convert : add convert-hf-to-gguf-update.py
ggml-ci
This commit is contained in:
parent
ee6d1b3fb4
commit
7642973616
5 changed files with 215 additions and 26 deletions
2
.github/workflows/python-lint.yml
vendored
2
.github/workflows/python-lint.yml
vendored
|
@ -20,5 +20,5 @@ jobs:
|
|||
- name: flake8 Lint
|
||||
uses: py-actions/flake8@v2
|
||||
with:
|
||||
ignore: "E203,E211,E221,E222,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
|
||||
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
|
||||
exclude: "examples/*,examples/*/**,*/**/__init__.py"
|
||||
|
|
162
convert-hf-to-gguf-update.py
Normal file
162
convert-hf-to-gguf-update.py
Normal file
|
@ -0,0 +1,162 @@
|
|||
# Instructions:
|
||||
#
|
||||
# - Add a new model to the "models" list
|
||||
# - Run the script with your huggingface token:
|
||||
#
|
||||
# python3 convert-hf-to-gguf-update.py <huggingface_token>
|
||||
#
|
||||
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
#
|
||||
|
||||
import os
|
||||
import requests
|
||||
import sys
|
||||
import json
|
||||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
SPM = auto()
|
||||
BPE = auto()
|
||||
WPM = auto()
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български what\'s \'\'\'\'\'\'```````\"\"\"\"......!!!!!!??????'
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
else:
|
||||
print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: add models here
|
||||
models = [
|
||||
{ "name": "llama-v2", "tokenizer_type": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{ "name": "llama-v3", "tokenizer_type": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{ "name": "deepseek-llm", "tokenizer_type": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat", },
|
||||
{ "name": "deepseek-coder", "tokenizer_type": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{ "name": "bert-bge", "tokenizer_type": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
]
|
||||
|
||||
# make directory "models/tokenizers" if it doesn't exist
|
||||
if not os.path.exists("models/tokenizers"):
|
||||
os.makedirs("models/tokenizers")
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
response = requests.get(url, headers=headers)
|
||||
if response.status_code == 200:
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
print("File downloaded successfully.")
|
||||
else:
|
||||
print(f"Failed to download file. Status code: {response.status_code}")
|
||||
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
repo = model["repo"]
|
||||
tokenizer_type = model["tokenizer_type"]
|
||||
|
||||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||||
os.makedirs(f"models/tokenizers/{name}")
|
||||
else:
|
||||
print(f"Directory models/tokenizers/{name} already exists - skipping")
|
||||
continue
|
||||
|
||||
print(f"Downloading {name} to models/tokenizers/{name}")
|
||||
|
||||
url = f"{repo}/raw/main/tokenizer.json"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
if tokenizer_type == TOKENIZER_TYPE.SPM:
|
||||
url = f"{repo}/resolve/main/tokenizer.model"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.model"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
url = f"{repo}/raw/main/tokenizer_config.json"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer_config.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
|
||||
# TODO: auto-update convert-hf-to-gguf.py with the generated function
|
||||
|
||||
src_ifs = ""
|
||||
for model in models:
|
||||
name = model["name"]
|
||||
tokenizer_type = model["tokenizer_type"]
|
||||
|
||||
if tokenizer_type == TOKENIZER_TYPE.SPM:
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
print(f"model: {name}")
|
||||
print(f"tokenizer_type: {tokenizer_type}")
|
||||
print(f"repo: {model['repo']}")
|
||||
print(f"chktok: {chktok}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r") as f:
|
||||
cfg = json.load(f)
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
|
||||
print(f"\n")
|
||||
|
||||
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||||
src_ifs += f" # ref: {model['repo']}\n"
|
||||
src_ifs += f" res = \"{name}\"\n"
|
||||
|
||||
src_func = ""
|
||||
src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n"
|
||||
src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n"
|
||||
src_func += " # is specific for the BPE pre-tokenizer used by the model\n"
|
||||
src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n"
|
||||
src_func += " # use in llama.cpp to implement the same pre-tokenizer\n"
|
||||
src_func += "\n"
|
||||
src_func += f" chktxt = {repr(chktxt)}\n"
|
||||
src_func += "\n"
|
||||
src_func += " chktok = tokenizer.encode(chktxt)\n"
|
||||
src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n"
|
||||
src_func += "\n"
|
||||
src_func += " print(f\"chktok: {chktok}\")\n"
|
||||
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
|
||||
src_func += "\n"
|
||||
src_func += " res = None\n"
|
||||
src_func += "\n"
|
||||
src_func += " # NOTE: if you get an error here, you need to add the model to the if-elif chain below\n"
|
||||
src_func += f"{src_ifs}\n"
|
||||
src_func += " if res is None:\n"
|
||||
src_func += " print(f\"\\n\")\n"
|
||||
src_func += " print(f\"**************************************************************************************\")\n"
|
||||
src_func += " print(f\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n"
|
||||
src_func += " print(f\"** This means that it was not added yet or you are using an older version.\")\n"
|
||||
src_func += " print(f\"** Check convert-hf-to-gguf-update.py and update it accordingly.\")\n"
|
||||
src_func += " print(f\"**\")\n"
|
||||
src_func += " print(f\"** chkhsh: {chkhsh}\")\n"
|
||||
src_func += " print(f\"**************************************************************************************\")\n"
|
||||
src_func += " print(f\"\\n\")\n"
|
||||
src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n"
|
||||
src_func += "\n"
|
||||
src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n"
|
||||
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
|
||||
src_func += "\n"
|
||||
src_func += " return res\n"
|
||||
|
||||
print(src_func)
|
||||
|
||||
print("\n")
|
||||
print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
|
||||
print("\n")
|
||||
|
|
@ -11,6 +11,7 @@ import sys
|
|||
from abc import ABC, abstractmethod
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
from hashlib import sha256
|
||||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
|
||||
|
||||
import numpy as np
|
||||
|
@ -376,16 +377,19 @@ class Model(ABC):
|
|||
|
||||
return tokens, toktypes, tokpre
|
||||
|
||||
# NOTE: this function is generated by convert-hf-to-gguf-update.py
|
||||
# do not modify it manually!
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||||
# is specific for the BPE pre-tokenizer used by the model
|
||||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||||
# use in llama.cpp to implement the same pre-tokenizer
|
||||
|
||||
chktxt = "\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български what's ''''''```````\"\"\"\"......!!!!!!??????"
|
||||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български what\'s \'\'\'\'\'\'```````""""......!!!!!!??????'
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = hash(tuple(chktok))
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
print(f"chktok: {chktok}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
|
@ -393,21 +397,34 @@ class Model(ABC):
|
|||
res = None
|
||||
|
||||
# NOTE: if you get an error here, you need to add the model to the if-elif chain below
|
||||
# observe the stdout for the chkhsh value and add it to the chain
|
||||
if self.model_arch == gguf.MODEL_ARCH.LLAMA:
|
||||
if chkhsh == -3290901550109860290:
|
||||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/tokenizer.json
|
||||
res = "llama3"
|
||||
if chkhsh == 5332289095291046364:
|
||||
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat/blob/main/tokenizer.json
|
||||
res = "deepseek-llm"
|
||||
if chkhsh == 4190561703949727616:
|
||||
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct/blob/main/tokenizer.json
|
||||
res = "deepseek-coder"
|
||||
if chkhsh == "0fc850edd52197e357970116fbf58f6c2567f259cdc1bfc3df081d7e4bc658c1":
|
||||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||||
res = "llama-v3"
|
||||
if chkhsh == "58c3d0e812ae7fa6a20931006d2398274732c105a9a964c148c43cf898c5fb7a":
|
||||
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
|
||||
res = "deepseek-llm"
|
||||
if chkhsh == "0438d2a948d7fb26c7a662705ac68374f3138ee29e44f133b1f059203500fb4d":
|
||||
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
|
||||
res = "deepseek-coder"
|
||||
if chkhsh == "406f3f61e1c67d7b0456c5df2fce5cbb30c77dd3671a436b07a6c510303f721e":
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||||
res = "bert-bge"
|
||||
|
||||
if res is None:
|
||||
print(f"\n")
|
||||
print(f"**************************************************************************************")
|
||||
print(f"** WARNING: The BPE pre-tokenizer was not recognized!")
|
||||
print(f"** This means that it was not added yet or you are using an older version.")
|
||||
print(f"** Check convert-hf-to-gguf-update.py and update it accordingly.")
|
||||
print(f"**")
|
||||
print(f"** chkhsh: {chkhsh}")
|
||||
print(f"**************************************************************************************")
|
||||
print(f"\n")
|
||||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||||
|
||||
print(f"tokenizer.ggml.pre: {res}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
|
||||
return res
|
||||
|
||||
def _set_vocab_gpt2(self) -> None:
|
||||
|
|
34
llama.cpp
34
llama.cpp
|
@ -4330,19 +4330,29 @@ static void llm_load_vocab(
|
|||
vocab.special_mask_id = -1;
|
||||
}
|
||||
|
||||
if (tokenizer_pre.empty()) {
|
||||
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (tokenizer_pre == "default") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (tokenizer_pre == "llama3") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
||||
} else if (tokenizer_pre == "deepseek-llm") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
|
||||
} else if (tokenizer_pre == "deepseek-coder") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
|
||||
// for now, only BPE models have pre-tokenizers
|
||||
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
if (tokenizer_pre.empty()) {
|
||||
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "default") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
tokenizer_pre == "llama-v3") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
||||
} else if (
|
||||
tokenizer_pre == "deepseek-llm") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
|
||||
} else if (
|
||||
tokenizer_pre == "deepseek-coder") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue