Merge branch 'master' into concedo_experimental

# Conflicts:
#	ggml.c
#	ggml.h
#	requirements.txt
#	tests/test-quantize-perf.cpp
This commit is contained in:
Concedo 2023-12-16 22:58:53 +08:00
commit 76a3ba42eb
17 changed files with 414 additions and 163 deletions

View file

@ -71,7 +71,7 @@ void free_random_uniform_distribution(struct random_uniform_distribution * rnd)
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
float scale = 1.0f; // xavier
switch (tensor->n_dims) {
switch (ggml_n_dims(tensor)) {
case 1:
scale /= sqrtf((float) tensor->ne[0]);
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
@ -119,7 +119,7 @@ struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct
}
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
switch (tensor->n_dims) {
switch (ggml_n_dims(tensor)) {
case 1:
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
@ -183,25 +183,27 @@ float fclamp(const float v, const float min, const float max) {
}
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
GGML_ASSERT(tensor->n_dims == 1);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == 1);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
GGML_ASSERT(tensor->n_dims == 2);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
GGML_ASSERT(tensor->n_dims == 3);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
GGML_ASSERT(tensor->n_dims == 4);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
@ -225,8 +227,8 @@ int64_t get_example_targets_batch(
bool sample_random_offsets
) {
GGML_ASSERT(samples_count > 0);
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_probs->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(target_probs));
int64_t n_vocab = target_probs->ne[0];
int64_t n_tokens = tokens_input->ne[0];
int64_t n_batch = tokens_input->ne[1];

View file

@ -1258,9 +1258,9 @@ static struct ggml_tensor * forward_lora(
}
static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
assert(logits->n_dims == 2);
assert(probs->n_dims == 2);
assert(best_samples->n_dims == 1);
assert(ggml_is_matrix(logits));
assert(ggml_is_matrix(probs));
assert(ggml_is_vector(best_samples));
assert(logits->ne[1] == best_samples->ne[0]);
assert(logits->ne[0] == probs->ne[0]);
assert(logits->ne[1] == probs->ne[1]);
@ -1292,9 +1292,9 @@ static void sample_softmax_batch(
struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
struct ggml_tensor * best_samples
) {
GGML_ASSERT(best_samples->n_dims == 2);
GGML_ASSERT(logits->n_dims == 3);
GGML_ASSERT(probs->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(best_samples));
GGML_ASSERT(ggml_is_3d(logits));
GGML_ASSERT(ggml_is_3d(probs));
int n_tokens = best_samples->ne[0];
int n_batch = best_samples->ne[1];
int n_vocab = logits->ne[0];
@ -1334,7 +1334,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
}
static void print_matrix(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
@ -1386,8 +1386,8 @@ static void get_example_targets(int example_id, struct ggml_tensor * tokens_inpu
static void get_example_targets_batch(
struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
) {
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT( targets->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(targets));
int n_tokens = tokens_input->ne[0];
int n_batch = tokens_input->ne[1];
GGML_ASSERT(n_tokens == targets->ne[1]);

View file

@ -130,13 +130,13 @@ int main(int argc, char ** argv) {
const ggml_type qtype = GGML_TYPE_Q4_1;
size_t ctx_size = 0;
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
ctx_size += ggml_row_size(qtype, sizex*sizey);
ctx_size += ggml_row_size(qtype, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
ctx_size += 1024*1024*16;
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));

View file

@ -427,7 +427,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
}
static void print_matrix(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
@ -639,7 +639,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
int ct;
switch (gg_weights->n_dims){
switch (ggml_n_dims(gg_weights)) {
case 1:
ct = 0;
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){

View file

@ -1110,7 +1110,7 @@ static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor,
name = ggml_get_name(tensor);
}
uint32_t name_len = strlen(name);
uint32_t nd = tensor->n_dims;
uint32_t nd = ggml_n_dims(tensor);
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
(uint32_t)tensor->ne[1],
(uint32_t)tensor->ne[2],

View file

@ -195,7 +195,7 @@ static bool gguf_ex_read_1(const std::string & fname) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;

View file

@ -514,7 +514,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
ctx_size += padded_size;
if (verbosity >= 3) {
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i,
cur->n_dims, cur->name, tensor_size, padded_size, offset);
ggml_n_dims(cur), cur->name, tensor_size, padded_size, offset);
}
}
}
@ -962,7 +962,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
}
// quantize only 2D tensors
quantize &= (cur->n_dims == 2);
quantize &= (ggml_n_dims(cur) == 2);
if (quantize) {
new_type = type;
@ -1035,7 +1035,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
fout.put(0);
}
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), cur->n_dims, quantize,
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
}

View file

@ -34,7 +34,8 @@ export async function* llama(prompt, params = {}, config = {}) {
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
'Accept': 'text/event-stream',
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
},
signal: controller.signal,
});

View file

@ -235,7 +235,8 @@
grammar: '',
n_probs: 0, // no completion_probabilities,
image_data: [],
cache_prompt: true
cache_prompt: true,
api_key: ''
})
/* START: Support for storing prompt templates and parameters in browsers LocalStorage */
@ -790,6 +791,10 @@
<fieldset>
${IntField({ label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs })}
</fieldset>
<fieldset>
<label for="api_key">API Key</label>
<input type="text" name="api_key" value="${params.value.api_key}" placeholder="Enter API key" oninput=${updateParams} />
</fieldset>
</details>
</form>
`

View file

@ -37,6 +37,7 @@ using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string api_key;
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
@ -1954,6 +1955,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
@ -2003,6 +2005,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
sparams.public_path = argv[i];
}
else if (arg == "--api-key")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.api_key = argv[i];
}
else if (arg == "--timeout" || arg == "-to")
{
if (++i >= argc)
@ -2670,6 +2681,32 @@ int main(int argc, char **argv)
httplib::Server svr;
// Middleware for API key validation
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
// If API key is not set, skip validation
if (sparams.api_key.empty()) {
return true;
}
// Check for API key in the header
auto auth_header = req.get_header_value("Authorization");
std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size());
if (received_api_key == sparams.api_key) {
return true; // API key is valid
}
}
// API key is invalid or not provided
res.set_content("Unauthorized: Invalid API Key", "text/plain");
res.status = 401; // Unauthorized
LOG_WARNING("Unauthorized: Invalid API Key", {});
return false;
};
svr.set_default_headers({{"Server", "llama.cpp"},
{"Access-Control-Allow-Origin", "*"},
{"Access-Control-Allow-Headers", "content-type"}});
@ -2712,8 +2749,11 @@ int main(int argc, char **argv)
res.set_content(data.dump(), "application/json");
});
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
if (!validate_api_key(req, res)) {
return;
}
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, false, false, -1);
if (!json_value(data, "stream", false)) {
@ -2800,8 +2840,11 @@ int main(int argc, char **argv)
});
// TODO: add mount point without "/v1" prefix -- how?
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
if (!validate_api_key(req, res)) {
return;
}
json data = oaicompat_completion_params_parse(json::parse(req.body));
const int task_id = llama.request_completion(data, false, false, -1);
@ -2870,8 +2913,11 @@ int main(int argc, char **argv)
}
});
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
if (!validate_api_key(req, res)) {
return;
}
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, true, false, -1);
if (!json_value(data, "stream", false)) {
@ -3006,11 +3052,15 @@ int main(int argc, char **argv)
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
{
if (res.status == 401)
{
res.set_content("Unauthorized", "text/plain");
}
if (res.status == 400)
{
res.set_content("Invalid request", "text/plain");
}
else if (res.status != 500)
else if (res.status == 404)
{
res.set_content("File Not Found", "text/plain");
res.status = 404;
@ -3033,11 +3083,15 @@ int main(int argc, char **argv)
// to make it ctrl+clickable:
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
LOG_INFO("HTTP server listening", {
{"hostname", sparams.hostname},
{"port", sparams.port},
});
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = sparams.hostname;
log_data["port"] = std::to_string(sparams.port);
if (!sparams.api_key.empty()) {
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
}
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{

View file

@ -8890,6 +8890,12 @@ static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, gg
(void) dst;
}
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
const int64_t nrows = ggml_nrows(tensor);
@ -8939,8 +8945,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
char * buf;
@ -9481,8 +9486,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}

352
ggml.c
View file

@ -1997,12 +1997,6 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
}
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
}
int ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
}
@ -2011,6 +2005,11 @@ size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
}
size_t ggml_row_size(enum ggml_type type, int64_t ne) {
assert(ne % ggml_blck_size(type) == 0);
return ggml_type_size(type)*ne/ggml_blck_size(type);
}
double ggml_type_sizef(enum ggml_type type) {
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
@ -2049,24 +2048,37 @@ size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
}
static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
bool ggml_is_scalar(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
bool ggml_is_vector(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
bool ggml_is_matrix(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
bool ggml_is_3d(const struct ggml_tensor * tensor) {
return tensor->ne[3] == 1;
}
int ggml_n_dims(const struct ggml_tensor * tensor) {
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
if (tensor->ne[i] > 1) {
return i + 1;
}
}
return 1;
}
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
@ -2473,7 +2485,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
view_src = view_src->view_src;
}
size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
size_t data_size = ggml_row_size(type, ne[0]);
for (int i = 1; i < n_dims; i++) {
data_size *= ne[i];
}
@ -2516,7 +2528,6 @@ static struct ggml_tensor * ggml_new_tensor_impl(
/*.type =*/ type,
/*.backend =*/ GGML_BACKEND_CPU,
/*.buffer =*/ NULL,
/*.n_dims =*/ n_dims,
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.op =*/ GGML_OP_NONE,
@ -2623,7 +2634,7 @@ struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
}
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
}
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
@ -3072,7 +3083,7 @@ struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char *
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
struct ggml_tensor * src) {
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
ggml_format_name(result, "%s (view)", src->name);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
@ -3230,10 +3241,10 @@ static struct ggml_tensor * ggml_add_cast_impl(
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_ADD;
result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
result->src[0] = a;
result->src[1] = b;
@ -3602,12 +3613,12 @@ struct ggml_tensor * ggml_sum_rows(
is_node = true;
}
int64_t ne[4] = {1,1,1,1};
for (int i=1; i<a->n_dims; ++i) {
int64_t ne[GGML_MAX_DIMS] = { 1 };
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
ne[i] = a->ne[i];
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
result->op = GGML_OP_SUM_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -3628,8 +3639,8 @@ struct ggml_tensor * ggml_mean(
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_MEAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -3651,8 +3662,7 @@ struct ggml_tensor * ggml_argmax(
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
result->op = GGML_OP_ARGMAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -3675,7 +3685,7 @@ struct ggml_tensor * ggml_repeat(
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
result->op = GGML_OP_REPEAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -3702,7 +3712,7 @@ struct ggml_tensor * ggml_repeat_back(
return a;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
result->op = GGML_OP_REPEAT_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -4078,7 +4088,7 @@ struct ggml_tensor * ggml_mul_mat(
}
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_MUL_MAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -4112,7 +4122,7 @@ struct ggml_tensor * ggml_mul_mat_id(
}
const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_i32(result, 0, id);
ggml_set_op_params_i32(result, 1, n_as);
@ -4150,7 +4160,7 @@ struct ggml_tensor * ggml_out_prod(
// a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_OUT_PROD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -4435,7 +4445,7 @@ struct ggml_tensor * ggml_reshape(
//GGML_ASSERT(false);
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
@ -4813,7 +4823,7 @@ struct ggml_tensor * ggml_diag(
}
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
result->op = GGML_OP_DIAG;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -5460,7 +5470,7 @@ struct ggml_tensor * ggml_pool_1d(
is_node = true;
}
const int64_t ne[3] = {
const int64_t ne[2] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
a->ne[1],
};
@ -5579,7 +5589,7 @@ struct ggml_tensor * ggml_argsort(
enum ggml_sort_order order) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, a->ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
ggml_set_op_params_i32(result, 0, (int32_t) order);
@ -5626,7 +5636,7 @@ struct ggml_tensor * ggml_flash_attn(
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
int32_t t = masked ? 1 : 0;
ggml_set_op_params(result, &t, sizeof(t));
@ -5659,7 +5669,7 @@ struct ggml_tensor * ggml_flash_ff(
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_FLASH_FF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -5775,7 +5785,6 @@ struct ggml_tensor * ggml_win_part(
const int np = npx*npy;
const int64_t ne[4] = { a->ne[0], w, w, np, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { npx, npy, w };
@ -9571,16 +9580,11 @@ static bool ggml_compute_forward_mul_mat_use_blas(
}
#endif
// off1 = offset in i11 and i1
// cne1 = ne11 and ne1
// in a normal matrix multiplication, off1 = 0 and cne1 = ne1
// during GGML_TASK_INIT, the full src1 is converted regardless of off1 and cne1
static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
int64_t off1, int64_t cne1) {
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
@ -9648,9 +9652,9 @@ static void ggml_compute_forward_mul_mat(
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + off1*nb11 + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + off1*nb1 + i12*nb2 + i13*nb3);
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
float * const wdata = params->wdata;
@ -9667,7 +9671,7 @@ static void ggml_compute_forward_mul_mat(
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
cne1, ne01, ne10,
ne1, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
@ -9683,7 +9687,7 @@ static void ggml_compute_forward_mul_mat(
if (params->type == GGML_TASK_INIT) {
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32);
@ -9706,10 +9710,10 @@ static void ggml_compute_forward_mul_mat(
}
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = ne1*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
@ -9751,9 +9755,9 @@ static void ggml_compute_forward_mul_mat(
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*cne1));
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
const int64_t i11 = (ir1 - i13*ne12*cne1 - i12*cne1) + off1;
const int64_t i13 = (ir1/(ne12*ne1));
const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
@ -9793,28 +9797,191 @@ static void ggml_compute_forward_mul_mat(
static void ggml_compute_forward_mul_mat_id(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * ids,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
// during GGML_TASK_INIT the entire src1 is converted to vec_dot_type
ggml_compute_forward_mul_mat(params, dst->src[2], src1, dst, 0, dst->ne[1]);
return;
}
const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
const struct ggml_tensor * ids = src0;
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
// row groups
const int id = ggml_get_op_params_i32(dst, 0);
const int n_as = ggml_get_op_params_i32(dst, 1);
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
char * wdata_src1_end = (src1->type == vec_dot_type) ?
(char *) params->wdata :
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
GGML_ASSERT(row_id >= 0 && row_id < n_as);
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
if (params->type == GGML_TASK_INIT) {
char * wdata = params->wdata;
if (src1->type != vec_dot_type) {
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
// initialize matrix_row_counts
GGML_ASSERT(wdata == wdata_src1_end);
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
// group rows by src0 matrix
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
matrix_row_counts[row_id] += 1;
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// compute each matrix multiplication in sequence
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
const int64_t cne1 = matrix_row_counts[cur_a];
if (cne1 == 0) {
continue;
}
const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
// threads with no work simply yield (not sure if it helps)
if (ir010 >= ir011 || ir110 >= ir111) {
sched_yield();
continue;
}
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
#undef MMID_MATRIX_ROW
}
// ggml_compute_forward_out_prod
@ -14182,7 +14349,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_MUL_MAT:
{
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor, 0, tensor->ne[1]);
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_MUL_MAT_ID:
{
@ -14558,7 +14725,7 @@ static struct ggml_tensor * ggml_recompute_graph_node(
return replacements->vals[i];
}
struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
// insert clone into replacements
GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
@ -15982,7 +16149,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_MUL_MAT_ID:
{
// FIXME: blas
n_tasks = n_threads;
} break;
case GGML_OP_OUT_PROD:
@ -16307,25 +16473,21 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} else
#endif
if (node->src[1]->type != vec_dot_type) {
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
}
} break;
case GGML_OP_MUL_MAT_ID:
{
const struct ggml_tensor * a = node->src[2];
const struct ggml_tensor * b = node->src[1];
const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type;
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) {
if (a->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
}
} else
#endif
if (b->type != vec_dot_type) {
cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
const struct ggml_tensor * src0 = node->src[2];
const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
}
const int n_as = ggml_get_op_params_i32(node, 1);
cur = GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
} break;
case GGML_OP_OUT_PROD:
{
@ -16555,7 +16717,7 @@ static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fou
fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
tensor->n_dims,
ggml_n_dims(tensor),
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
@ -16570,7 +16732,7 @@ static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char
arg,
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
tensor->n_dims,
ggml_n_dims(tensor),
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
@ -16660,11 +16822,9 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
const uint32_t n_dims = tensor->n_dims;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
fwrite(&n_dims, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
@ -16694,11 +16854,9 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
const uint32_t n_dims = tensor->n_dims;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
fwrite(&n_dims, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
@ -16870,12 +17028,10 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
{
uint32_t type;
uint32_t op;
uint32_t n_dims;
for (uint32_t i = 0; i < n_leafs; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
@ -16891,7 +17047,7 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
nb[j] = nb_cur;
}
struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
tensor->op = (enum ggml_op) op;
@ -16908,7 +17064,7 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
ptr += ggml_nbytes(tensor);
fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
}
}
@ -16918,12 +17074,10 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
{
uint32_t type;
uint32_t op;
uint32_t n_dims;
for (uint32_t i = 0; i < n_nodes; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
enum ggml_op eop = (enum ggml_op) op;
@ -16994,7 +17148,7 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
} break;
default:
{
tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
tensor->op = eop;
} break;
@ -17013,7 +17167,7 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context *
result->nodes[i] = tensor;
fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
}
}
}
@ -17151,7 +17305,7 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
if (node->n_dims == 2) {
if (ggml_is_matrix(node)) {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
} else {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
@ -17418,7 +17572,7 @@ static enum ggml_opt_result ggml_opt_adam(
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]);
const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
for (int64_t j = 0; j < ne; ++j) {
float x = ggml_get_f32_1d(ps[p], j);
float g_ = g[i]*gnorm;
@ -18737,7 +18891,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
return NULL;
}
const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
const size_t size_cur = ggml_row_size(info->type, ne);
ctx->size += GGML_PAD(size_cur, ctx->alignment);
}
@ -19241,8 +19395,8 @@ void gguf_add_tensor(
ctx->infos[idx].ne[i] = 1;
}
ctx->infos[idx].n_dims = tensor->n_dims;
for (int i = 0; i < tensor->n_dims; i++) {
ctx->infos[idx].n_dims = ggml_n_dims(tensor);
for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
ctx->infos[idx].ne[i] = tensor->ne[i];
}

19
ggml.h
View file

@ -509,7 +509,6 @@ extern "C" {
struct ggml_backend_buffer * buffer;
int n_dims;
int64_t ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = ggml_type_size(type)
@ -541,7 +540,7 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu
char padding[12];
char padding[8];
};
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -646,11 +645,14 @@ extern "C" {
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
GGML_API int ggml_blck_size (enum ggml_type type);
GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
GGML_API double ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
GGML_API int ggml_blck_size(enum ggml_type type);
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_DEPRECATED(
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
"use ggml_row_size() instead");
GGML_API const char * ggml_type_name(enum ggml_type type);
GGML_API const char * ggml_op_name (enum ggml_op op);
@ -669,6 +671,11 @@ extern "C" {
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);

View file

@ -1515,6 +1515,10 @@ struct llama_context {
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
#ifndef NDEBUG
// guard against access to unset logits
std::vector<bool> logits_valid;
#endif
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
@ -1565,7 +1569,7 @@ static bool llama_kv_cache_init(
cache.cells.clear();
cache.cells.resize(n_ctx);
cache.buf.resize(n_elements*(ggml_type_sizef(ktype) + ggml_type_sizef(vtype)) + 2u*n_layer*ggml_tensor_overhead());
cache.buf.resize(ggml_row_size(ktype, n_elements) + ggml_row_size(vtype, n_elements) + 2u*n_layer*ggml_tensor_overhead());
memset(cache.buf.data, 0, cache.buf.size);
struct ggml_init_params params;
@ -3852,8 +3856,8 @@ static void llm_build_k_shift(
ggml_rope_custom_inplace(ctx,
ggml_view_3d(ctx, kv.k_l[il],
n_embd_head, n_head_kv, n_ctx,
ggml_type_sizef(kv.k_l[il]->type)*n_embd_head,
ggml_type_sizef(kv.k_l[il]->type)*n_embd_gqa,
ggml_row_size(kv.k_l[il]->type, n_embd_head),
ggml_row_size(kv.k_l[il]->type, n_embd_gqa),
0),
K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
@ -3882,7 +3886,7 @@ static void llm_build_kv_store(
cb(v_cur_t, "v_cur_t", il);
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_gqa,
(ggml_type_sizef(kv.k_l[il]->type)*n_embd_gqa)*kv_head);
(ggml_row_size(kv.k_l[il]->type, n_embd_gqa))*kv_head);
cb(k_cache_view, "k_cache_view", il);
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_gqa,
@ -4041,8 +4045,8 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * k =
ggml_view_3d(ctx, kv.k_l[il],
n_embd_head, n_kv, n_head_kv,
ggml_type_sizef(kv.k_l[il]->type)*n_embd_gqa,
ggml_type_sizef(kv.k_l[il]->type)*n_embd_head,
ggml_row_size(kv.k_l[il]->type, n_embd_gqa),
ggml_row_size(kv.k_l[il]->type, n_embd_head),
0);
cb(k, "k", il);
@ -6182,6 +6186,14 @@ static int llama_decode_internal(
{
auto & logits_out = lctx.logits;
#ifndef NDEBUG
auto & logits_valid = lctx.logits_valid;
logits_valid.clear();
logits_valid.resize(n_tokens);
logits_out.clear();
#endif
if (batch.logits) {
logits_out.resize(n_vocab * n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
@ -6189,13 +6201,22 @@ static int llama_decode_internal(
continue;
}
memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
#ifndef NDEBUG
logits_valid[i] = true;
#endif
}
} else if (lctx.logits_all) {
logits_out.resize(n_vocab * n_tokens);
memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
#ifndef NDEBUG
std::fill(logits_valid.begin(), logits_valid.end(), true);
#endif
} else {
logits_out.resize(n_vocab);
memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
#ifndef NDEBUG
logits_valid[n_tokens - 1] = true;
#endif
}
}
@ -8734,7 +8755,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// quantize only 2D tensors
quantize &= (tensor->n_dims == 2);
quantize &= (ggml_n_dims(tensor) == 2);
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= !params->only_copy;
@ -10328,6 +10349,7 @@ float * llama_get_logits(struct llama_context * ctx) {
}
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
assert(ctx->logits_valid.at(i));
return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
}

View file

@ -1421,7 +1421,7 @@ bool rwkv_instance_from_file(const char * file_path, struct rwkv_instance & inst
// Verify order of dimensions
struct ggml_tensor * emb = model.emb;
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, ggml_n_dims(emb) == 2, "Unexpected dimension count of embedding matrix %d", ggml_n_dims(emb));
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[0] == model.header.n_embed, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[0]);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[1] == model.header.n_vocab, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[1]);

View file

@ -2,4 +2,5 @@ numpy==1.24.4
sentencepiece==0.1.98
transformers>=4.34.0
gguf>=0.1.0
customtkinter>=5.1.0
customtkinter>=5.1.0
protobuf>=4.21.0

View file

@ -54,7 +54,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
std::vector<uint8_t> dataq(ggml_type_size(tensor->type)*size/ggml_blck_size(tensor->type));
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
int64_t hist[16];
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
@ -72,6 +72,8 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
size_t bs = ggml_blck_size(t->type);
std::vector<float> vq(ggml_blck_size(t->type));
bool quantized = ggml_is_quantized(t->type);
// access elements by index to avoid gaps in views
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
@ -85,9 +87,8 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
tv.push_back(*(float *) &buf[i]);
} else if (t->type == GGML_TYPE_I32) {
tv.push_back((float)*(int32_t *) &buf[i]);
} else if (ggml_is_quantized(t->type)) {
std::vector<float> vq(ggml_blck_size(t->type));
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
} else if (quantized) {
tt.to_float(&buf[i], vq.data(), bs);
tv.insert(tv.end(), vq.begin(), vq.end());
} else {
GGML_ASSERT(false);