype;
|
||||
if (argv[3][0] == 'q') {
|
||||
auto it = LLAMA_FTYPE_MAP.find(argv[3]);
|
||||
if (it == LLAMA_FTYPE_MAP.end()) {
|
||||
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, argv[3]);
|
||||
int arg_idx = 2;
|
||||
std::string ftype_str;
|
||||
if (try_parse_ftype(argv[arg_idx], ftype, ftype_str)) {
|
||||
// argv[2] is the ftype
|
||||
std::string fpath;
|
||||
const size_t pos = fname_inp.find_last_of('/');
|
||||
if (pos != std::string::npos) {
|
||||
fpath = fname_inp.substr(0, pos + 1);
|
||||
}
|
||||
// export as [inp path]/ggml-model-[ftype].bin
|
||||
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
|
||||
arg_idx++;
|
||||
}
|
||||
else {
|
||||
// argv[2] is the output path
|
||||
fname_out = argv[arg_idx];
|
||||
arg_idx++;
|
||||
|
||||
if (argc <= arg_idx) {
|
||||
fprintf(stderr, "%s: missing ftype\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
// argv[3] is the ftype
|
||||
if (!try_parse_ftype(argv[arg_idx], ftype, ftype_str)) {
|
||||
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
||||
return 1;
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
|
||||
// parse nthreads
|
||||
if (argc > arg_idx) {
|
||||
try {
|
||||
nthread = std::stoi(argv[arg_idx]);
|
||||
}
|
||||
catch (const std::exception & e) {
|
||||
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
|
||||
return 1;
|
||||
}
|
||||
ftype = it->second;
|
||||
} else {
|
||||
ftype = (enum llama_ftype)atoi(argv[3]);
|
||||
nthread = 0;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
int nthread = argc > 4 ? atoi(argv[4]) : 0;
|
||||
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
|
||||
if (nthread > 0) {
|
||||
fprintf(stderr, " using %d threads", nthread);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
|
|
17
llama-util.h
17
llama-util.h
|
@ -14,6 +14,7 @@
|
|||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
|
@ -74,7 +75,7 @@ struct llama_file {
|
|||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw format("failed to open %s: %s", fname, std::strerror(errno));
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
|
@ -107,10 +108,10 @@ struct llama_file {
|
|||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw format("read error: %s", strerror(errno));
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::string("unexpectedly reached end of file");
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -133,7 +134,7 @@ struct llama_file {
|
|||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw format("write error: %s", strerror(errno));
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -180,7 +181,7 @@ struct llama_mmap {
|
|||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw format("mmap failed: %s", strerror(errno));
|
||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
if (prefetch) {
|
||||
|
@ -207,7 +208,7 @@ struct llama_mmap {
|
|||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
|
||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
|
@ -215,7 +216,7 @@ struct llama_mmap {
|
|||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
|
||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
|
@ -245,7 +246,7 @@ struct llama_mmap {
|
|||
|
||||
llama_mmap(struct llama_file *, bool prefetch = true) {
|
||||
(void)prefetch;
|
||||
throw std::string("mmap not supported");
|
||||
throw std::runtime_error(std::string("mmap not supported"));
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue