finetune : add -ngl parameter (#3762)

* Add '-ngl' support to finetune.cpp

* Add fprintf in ggml_cuda_op_add

When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora

* Add 'finetune.sh', which currently fails when using GPU

"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"

* tweak finetune.sh

* Suppress some warnings in ggml.c

* Add f16 implementation to ggml_compute_forward_add_f16_f32

* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs

* finetune.sh: Edit comments

* Add "add_f16_f32_f32_cuda"

* Tweak an error message

* finetune.sh: Add an optional LLAMA_MODEL_DIR variable

* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable

* train : minor

* tabs to spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
This commit is contained in:
Andrew Godfrey 2023-11-01 04:49:04 -07:00 committed by GitHub
parent f0e209324a
commit 73bdcb395e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 106 additions and 15 deletions

View file

@ -513,6 +513,15 @@ static __global__ void add_f16_f32_f16(const half * x, const float * y, half * d
dst[i] = __hadd(x[i], __float2half(y[i]));
}
static __global__ void add_f16_f32_f32(const half * x, const float * y, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = __half2float(x[i]) + y[i];
}
static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
@ -4693,6 +4702,11 @@ static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, co
add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}
static void add_f16_f32_f32_cuda(const half * x, const float * y, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
add_f16_f32_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}
static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
@ -5996,7 +6010,10 @@ inline void ggml_cuda_op_add(
add_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(src0), ne10*ne11, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
add_f16_f32_f16_cuda((const half *) src0_dd, src1_dd, (half *) dst_dd, ggml_nelements(src0), main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
add_f16_f32_f32_cuda((const half *) src0_dd, src1_dd, dst_dd, ggml_nelements(src0), main_stream);
} else {
fprintf(stderr, "src0->type: %d dst->type: %d\n", src0->type, dst->type);
GGML_ASSERT(false);
}