Merge branch 'master' into gg/llama-kv-cache
ggml-ci
This commit is contained in:
commit
74b0807245
36 changed files with 2392 additions and 157 deletions
43
examples/llava/README-glmedge.md
Normal file
43
examples/llava/README-glmedge.md
Normal file
|
@ -0,0 +1,43 @@
|
|||
# GLMV-EDGE
|
||||
|
||||
Currently this implementation supports [glm-edge-v-2b](https://huggingface.co/THUDM/glm-edge-v-2b) and [glm-edge-v-5b](https://huggingface.co/THUDM/glm-edge-v-5b).
|
||||
|
||||
## Usage
|
||||
Build with cmake or run `make llama-llava-cli` to build it.
|
||||
|
||||
After building, run: `./llama-llava-cli` to see the usage. For example:
|
||||
|
||||
```sh
|
||||
./llama-llava-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf --image img_path/image.jpg -p "<|system|>\n system prompt <image><|user|>\n prompt <|assistant|>\n"
|
||||
```
|
||||
|
||||
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
||||
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
|
||||
|
||||
## GGUF conversion
|
||||
|
||||
1. Clone a GLMV-EDGE model ([2B](https://huggingface.co/THUDM/glm-edge-v-2b) or [5B](https://huggingface.co/THUDM/glm-edge-v-5b)). For example:
|
||||
|
||||
```sh
|
||||
git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
|
||||
```
|
||||
|
||||
2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-surgery.py -m ../model_path
|
||||
```
|
||||
|
||||
4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
|
||||
```
|
||||
|
||||
5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
|
||||
|
||||
```sh
|
||||
python convert_hf_to_gguf.py ../model_path
|
||||
```
|
||||
|
||||
Now both the LLM part and the image encoder are in the `model_path` directory.
|
|
@ -102,6 +102,7 @@ static std::string format(const char * fmt, ...) {
|
|||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
|
@ -160,6 +161,15 @@ static std::string format(const char * fmt, ...) {
|
|||
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||
|
||||
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
|
||||
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
|
||||
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
|
||||
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
|
||||
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
|
||||
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
|
||||
#define TN_GLM_BOI_W "adapter.boi"
|
||||
#define TN_GLM_EOI_W "adapter.eoi"
|
||||
|
||||
|
||||
enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
|
@ -167,6 +177,7 @@ enum projector_type {
|
|||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_GLM_EDGE,
|
||||
PROJECTOR_TYPE_MERGER,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
@ -176,6 +187,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
|
||||
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
|
||||
};
|
||||
|
||||
|
@ -500,6 +512,12 @@ struct clip_vision_model {
|
|||
struct ggml_tensor * mm_4_w = NULL;
|
||||
struct ggml_tensor * mm_4_b = NULL;
|
||||
|
||||
//GLMV-Edge projection
|
||||
struct ggml_tensor * mm_model_adapter_conv_w;
|
||||
struct ggml_tensor * mm_model_adapter_conv_b;
|
||||
struct ggml_tensor * boi_w;
|
||||
struct ggml_tensor * eoi_w;
|
||||
|
||||
// MobileVLM projection
|
||||
struct ggml_tensor * mm_model_mlp_1_w;
|
||||
struct ggml_tensor * mm_model_mlp_1_b;
|
||||
|
@ -560,6 +578,7 @@ struct clip_ctx {
|
|||
bool has_vision_encoder = false;
|
||||
bool has_llava_projector = false;
|
||||
bool has_minicpmv_projector = false;
|
||||
bool has_glm_projector = false;
|
||||
bool has_qwen2vl_merger = false;
|
||||
int minicpmv_version = 2;
|
||||
|
||||
|
@ -638,7 +657,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
|
||||
const int batch_size = imgs->size;
|
||||
|
||||
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
|
||||
if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
}
|
||||
|
||||
|
@ -734,8 +753,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
}
|
||||
|
||||
// loop over layers
|
||||
if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
|
||||
// TODO: figure out why we doing thing in this way ???
|
||||
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
|
||||
n_layer += 1;
|
||||
}
|
||||
for (int il = 0; il < n_layer - 1; il++) {
|
||||
|
@ -1095,7 +1113,33 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
// glm projector
|
||||
else if (ctx->has_glm_projector) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
||||
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
|
||||
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
|
||||
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
|
||||
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
|
||||
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
|
||||
//GLU
|
||||
{
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
|
||||
embeddings = ggml_gelu_inplace(ctx0, embeddings);
|
||||
struct ggml_tensor * x = embeddings;
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
|
||||
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
|
||||
embeddings = ggml_silu_inplace(ctx0, embeddings);
|
||||
embeddings = ggml_mul(ctx0, embeddings,x);
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("fatel error");
|
||||
}
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
|
||||
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||
|
@ -1284,6 +1328,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
|
||||
}
|
||||
|
||||
idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ);
|
||||
if (idx != -1) {
|
||||
new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx);
|
||||
}
|
||||
|
||||
idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
|
||||
if (idx != -1) {
|
||||
new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
|
||||
|
@ -1308,6 +1357,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
|
||||
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
|
@ -1575,6 +1625,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
|
||||
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
||||
vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight"));
|
||||
vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias"));
|
||||
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight"));
|
||||
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight"));
|
||||
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias"));
|
||||
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
|
||||
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight"));
|
||||
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
|
||||
vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W);
|
||||
vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W);
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
|
||||
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
|
||||
|
@ -2115,6 +2177,20 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
|||
return true;
|
||||
}
|
||||
|
||||
if (ctx->has_glm_projector) {
|
||||
res_imgs->size = 1;
|
||||
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||
clip_image_u8 resized_image;
|
||||
int32_t sz=ctx->vision_model.hparams.image_size;
|
||||
bicubic_resize(*img, resized_image,sz,sz);
|
||||
clip_image_f32 * res = clip_image_f32_init();
|
||||
//clip_image_save_to_bmp(resized_image, "resized.bmp");
|
||||
normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
|
||||
res_imgs->data[0] = *res;
|
||||
clip_image_f32_free(res);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool pad_to_square = true;
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_ERR("This gguf file seems to have no vision encoder\n");
|
||||
|
@ -2300,7 +2376,8 @@ void clip_free(clip_ctx * ctx) {
|
|||
}
|
||||
|
||||
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
|
||||
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
|
||||
int extra_tokens = ctx->has_glm_projector ? 2 : 0;
|
||||
return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
|
||||
}
|
||||
|
||||
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
|
||||
|
@ -2342,7 +2419,7 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
|
|||
|
||||
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
||||
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
||||
n_patches /= 4;
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
|
@ -2475,6 +2552,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
if (ctx->has_minicpmv_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
}
|
||||
if (ctx->has_glm_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
ggml_tensor * boi = ctx->vision_model.boi_w;
|
||||
ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
|
||||
vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
|
||||
}
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
|
||||
|
@ -2627,7 +2710,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
|
||||
{
|
||||
if (!ctx->has_glm_projector) {
|
||||
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
|
@ -2651,6 +2734,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
// copy the embeddings to the location passed by the user
|
||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||
|
||||
if (ctx->has_glm_projector) {
|
||||
//eoi
|
||||
ggml_tensor * eoi = ctx->vision_model.eoi_w;
|
||||
int offset = ggml_nelements(embeddings);
|
||||
ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -2812,6 +2902,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
return 3584;
|
||||
}
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
|
||||
return ctx->vision_model.mm_model_mlp_3_w->ne[1];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
return ctx->vision_model.mm_1_b->ne[0];
|
||||
}
|
||||
|
@ -2827,6 +2920,9 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
bool clip_is_glm(const struct clip_ctx * ctx) {
|
||||
return ctx->has_glm_projector;
|
||||
}
|
||||
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
|
||||
return ctx->has_qwen2vl_merger;
|
||||
}
|
||||
|
|
|
@ -93,6 +93,8 @@ CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
|||
|
||||
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
|
||||
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
280
examples/llava/glmedge-convert-image-encoder-to-gguf.py
Normal file
280
examples/llava/glmedge-convert-image-encoder-to-gguf.py
Normal file
|
@ -0,0 +1,280 @@
|
|||
import argparse
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
|
||||
TEXT = "clip.text"
|
||||
VISION = "clip.vision"
|
||||
from transformers import SiglipVisionModel, SiglipVisionConfig
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
|
||||
if name in (
|
||||
"logit_scale",
|
||||
"text_model.embeddings.position_ids",
|
||||
"vision_model.embeddings.position_ids",
|
||||
):
|
||||
return True
|
||||
|
||||
if name in (
|
||||
"vision_model.head.probe",
|
||||
"vision_model.head.attention.in_proj_weight",
|
||||
"vision_model.head.attention.in_proj_bias",
|
||||
"vision_model.head.attention.out_proj.weight",
|
||||
"vision_model.head.attention.out_proj.bias",
|
||||
"vision_model.head.layernorm.weight",
|
||||
"vision_model.head.layernorm.bias",
|
||||
"vision_model.head.mlp.fc1.weight",
|
||||
"vision_model.head.mlp.fc1.bias",
|
||||
"vision_model.head.mlp.fc2.weight",
|
||||
"vision_model.head.mlp.fc2.bias"
|
||||
):
|
||||
return True
|
||||
|
||||
if name.startswith("v") and not has_vision:
|
||||
return True
|
||||
|
||||
if name.startswith("t") and not has_text:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
if "mm_projector" in name:
|
||||
name = name.replace("model.mm_projector", "mm")
|
||||
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||||
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||||
return name
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2","adapter"], default="adapter")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||
default_image_mean = [0.5, 0.5, 0.5]
|
||||
default_image_std = [0.5, 0.5, 0.5]
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
|
||||
|
||||
if args.text_only and args.vision_only:
|
||||
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||||
exit(1)
|
||||
|
||||
if args.use_f32:
|
||||
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||||
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||
vocab = None
|
||||
tokens = None
|
||||
else:
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||||
vocab = json.load(f)
|
||||
tokens = [key for key in vocab]
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
if args.clip_model_is_vision:
|
||||
v_hparams = config
|
||||
t_hparams = None
|
||||
else:
|
||||
v_hparams = config["vision_config"]
|
||||
t_hparams = None
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
vision_config = SiglipVisionConfig(**v_hparams)
|
||||
model = SiglipVisionModel(vision_config)
|
||||
model.load_state_dict(torch.load(os.path.join(dir_model, "glm.clip")))
|
||||
|
||||
fname_middle = None
|
||||
has_text_encoder = False
|
||||
has_vision_encoder = True
|
||||
has_glm_projector = True
|
||||
if args.text_only:
|
||||
fname_middle = "text-"
|
||||
has_vision_encoder = False
|
||||
elif args.llava_projector is not None:
|
||||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_glm_projector = True
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
else:
|
||||
fname_middle = ""
|
||||
|
||||
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
|
||||
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||
fout.add_bool("clip.has_glm_projector", has_glm_projector)
|
||||
fout.add_file_type(ftype)
|
||||
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
|
||||
fout.add_name(model_name)
|
||||
if has_glm_projector:
|
||||
fout.add_description("image encoder for glm4v")
|
||||
fout.add_string("clip.projector_type", "adapter")
|
||||
else:
|
||||
fout.add_description("two-tower CLIP model")
|
||||
|
||||
if has_text_encoder:
|
||||
assert t_hparams is not None
|
||||
assert tokens is not None
|
||||
# text_model hparams
|
||||
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
||||
fout.add_token_list(tokens)
|
||||
|
||||
if has_vision_encoder:
|
||||
# vision_model hparams
|
||||
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
||||
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.vision.projection_dim", 0)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), v_hparams["num_hidden_layers"])
|
||||
|
||||
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
|
||||
image_std = args.image_std if args.image_std is not None else default_image_std
|
||||
fout.add_array("clip.vision.image_mean", image_mean)
|
||||
fout.add_array("clip.vision.image_std", image_std)
|
||||
|
||||
fout.add_bool("clip.use_gelu", True)
|
||||
|
||||
|
||||
if has_glm_projector:
|
||||
# model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue]
|
||||
projector = torch.load(args.llava_projector)
|
||||
for name, data in projector.items():
|
||||
name = get_tensor_name(name)
|
||||
# pw and dw conv ndim==4
|
||||
if data.ndim == 2 or data.ndim == 4:
|
||||
data = data.squeeze().numpy().astype(np.float16)
|
||||
else:
|
||||
data = data.squeeze().numpy().astype(np.float32)
|
||||
if name.startswith("vision."):
|
||||
name=name.replace("vision.","")
|
||||
fout.add_tensor(name, data)
|
||||
print(f"Projector {name} - {data.dtype} - shape = {data.shape}")
|
||||
# print(f"Projector {name} tensors added\n")
|
||||
|
||||
state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue]
|
||||
for name, data in state_dict.items():
|
||||
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_glm_projector):
|
||||
# we don't need this
|
||||
print(f"skipping parameter: {name}")
|
||||
continue
|
||||
|
||||
name = get_tensor_name(name)
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0
|
||||
if n_dims == 4:
|
||||
print(f"tensor {name} is always saved in f16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
elif ftype == 1:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
# print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
# print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
# print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
print(f"siglip {name} - {data.dtype} - shape = {data.shape}")
|
||||
# print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
33
examples/llava/glmedge-surgery.py
Normal file
33
examples/llava/glmedge-surgery.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
import argparse
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModel
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model", help="Path to GLM model")
|
||||
args = ap.parse_args()
|
||||
|
||||
# find the model part that includes the the multimodal projector weights
|
||||
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
|
||||
checkpoint = model.state_dict()
|
||||
|
||||
# get a list of mm tensor names
|
||||
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.adapter.")]
|
||||
|
||||
# store these tensors in a new dictionary and torch.save them
|
||||
projector = {name: checkpoint[name].float() for name in mm_tensors}
|
||||
torch.save(projector, f"{args.model}/glm.projector")
|
||||
|
||||
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.vit.model.vision_model.")]
|
||||
if len(clip_tensors) > 0:
|
||||
clip = {name.replace("vision.vit.model.", ""): checkpoint[name].float() for name in clip_tensors}
|
||||
torch.save(clip, f"{args.model}/glm.clip")
|
||||
|
||||
# added tokens should be removed to be able to convert Mistral models
|
||||
if os.path.exists(f"{args.model}/added_tokens.json"):
|
||||
with open(f"{args.model}/added_tokens.json", "w") as f:
|
||||
f.write("{}\n")
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}glm.projector to prepare a glm-encoder.gguf file.")
|
|
@ -311,6 +311,20 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
}
|
||||
else if (clip_is_glm(ctx_clip)){
|
||||
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||
load_image_size->width = img_res_v.data[0].nx;
|
||||
load_image_size->height = img_res_v.data[0].ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
|
||||
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
|
||||
*n_img_pos = (pos * pos + 2);
|
||||
if (!encoded){
|
||||
LOG_ERR("Unable to encode image \n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
*n_img_pos = clip_n_patches(ctx_clip);
|
||||
|
@ -395,6 +409,9 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
|
|||
if (clip_is_minicpmv(ctx_clip)) {
|
||||
num_max_patches = 10;
|
||||
}
|
||||
if (clip_is_glm(ctx_clip)) {
|
||||
num_max_patches = 1;
|
||||
}
|
||||
float * image_embd;
|
||||
if (clip_is_qwen2vl(ctx_clip)) {
|
||||
// qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
|
||||
|
|
|
@ -65,6 +65,13 @@ static int printe(const char * fmt, ...) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static std::string strftime_fmt(const char * fmt, const std::tm & tm) {
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(&tm, fmt);
|
||||
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
class Opt {
|
||||
public:
|
||||
int init(int argc, const char ** argv) {
|
||||
|
@ -698,6 +705,39 @@ class LlamaData {
|
|||
return download(url, bn, true);
|
||||
}
|
||||
|
||||
int s3_dl(const std::string & model, const std::string & bn) {
|
||||
const size_t slash_pos = model.find('/');
|
||||
if (slash_pos == std::string::npos) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string bucket = model.substr(0, slash_pos);
|
||||
const std::string key = model.substr(slash_pos + 1);
|
||||
const char * access_key = std::getenv("AWS_ACCESS_KEY_ID");
|
||||
const char * secret_key = std::getenv("AWS_SECRET_ACCESS_KEY");
|
||||
if (!access_key || !secret_key) {
|
||||
printe("AWS credentials not found in environment\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Generate AWS Signature Version 4 headers
|
||||
// (Implementation requires HMAC-SHA256 and date handling)
|
||||
// Get current timestamp
|
||||
const time_t now = time(nullptr);
|
||||
const tm tm = *gmtime(&now);
|
||||
const std::string date = strftime_fmt("%Y%m%d", tm);
|
||||
const std::string datetime = strftime_fmt("%Y%m%dT%H%M%SZ", tm);
|
||||
const std::vector<std::string> headers = {
|
||||
"Authorization: AWS4-HMAC-SHA256 Credential=" + std::string(access_key) + "/" + date +
|
||||
"/us-east-1/s3/aws4_request",
|
||||
"x-amz-content-sha256: UNSIGNED-PAYLOAD", "x-amz-date: " + datetime
|
||||
};
|
||||
|
||||
const std::string url = "https://" + bucket + ".s3.amazonaws.com/" + key;
|
||||
|
||||
return download(url, bn, true, headers);
|
||||
}
|
||||
|
||||
std::string basename(const std::string & path) {
|
||||
const size_t pos = path.find_last_of("/\\");
|
||||
if (pos == std::string::npos) {
|
||||
|
@ -738,6 +778,9 @@ class LlamaData {
|
|||
rm_until_substring(model_, "github:");
|
||||
rm_until_substring(model_, "://");
|
||||
ret = github_dl(model_, bn);
|
||||
} else if (string_starts_with(model_, "s3://")) {
|
||||
rm_until_substring(model_, "://");
|
||||
ret = s3_dl(model_, bn);
|
||||
} else { // ollama:// or nothing
|
||||
rm_until_substring(model_, "ollama.com/library/");
|
||||
rm_until_substring(model_, "://");
|
||||
|
|
|
@ -126,7 +126,7 @@ The project is under active development, and we are [looking for feedback and co
|
|||
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
|
||||
| `--grammar-file FNAME` | file to read grammar from |
|
||||
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
|
||||
| `--jinja` | Enable experimental Jinja templating engine (needed for tool use) |
|
||||
| `--jinja` | Enable experimental Jinja templating engine (required for tool use) |
|
||||
|
||||
**Example-specific params**
|
||||
|
||||
|
@ -1069,7 +1069,7 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
|
|||
|
||||
*Options:*
|
||||
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). llama.cpp `/completion`-specific features such as `mirostat` are also supported.
|
||||
|
||||
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
|
||||
|
||||
|
@ -1117,17 +1117,111 @@ curl http://localhost:8080/v1/chat/completions \
|
|||
}'
|
||||
```
|
||||
|
||||
... and even tool usage (needs `--jinja` flag):
|
||||
*Tool call support*
|
||||
|
||||
[Function calling](https://platform.openai.com/docs/guides/function-calling) is supported for all models (see https://github.com/ggerganov/llama.cpp/pull/9639):
|
||||
|
||||
- Requires `--jinja` flag
|
||||
- Native tool call formats supported:
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
|
||||
|
||||
<details>
|
||||
<summary>Show some common templates and which format handler they use</summary>
|
||||
|
||||
| Template | Format |
|
||||
|----------|--------|
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | generic tool calls |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | generic tool calls |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | generic tool calls |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | generic tool calls |
|
||||
| NexaAIDev-Octopus-v2.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | hermes 2 pro tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | hermes 2 pro tool calls |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | hermes 2 pro tool calls |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | generic tool calls |
|
||||
| Qwen-QwQ-32B-Preview.jinja | hermes 2 pro tool calls |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | generic tool calls |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | generic tool calls |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | hermes 2 pro tool calls |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | hermes 2 pro tool calls |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | generic tool calls |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | generic tool calls |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | generic tool calls |
|
||||
| databricks-dbrx-instruct.jinja | generic tool calls |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | generic tool calls |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | generic tool calls |
|
||||
| google-gemma-2-2b-it.jinja | generic tool calls |
|
||||
| google-gemma-7b-it.jinja | generic tool calls |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | generic tool calls |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | generic tool calls |
|
||||
| meetkai-functionary-medium-v3.2.jinja | functionary v3.2 tool calls |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | llama 3.x tool calls |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | generic tool calls |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | generic tool calls |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | mistral nemo tool calls |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | generic tool calls |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | mistral nemo tool calls |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | generic tool calls |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | generic tool calls |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| openchat-openchat-3.5-0106.jinja | generic tool calls |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | generic tool calls |
|
||||
|
||||
This table can be generated with:
|
||||
|
||||
```bash
|
||||
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
|
||||
|
||||
</details>
|
||||
|
||||
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
|
||||
- Use `--chat-template-file` to override the template when appropriate (see examples below)
|
||||
- Generic support may consume more tokens and be less efficient than a model's native format.
|
||||
|
||||
- Run with:
|
||||
|
||||
```shell
|
||||
llama-server --jinja -hfr lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF -hff Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf -fa
|
||||
# Native support:
|
||||
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Llama-3.2-3B-Instruct-GGUF:Q6_K
|
||||
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-2-Pro-Llama-3-8B )
|
||||
|
||||
# https://huggingface.co/meetkai/functionary-medium-v3.2
|
||||
llama-server --jinja -hfr bartowski/functionary-medium-v3.2-GGUF -hff functionary-medium-v3.2-IQ4_XS.gguf -fa
|
||||
# Native support requires the right template for these GGUFs:
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use )
|
||||
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
|
||||
--chat-template-file <( python scripts/get_chat_template.py fireworks-ai/firellama-3-firefunction-v2 )
|
||||
|
||||
# https://huggingface.co/meetkai/functionary-medium-v3.1
|
||||
llama-server --jinja -hfr meetkai/functionary-medium-v3.1-GGUF -hff functionary-medium-llama-3.1.Q4_0.gguf -fa
|
||||
# Generic format support
|
||||
llama-server --jinja -fa -hf bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q4_K_M
|
||||
```
|
||||
|
||||
- Test in CLI:
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
|
|
|
@ -345,7 +345,7 @@ struct server_task {
|
|||
auto it = data.find("chat_format");
|
||||
if (it != data.end()) {
|
||||
params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
|
||||
LOG_DBG("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
|
||||
LOG_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
|
||||
} else {
|
||||
params.oaicompat_chat_format = defaults.oaicompat_chat_format;
|
||||
}
|
||||
|
@ -697,6 +697,7 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||
std::string finish_reason = "length";
|
||||
common_chat_msg message;
|
||||
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
||||
LOG_DBG("Parsing chat message: %s\n", content.c_str());
|
||||
message = common_chat_parse(content, oaicompat_chat_format);
|
||||
finish_reason = message.tool_calls.empty() ? "stop" : "tool_calls";
|
||||
} else {
|
||||
|
@ -713,7 +714,7 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||
{"name", tc.name},
|
||||
{"arguments", tc.arguments},
|
||||
}},
|
||||
{"id", tc.id.empty() ? json() : json(tc.id)},
|
||||
{"id", tc.id},
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
@ -484,13 +484,14 @@ static bool ends_with(const std::string & str, const std::string & suffix) {
|
|||
|
||||
static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
|
||||
if (!text.empty() && !stop.empty()) {
|
||||
auto it = std::find(stop.rbegin(), stop.rend(), text.back());
|
||||
while (it != stop.rend()) {
|
||||
size_t length = std::distance(it, stop.rend());
|
||||
if (text.length() >= length && 0 == text.compare(text.length() - length, length, stop)) {
|
||||
return text.length() - length;
|
||||
const char text_last_char = text.back();
|
||||
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
|
||||
if (stop[char_index] == text_last_char) {
|
||||
const std::string current_partial = stop.substr(0, char_index + 1);
|
||||
if (ends_with(text, current_partial)) {
|
||||
return text.size() - char_index - 1;
|
||||
}
|
||||
}
|
||||
it = std::find(std::next(it), stop.rend(), text.back());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -640,6 +641,10 @@ static json oaicompat_completion_params_parse(
|
|||
inputs.tools = tools;
|
||||
inputs.tool_choice = tool_choice;
|
||||
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
|
||||
if (inputs.parallel_tool_calls && !tmpl.original_caps().supports_parallel_tool_calls) {
|
||||
LOG_DBG("Disabling parallel_tool_calls because the template does not support it\n");
|
||||
inputs.parallel_tool_calls = false;
|
||||
}
|
||||
inputs.stream = stream;
|
||||
// TODO: support mixing schema w/ tools beyond generic format.
|
||||
inputs.json_schema = json_value(llama_params, "json_schema", json());
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue