gguf : add support for I64 and F64 arrays
GGML currently does not support I64 or F64 arrays and they are not often used in machine learning, however if in the future the need arises, it would be nice to add them now, so that the types are next to the other types I8, I16, I32 in the enums, and it also reserves their type number. Furthermore, with this addition the GGUF format becomes very usable for most computational applications of NumPy (being compatible with the most common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster, and more versatile alternative to the `npz` format, and a simpler alternative to the `hdf5` format. The change in this PR seems small, not significantly increasing the maintenance burden. I tested this from Python using GGUFWriter/Reader and `gguf-dump`, as well as from C, everything seems to work.
This commit is contained in:
parent
6e0438da3c
commit
792c39a0ae
5 changed files with 37 additions and 8 deletions
13
ggml.c
13
ggml.c
|
@ -470,6 +470,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||||
.type_size = sizeof(int32_t),
|
.type_size = sizeof(int32_t),
|
||||||
.is_quantized = false,
|
.is_quantized = false,
|
||||||
},
|
},
|
||||||
|
[GGML_TYPE_I64] = {
|
||||||
|
.type_name = "i64",
|
||||||
|
.blck_size = 1,
|
||||||
|
.type_size = sizeof(int64_t),
|
||||||
|
.is_quantized = false,
|
||||||
|
},
|
||||||
|
[GGML_TYPE_F64] = {
|
||||||
|
.type_name = "f64",
|
||||||
|
.blck_size = 1,
|
||||||
|
.type_size = sizeof(double),
|
||||||
|
.is_quantized = false,
|
||||||
|
.nrows = 1,
|
||||||
|
},
|
||||||
[GGML_TYPE_F32] = {
|
[GGML_TYPE_F32] = {
|
||||||
.type_name = "f32",
|
.type_name = "f32",
|
||||||
.blck_size = 1,
|
.blck_size = 1,
|
||||||
|
|
2
ggml.h
2
ggml.h
|
@ -366,6 +366,8 @@ extern "C" {
|
||||||
GGML_TYPE_I8 = 24,
|
GGML_TYPE_I8 = 24,
|
||||||
GGML_TYPE_I16 = 25,
|
GGML_TYPE_I16 = 25,
|
||||||
GGML_TYPE_I32 = 26,
|
GGML_TYPE_I32 = 26,
|
||||||
|
GGML_TYPE_I64 = 27,
|
||||||
|
GGML_TYPE_F64 = 28,
|
||||||
GGML_TYPE_COUNT,
|
GGML_TYPE_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -665,6 +665,8 @@ class GGMLQuantizationType(IntEnum):
|
||||||
I8 = 24
|
I8 = 24
|
||||||
I16 = 25
|
I16 = 25
|
||||||
I32 = 26
|
I32 = 26
|
||||||
|
I64 = 27
|
||||||
|
F64 = 28
|
||||||
|
|
||||||
|
|
||||||
class GGUFEndian(IntEnum):
|
class GGUFEndian(IntEnum):
|
||||||
|
@ -734,6 +736,8 @@ GGML_QUANT_SIZES = {
|
||||||
GGMLQuantizationType.I8: (1, 1),
|
GGMLQuantizationType.I8: (1, 1),
|
||||||
GGMLQuantizationType.I16: (1, 2),
|
GGMLQuantizationType.I16: (1, 2),
|
||||||
GGMLQuantizationType.I32: (1, 4),
|
GGMLQuantizationType.I32: (1, 4),
|
||||||
|
GGMLQuantizationType.I64: (1, 8),
|
||||||
|
GGMLQuantizationType.F64: (1, 8),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -242,12 +242,15 @@ class GGUFReader:
|
||||||
n_bytes = n_elems * type_size // block_size
|
n_bytes = n_elems * type_size // block_size
|
||||||
data_offs = int(start_offs + offset_tensor[0])
|
data_offs = int(start_offs + offset_tensor[0])
|
||||||
item_type: npt.DTypeLike
|
item_type: npt.DTypeLike
|
||||||
if ggml_type == GGMLQuantizationType.F32:
|
if ggml_type == GGMLQuantizationType.F16:
|
||||||
item_count = n_elems
|
|
||||||
item_type = np.float32
|
|
||||||
elif ggml_type == GGMLQuantizationType.F16:
|
|
||||||
item_count = n_elems
|
item_count = n_elems
|
||||||
item_type = np.float16
|
item_type = np.float16
|
||||||
|
elif ggml_type == GGMLQuantizationType.F32:
|
||||||
|
item_count = n_elems
|
||||||
|
item_type = np.float32
|
||||||
|
elif ggml_type == GGMLQuantizationType.F64:
|
||||||
|
item_count = n_elems
|
||||||
|
item_type = np.float64
|
||||||
elif ggml_type == GGMLQuantizationType.I8:
|
elif ggml_type == GGMLQuantizationType.I8:
|
||||||
item_count = n_elems
|
item_count = n_elems
|
||||||
item_type = np.int8
|
item_type = np.int8
|
||||||
|
@ -257,6 +260,9 @@ class GGUFReader:
|
||||||
elif ggml_type == GGMLQuantizationType.I32:
|
elif ggml_type == GGMLQuantizationType.I32:
|
||||||
item_count = n_elems
|
item_count = n_elems
|
||||||
item_type = np.int32
|
item_type = np.int32
|
||||||
|
elif ggml_type == GGMLQuantizationType.I64:
|
||||||
|
item_count = n_elems
|
||||||
|
item_type = np.int64
|
||||||
else:
|
else:
|
||||||
item_count = n_bytes
|
item_count = n_bytes
|
||||||
item_type = np.uint8
|
item_type = np.uint8
|
||||||
|
|
|
@ -204,18 +204,22 @@ class GGUFWriter:
|
||||||
for i in range(n_dims):
|
for i in range(n_dims):
|
||||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||||
if raw_dtype is None:
|
if raw_dtype is None:
|
||||||
if tensor_dtype == np.float32:
|
if tensor_dtype == np.float16:
|
||||||
dtype = GGMLQuantizationType.F32
|
|
||||||
elif tensor_dtype == np.float16:
|
|
||||||
dtype = GGMLQuantizationType.F16
|
dtype = GGMLQuantizationType.F16
|
||||||
|
elif tensor_dtype == np.float32:
|
||||||
|
dtype = GGMLQuantizationType.F32
|
||||||
|
elif tensor_dtype == np.float64:
|
||||||
|
dtype = GGMLQuantizationType.F64
|
||||||
elif tensor_dtype == np.int8:
|
elif tensor_dtype == np.int8:
|
||||||
dtype = GGMLQuantizationType.I8
|
dtype = GGMLQuantizationType.I8
|
||||||
elif tensor_dtype == np.int16:
|
elif tensor_dtype == np.int16:
|
||||||
dtype = GGMLQuantizationType.I16
|
dtype = GGMLQuantizationType.I16
|
||||||
elif tensor_dtype == np.int32:
|
elif tensor_dtype == np.int32:
|
||||||
dtype = GGMLQuantizationType.I32
|
dtype = GGMLQuantizationType.I32
|
||||||
|
elif tensor_dtype == np.int64:
|
||||||
|
dtype = GGMLQuantizationType.I64
|
||||||
else:
|
else:
|
||||||
raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
|
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||||
else:
|
else:
|
||||||
dtype = raw_dtype
|
dtype = raw_dtype
|
||||||
self.ti_data += self._pack("I", dtype)
|
self.ti_data += self._pack("I", dtype)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue