llama : refactor model loading code (#2620)

* llama : style formatting + remove helper methods

* llama : fix quantization using gguf tool

* llama : simplify gguf_file_saver

* llama : fix method names

* llama : simplify write_header()

* llama : no need to pass full file loader to the file saver

just gguf_ctx

* llama : gguf_file_saver write I32

* llama : refactor tensor names (#2622)

* gguf: update tensor names searched in quantization

* gguf : define tensor names as constants

* gguf : initial write API (not tested yet)

* gguf : write to file API (not tested)

* gguf : initial write API ready + example

* gguf : fix header write

* gguf : fixes + simplify example + add ggml_nbytes_pad()

* gguf : minor

* llama : replace gguf_file_saver with new gguf write API

* gguf : streaming support when writing files

* gguf : remove oboslete write methods

* gguf : remove obosolete gguf_get_arr_xxx API

* llama : simplify gguf_file_loader

* llama : move hparams and vocab from gguf_file_loader to llama_model_loader

* llama : merge gguf-util.h in llama.cpp

* llama : reorder definitions in .cpp to match .h

* llama : minor simplifications

* llama : refactor llama_model_loader (WIP)

wip : remove ggml_ctx from llama_model_loader

wip : merge gguf_file_loader in llama_model_loader

* llama : fix shape prints

* llama : fix Windows build + fix norm_rms_eps key

* llama : throw error on missing KV paris in model meta data

* llama : improve printing + log meta data

* llama : switch print order of meta data

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
This commit is contained in:
Georgi Gerganov 2023-08-16 14:34:03 +03:00 committed by GitHub
parent ea5615a03a
commit 758ff1bbb5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 1944 additions and 1889 deletions

View file

@ -1,5 +1,4 @@
#include "ggml.h"
#include "gguf-util.h"
#include "gguf-llama.h"
#include <cstdio>
@ -21,133 +20,22 @@ static std::string to_string(const T & val) {
return ss.str();
}
void gguf_ex_write_str(std::ofstream & fout, const std::string & val) {
const int32_t n = val.size();
fout.write((const char *) &n, sizeof(n));
fout.write(val.c_str(), n);
}
void gguf_ex_write_i32(std::ofstream & fout, int32_t val) {
fout.write((const char *) &val, sizeof(val));
}
void gguf_ex_write_u64(std::ofstream & fout, size_t val) {
fout.write((const char *) &val, sizeof(val));
}
template<typename T>
void gguf_ex_write_val(std::ofstream & fout, const std::string & key, enum gguf_type type, const T & val) {
gguf_ex_write_str(fout, key);
fout.write((const char *) &type, sizeof(type));
fout.write((const char *) &val, sizeof(val));
fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), to_string(val).c_str());
}
template<>
void gguf_ex_write_val<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::string & val) {
gguf_ex_write_str(fout, key);
fout.write((const char *) &type, sizeof(type));
const int32_t n = val.size();
fout.write((const char *) &n, sizeof(n));
fout.write(val.c_str(), n);
fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), val.c_str());
}
template<typename T>
void gguf_ex_write_arr(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<T> & val) {
gguf_ex_write_str(fout, key);
{
const enum gguf_type tarr = GGUF_TYPE_ARRAY;
fout.write((const char *) &tarr, sizeof(tarr));
}
const int32_t n = val.size();
fout.write((const char *) &type, sizeof(type));
fout.write((const char *) &n, sizeof(n));
fout.write((const char *) val.data(), n * sizeof(T));
fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
for (int i = 0; i < n; ++i) {
fprintf(stdout, "%s", to_string(val[i]).c_str());
if (i < n - 1) {
fprintf(stdout, ", ");
}
}
fprintf(stdout, "]\n");
}
template<>
void gguf_ex_write_arr<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<std::string> & val) {
gguf_ex_write_str(fout, key);
{
const enum gguf_type tarr = GGUF_TYPE_ARRAY;
fout.write((const char *) &tarr, sizeof(tarr));
}
const int32_t n = val.size();
fout.write((const char *) &type, sizeof(type));
fout.write((const char *) &n, sizeof(n));
for (int i = 0; i < n; ++i) {
const int32_t nstr = val[i].size();
fout.write((const char *) &nstr, sizeof(nstr));
fout.write(val[i].c_str(), nstr);
}
fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
for (int i = 0; i < n; ++i) {
fprintf(stdout, "%s", val[i].c_str());
if (i < n - 1) {
fprintf(stdout, ", ");
}
}
fprintf(stdout, "]\n");
}
bool gguf_ex_write(const std::string & fname) {
std::ofstream fout(fname.c_str(), std::ios::binary);
struct gguf_context * ctx = gguf_init_empty();
{
const int32_t magic = GGUF_MAGIC;
fout.write((const char *) &magic, sizeof(magic));
}
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
gguf_set_val_bool(ctx, "some.parameter.bool", true);
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
{
const int32_t version = GGUF_VERSION;
fout.write((const char *) &version, sizeof(version));
}
// NOTE: these have to match the output below!
const int n_tensors = 10;
const int n_kv = 12;
fout.write((const char*) &n_tensors, sizeof(n_tensors));
fout.write((const char*) &n_kv, sizeof(n_kv));
fprintf(stdout, "%s: write header\n", __func__);
// kv data
{
gguf_ex_write_val< uint8_t>(fout, "some.parameter.uint8", GGUF_TYPE_UINT8, 0x12);
gguf_ex_write_val< int8_t>(fout, "some.parameter.int8", GGUF_TYPE_INT8, -0x13);
gguf_ex_write_val<uint16_t>(fout, "some.parameter.uint16", GGUF_TYPE_UINT16, 0x1234);
gguf_ex_write_val< int16_t>(fout, "some.parameter.int16", GGUF_TYPE_INT16, -0x1235);
gguf_ex_write_val<uint32_t>(fout, "some.parameter.uint32", GGUF_TYPE_UINT32, 0x12345678);
gguf_ex_write_val< int32_t>(fout, "some.parameter.int32", GGUF_TYPE_INT32, -0x12345679);
gguf_ex_write_val<float> (fout, "some.parameter.float32", GGUF_TYPE_FLOAT32, 0.123456789f);
gguf_ex_write_val<bool> (fout, "some.parameter.bool", GGUF_TYPE_BOOL, true);
gguf_ex_write_val<std::string>(fout, "some.parameter.string", GGUF_TYPE_STRING, "hello world");
gguf_ex_write_arr<int16_t> (fout, "some.parameter.arr.i16", GGUF_TYPE_INT16, { 1, 2, 3, 4, });
gguf_ex_write_arr<float> (fout, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, { 3.145f, 2.718f, 1.414f, });
gguf_ex_write_arr<std::string>(fout, "some.parameter.arr.str", GGUF_TYPE_STRING, { "hello", "world", "!" });
}
uint64_t offset_tensor = 0;
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
struct ggml_init_params params = {
/*.mem_size =*/ 128ull*1024ull*1024ull,
@ -157,6 +45,8 @@ bool gguf_ex_write(const std::string & fname) {
struct ggml_context * ctx_data = ggml_init(params);
const int n_tensors = 10;
// tensor infos
for (int i = 0; i < n_tensors; ++i) {
const std::string name = "tensor_" + to_string(i);
@ -178,58 +68,15 @@ bool gguf_ex_write(const std::string & fname) {
}
}
fprintf(stdout, "%s: tensor: %s, %d dims, ne = [", __func__, name.c_str(), n_dims);
for (int j = 0; j < 4; ++j) {
fprintf(stdout, "%s%3d", j == 0 ? "" : ", ", (int) cur->ne[j]);
}
fprintf(stdout, "], offset_tensor = %6" PRIu64 "\n", offset_tensor);
gguf_ex_write_str(fout, name);
gguf_ex_write_i32(fout, n_dims);
for (int j = 0; j < n_dims; ++j) {
gguf_ex_write_i32(fout, cur->ne[j]);
}
gguf_ex_write_i32(fout, cur->type);
gguf_ex_write_u64(fout, offset_tensor);
offset_tensor += GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT);
gguf_add_tensor(ctx, cur);
}
const uint64_t offset_data = GGML_PAD((uint64_t) fout.tellp(), GGUF_DEFAULT_ALIGNMENT);
fprintf(stdout, "%s: data offset = %" PRIu64 "\n", __func__, offset_data);
{
const size_t pad = offset_data - fout.tellp();
for (size_t j = 0; j < pad; ++j) {
fout.put(0);
}
}
for (int i = 0; i < n_tensors; ++i) {
fprintf(stdout, "%s: writing tensor %d data\n", __func__, i);
const std::string name = "tensor_" + to_string(i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
fout.write((const char *) cur->data, ggml_nbytes(cur));
{
const size_t pad = GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT) - ggml_nbytes(cur);
for (size_t j = 0; j < pad; ++j) {
fout.put(0);
}
}
}
fout.close();
gguf_write_to_file(ctx, fname.c_str(), false);
fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
@ -345,8 +192,16 @@ bool gguf_ex_read_1(const std::string & fname) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n",
__func__, i, cur->n_dims, cur->name, cur->data);
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;
printf("%s data[:10] : ", name);
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
printf("%f ", data[j]);
}
printf("\n\n");
// check data
{
@ -369,48 +224,6 @@ bool gguf_ex_read_1(const std::string & fname) {
return true;
}
// read just the tensor info and mmap the data in user code
bool gguf_ex_read_2(const std::string & fname) {
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_data,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
struct gguf_file file(fname.c_str(), "rb");
gguf_mmap data_mmap(&file, 0, false);
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
cur->data = static_cast<char *>(data_mmap.addr) + offset;
// print first 10 elements
const float * data = (const float *) cur->data;
printf("%s data[:10] : ", name);
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
printf("%f ", data[j]);
}
printf("\n\n");
}
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
@ -427,7 +240,6 @@ int main(int argc, char ** argv) {
} else if (mode == "r") {
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
GGML_ASSERT(gguf_ex_read_2(fname) && "failed to read gguf file");
} else if (mode == "q") {
llama_model_quantize_params params = llama_model_quantize_default_params();
llama_model_quantize(fname.c_str(), "quant.gguf", &params);