Automatic helper dev

This commit is contained in:
pudepiedj 2023-10-06 09:52:33 +01:00
parent 297b7b6301
commit 739d6d3022
4 changed files with 147 additions and 15 deletions

View file

@ -79,6 +79,7 @@ struct gpt_params {
std::string model_draft = ""; // draft model for speculative decoding std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias std::string model_alias = "unknown"; // model alias
std::string prompt = ""; std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with std::string input_suffix = ""; // string to suffix user inputs with

View file

@ -130,7 +130,7 @@ int main() {
if (x != 0) { if (x != 0) {
for (const auto& kvp : bitdict) { for (const auto& kvp : bitdict) {
if ((x & std::stoi(kvp.first)) != 0) { if ((x & std::stoi(kvp.first)) != 0) {
printf("Appcode %3d %s ", x, kvp.first.c_str()); printf("appcode %3d %s ", x, kvp.first.c_str());
for (const auto& element : kvp.second) { for (const auto& element : kvp.second) {
printf(" %5s", element.c_str()); printf(" %5s", element.c_str());
} }

View file

@ -1,22 +1,27 @@
# search the specified directory for files that include argv[i] == '-f' or '--file' arguments
import os import os
import re import re
def find_arguments(directory): def find_arguments(directory):
arguments = {} arguments = {}
# Get a list of all .cpp files in the specified directory # Use os.walk() to traverse through files in directory and subdirectories
cpp_files = [filename for filename in os.listdir(directory) if filename.endswith('.cpp')] for root, dirs, files in os.walk(directory):
for file in files:
# Read each .cpp file and search for the specified expressions if file.endswith('.cpp'):
for filename in cpp_files: filepath = os.path.join(root, file)
with open(os.path.join(directory, filename), 'r') as file: with open(filepath, 'r') as file:
content = file.read() content = file.read()
# Search for the expressions using regular expressions # Search for the expression "params." and read the attribute without trailing detritus
matches = re.findall(r'argv\s*\[\s*i\s*\]\s*==\s*([\'"])(?P<arg>-[a-zA-Z]+|\-\-[a-zA-Z]+[a-zA-Z0-9-]*)\1', content) matches = re.findall(r'params\.(.*?)(?=[\). <,;}])', content)
# Add the found arguments to the dictionary # Remove duplicates from matches list
arguments[filename] = [match[1] for match in matches] arguments_list = list(set([match.strip() for match in matches]))
# Add the matches to the dictionary
arguments[filepath] = arguments_list
return arguments return arguments
@ -24,7 +29,29 @@ def find_arguments(directory):
# Specify the directory you want to search for cpp files # Specify the directory you want to search for cpp files
directory = '/Users/edsilm2/llama.cpp/examples' directory = '/Users/edsilm2/llama.cpp/examples'
# Call the function and print the result if __name__ == '__main__':
result = find_arguments(directory) # Call the find function and print the result
for filename, arguments in result.items(): result = find_arguments(directory)
print(filename, arguments) all_of_them = set()
for filename, arguments in result.items():
print(f"Filename: \033[32m{filename}\033[0m, arguments: {arguments}\n")
for argument in arguments:
if argument not in all_of_them:
all_of_them.add("".join(argument))
print(f"\033[32mAll of them: \033[0m{sorted(all_of_them)}.")
with open("help_list.txt", "r") as helpfile:
lines = helpfile.read().split("\n")
for filename, arguments in result.items():
parameters = []
for line in lines:
for argument in arguments:
if argument in line:
parameters.append(line)
all_parameters = set(parameters)
print(f"\n\nFilename: \033[32m{filename.split('/')[-1]}\033[0m\n\n command-line arguments available and gpt-params functions implemented:\n")
if not all_parameters:
print(f" \033[032mNone\033[0m\n")
else:
for parameter in all_parameters:
print(f" help: \033[33m{parameter:<30}\033[0m")

104
help_list.txt Normal file
View file

@ -0,0 +1,104 @@
-h, --helpshow this help message and exit
-i, --interactive run in interactive mode
--interactive-first run in interactive mode and wait for input right away
-ins, --instructrun in instruction mode (use with Alpaca models)
--multiline-input allows you to write or paste multiple lines without ending each in '\\'
-r PROMPT, --reverse-prompt PROMPT
halt generation at PROMPT, return control in interactive mode
(can be specified more than once for multiple prompts).
--color colorise output to distinguish prompt and user input from generations
-s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)
-t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
-tb N, --threads-batch N
number of threads to use during batch and prompt processing (default: same as --threads)
-p PROMPT, --prompt PROMPT
prompt to start generation with (default: empty)
-e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)
--prompt-cache FNAME file to cache prompt state for faster startup (default: none)
--prompt-cache-all if specified, saves user input and generations to cache as well.
not supported with --interactive or other interactive options
--prompt-cache-ro if specified, uses the prompt cache but does not update it.
--random-prompt start with a randomized prompt.
--in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string
--in-prefix STRING string to prefix user inputs with (default: empty)
--in-suffix STRING string to suffix after user inputs with (default: empty)
-f FNAME, --file FNAME
prompt file to start generation.
-n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
-c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
-b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
--top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
--top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
--tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
--typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
--repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
--repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
--presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
--frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
--mirostat N use Mirostat sampling.
Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.
(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
--mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
--mirostat-ent NMirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
-l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS
modifies the likelihood of token appearing in the completion,
i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',
or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'
--grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)
--grammar-file FNAME file to read grammar from
--cfg-negative-prompt PROMPT
negative prompt to use for guidance. (default: empty)
--cfg-negative-prompt-file FNAME
negative prompt file to use for guidance. (default: empty)
--cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
--rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale
--rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)
--rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)
--ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)
--no-penalize-nldo not penalize newline token
--memory-f32 use f32 instead of f16 for memory key+value (default: disabled)
not recommended: doubles context memory required and no measurable increase in quality
--temp N temperature (default: %.1f)\n", (double)params.temp);
--logits-all return logits for all tokens in the batch (default: disabled)
--hellaswag compute HellaSwag score over random tasks from datafile supplied with -f
--hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
--keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
--draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
--chunks Nmax number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
-np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
-ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
-cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)
if (llama_mlock_supported()) {
--mlock force system to keep model in RAM rather than swapping or compressing
}
if (llama_mmap_supported()) {
--no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)
}
--numa attempt optimizations that help on some NUMA systems
if run without this previously, it is recommended to drop the system page cache before using this
see https://github.com/ggerganov/llama.cpp/issues/1437
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
-ngl N, --n-gpu-layers N
number of layers to store in VRAM
-ngld N, --n-gpu-layers-draft N
number of layers to store in VRAM for the draft model
-ts SPLIT --tensor-split SPLIT
how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1
-mg i, --main-gpu i the GPU to use for scratch and small tensors
#ifdef GGML_USE_CUBLAS
-nommq, --no-mul-mat-q
use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.
Not recommended since this is both slower and uses more VRAM.
#endif // GGML_USE_CUBLAS
#endif
--verbose-promptprint prompt before generation
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles
--lora FNAME apply LoRA adapter (implies --no-mmap)
--lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)
--lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter
-m FNAME, --model FNAME
model path (default: %s)\n", params.model.c_str());
-md FNAME, --model-draft FNAME
draft model for speculative decoding (default: %s)\n", params.model.c_str());
-ld LOGDIR, --logdir LOGDIR
path under which to save YAML logs (no logging if unset)