minor : indentation + assert

This commit is contained in:
Georgi Gerganov 2023-08-14 14:10:21 +03:00
parent f4a0e0ec5a
commit 797088a7cd
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
3 changed files with 101 additions and 91 deletions

View file

@ -8,6 +8,12 @@
#include <sstream> #include <sstream>
#include <fstream> #include <fstream>
#include <vector> #include <vector>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/* /*
template<typename T> template<typename T>
static std::string to_string(const T & val) { static std::string to_string(const T & val) {
@ -16,6 +22,7 @@ static std::string to_string(const T & val) {
return ss.str(); return ss.str();
} }
*/ */
void gguf_ex_write_str(std::ofstream & fout, const std::string & val) { void gguf_ex_write_str(std::ofstream & fout, const std::string & val) {
const int32_t n = val.size(); const int32_t n = val.size();
fout.write((const char *) &n, sizeof(n)); fout.write((const char *) &n, sizeof(n));
@ -377,28 +384,28 @@ bool gguf_ex_read_2(const std::string & fname) {
struct gguf_file file(fname.c_str(), "rb"); struct gguf_file file(fname.c_str(), "rb");
gguf_mmap data_mmap(&file, 0, false); gguf_mmap data_mmap(&file, 0, false);
const int n_tensors = gguf_get_n_tensors(ctx); const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) { for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i); const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
cur->data = static_cast<char *>(data_mmap.addr) + offset; cur->data = static_cast<char *>(data_mmap.addr) + offset;
// print first 10 elements // print first 10 elements
const float * data = (const float *) cur->data; const float * data = (const float *) cur->data;
printf("%s data[:10] : ", name); printf("%s data[:10] : ", name);
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
for (int j = 0; j < 10; ++j) {
printf("%f ", data[j]); printf("%f ", data[j]);
} }
printf("\n\n"); printf("\n\n");
} }
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data)); fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
ggml_free(ctx_data); ggml_free(ctx_data);
gguf_free(ctx); gguf_free(ctx);

View file

@ -508,17 +508,16 @@ struct gguf_load_tensors_map {
enum gguf_file_version { enum gguf_file_version {
GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V1 = 1,
}; };
struct gguf_file_loader { struct gguf_file_loader {
gguf_file file; gguf_file file;
gguf_context * gguf_ctx; gguf_context * gguf_ctx;
gguf_file_version file_version; gguf_file_version file_version;
llama_hparams hparams; llama_hparams hparams;
llama_vocab vocab; llama_vocab vocab;
struct ggml_context * ctx_data = NULL;
struct ggml_context * ctx_data = NULL;
gguf_file_loader(const char * fname, gguf_load_tensors_map & tensors_map) gguf_file_loader(const char * fname, gguf_load_tensors_map & tensors_map)
: file(fname, "rb") { : file(fname, "rb") {
@ -537,7 +536,7 @@ struct ggml_context * ctx_data = NULL;
read_tensor_metadata(tensors_map); read_tensor_metadata(tensors_map);
} }
uint32_t read_u32(const char * key) { uint32_t read_u32(const char * key) const {
int i = gguf_find_key(gguf_ctx, key); int i = gguf_find_key(gguf_ctx, key);
if (i == -1) { if (i == -1) {
throw std::runtime_error(format("cannot find param with key %s\n", key)); throw std::runtime_error(format("cannot find param with key %s\n", key));
@ -546,7 +545,7 @@ struct ggml_context * ctx_data = NULL;
return gguf_get_val_u32(gguf_ctx, i); return gguf_get_val_u32(gguf_ctx, i);
} }
float read_f32(const char * key) { float read_f32(const char * key) const {
int i = gguf_find_key(gguf_ctx, key); int i = gguf_find_key(gguf_ctx, key);
if (i == -1) { if (i == -1) {
throw std::runtime_error(format("cannot find param with key %s\n", key)); throw std::runtime_error(format("cannot find param with key %s\n", key));
@ -555,27 +554,26 @@ struct ggml_context * ctx_data = NULL;
return gguf_get_val_f32(gguf_ctx, i); return gguf_get_val_f32(gguf_ctx, i);
} }
int read_n_vocab() { int read_n_vocab() const {
int i = gguf_find_key(gguf_ctx, "tokenizer.ggml.tokens"); int i = gguf_find_key(gguf_ctx, "tokenizer.ggml.tokens");
if (i == -1) { if (i == -1) {
throw std::runtime_error("cannot find token list in GGUF file\n"); throw std::runtime_error("cannot find token list in GGUF file\n");
} }
return gguf_get_arr_n(gguf_ctx, i); return gguf_get_arr_n(gguf_ctx, i);
} }
void read_hparams() { void read_hparams() {
// TODO define keys as constants in header // TODO define keys as constants in header
// TODO: read all hparams from file // TODO: read all hparams from file
hparams.n_vocab = read_n_vocab(); hparams.n_vocab = read_n_vocab();
hparams.n_ctx = read_u32("llama.context_length"); hparams.n_ctx = read_u32("llama.context_length");
hparams.n_embd = read_u32("llama.embedding_length"); hparams.n_embd = read_u32("llama.embedding_length");
hparams.n_ff = read_u32("llama.feed_forward_length"); hparams.n_ff = read_u32("llama.feed_forward_length");
hparams.n_head = read_u32("llama.attention.head_count"); hparams.n_head = read_u32("llama.attention.head_count");
hparams.n_layer = read_u32("llama.layer_count"); hparams.n_layer = read_u32("llama.layer_count");
hparams.n_rot = read_u32("llama.rope.dimension_count"); hparams.n_rot = read_u32("llama.rope.dimension_count");
hparams.f_rms_norm_eps = read_f32("llama.attention.layer_norm_rms_epsilon"); hparams.f_rms_norm_eps = read_f32("llama.attention.layer_norm_rms_epsilon");
// LLaMAv2 // LLaMAv2
@ -606,7 +604,7 @@ struct ggml_context * ctx_data = NULL;
} }
} }
void read_tensor_metadata(gguf_load_tensors_map & tensors_map) { void read_tensor_metadata(gguf_load_tensors_map & tensors_map) const {
const int n_tensors = gguf_get_n_tensors(gguf_ctx); const int n_tensors = gguf_get_n_tensors(gguf_ctx);
for (int i = 0; i < n_tensors; ++i) { for (int i = 0; i < n_tensors; ++i) {
@ -614,16 +612,19 @@ struct ggml_context * ctx_data = NULL;
const char * name = gguf_get_tensor_name(gguf_ctx, i); const char * name = gguf_get_tensor_name(gguf_ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
uint32_t n_dims = cur->n_dims;
const uint32_t n_dims = cur->n_dims;
tensor.type = cur->type; tensor.type = cur->type;
tensor.ne.resize(n_dims); tensor.ne.resize(n_dims);
for (uint32_t j = 0; j < n_dims; ++j) { for (uint32_t j = 0; j < n_dims; ++j) {
tensor.ne[j] = cur->ne[j]; tensor.ne[j] = cur->ne[j];
} }
if (n_dims < 1 || n_dims > 2) { if (n_dims < 1 || n_dims > 2) {
throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name, n_dims)); throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name, n_dims));
} }
switch (tensor.type) { switch (tensor.type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
case GGML_TYPE_F16: case GGML_TYPE_F16:
@ -643,7 +644,6 @@ struct ggml_context * ctx_data = NULL;
} }
} }
tensor.file_off = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, i); tensor.file_off = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, i);
tensor.name = name; tensor.name = name;
@ -670,46 +670,46 @@ struct gguf_file_saver {
gguf_file_saver(const char * fname, gguf_file_loader * fl, enum llama_ftype new_ftype) gguf_file_saver(const char * fname, gguf_file_loader * fl, enum llama_ftype new_ftype)
: file(fname, "wb"), fl(fl) { : file(fname, "wb"), fl(fl) {
fprintf(stderr, "llama.cpp: saving model to %s\n", fname); fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
write_header(); write_header();
write_hparams(new_ftype); write_hparams(new_ftype);
} }
void write_header() { void write_header() {
const int32_t magic = GGUF_MAGIC; const int32_t magic = GGUF_MAGIC;
file.write_i32(magic); file.write_i32(magic);
const int32_t version = GGUF_VERSION; const int32_t version = GGUF_VERSION;
file.write_i32(version); file.write_i32(version);
const int32_t n_tensors = gguf_get_n_tensors(fl->gguf_ctx); const int32_t n_tensors = gguf_get_n_tensors(fl->gguf_ctx);
file.write_i32(n_tensors); file.write_i32(n_tensors);
const int32_t n_kv = gguf_get_n_kv(fl->gguf_ctx); const int32_t n_kv = gguf_get_n_kv(fl->gguf_ctx);
file.write_i32(n_kv); file.write_i32(n_kv);
}
void write_hparam_arr_str(const std::string & key, enum gguf_type type, int i, int n_arr) {
std::vector<std::string> data(n_arr);
for (int j = 0; j < n_arr; ++j) {
std::string val = gguf_get_arr_str(fl->gguf_ctx, i, j);
data[j] = val;
} }
void write_hparam_arr_str(const std::string & key, enum gguf_type type, int i, int n_arr) { file.write_arr<std::string>(key, type, data);
std::vector<std::string> data(n_arr); }
for (int j = 0; j < n_arr; ++j) { void write_hparam_arr_f32(const std::string & key, enum gguf_type type, int i, int n_arr) {
std::string val = gguf_get_arr_str(fl->gguf_ctx, i, j); std::vector<float> data(n_arr);
data[j] = val;
}
file.write_arr<std::string>(key, type, data); for (int j = 0; j < n_arr; ++j) {
float val = gguf_get_arr_f32(fl->gguf_ctx, i, j);
data[j] = val;
} }
void write_hparam_arr_f32(const std::string & key, enum gguf_type type, int i, int n_arr) { file.write_arr<float>(key, type, data);
std::vector<float> data(n_arr); }
for (int j = 0; j < n_arr; ++j) {
float val = gguf_get_arr_f32(fl->gguf_ctx, i, j);
data[j] = val;
}
file.write_arr<float>(key, type, data);
}
void write_hparams(enum llama_ftype new_ftype) { void write_hparams(enum llama_ftype new_ftype) {
const int32_t n_kv = gguf_get_n_kv(fl->gguf_ctx); const int32_t n_kv = gguf_get_n_kv(fl->gguf_ctx);
@ -734,59 +734,62 @@ struct gguf_file_saver {
switch(vtype) { switch(vtype) {
case GGUF_TYPE_BOOL: case GGUF_TYPE_BOOL:
bool_val = gguf_get_val_bool(fl->gguf_ctx, i); bool_val = gguf_get_val_bool(fl->gguf_ctx, i);
file.write_val<bool>(key, GGUF_TYPE_BOOL, bool_val); file.write_val<bool>(key, GGUF_TYPE_BOOL, bool_val);
break; break;
case GGUF_TYPE_FLOAT32: case GGUF_TYPE_FLOAT32:
f32_val = gguf_get_val_f32(fl->gguf_ctx, i); f32_val = gguf_get_val_f32(fl->gguf_ctx, i);
file.write_val<float>(key, GGUF_TYPE_FLOAT32, f32_val); file.write_val<float>(key, GGUF_TYPE_FLOAT32, f32_val);
break; break;
case GGUF_TYPE_INT16: case GGUF_TYPE_INT16:
i16_val = gguf_get_val_i16(fl->gguf_ctx, i); i16_val = gguf_get_val_i16(fl->gguf_ctx, i);
file.write_val<int16_t>(key, GGUF_TYPE_INT16, i16_val); file.write_val<int16_t>(key, GGUF_TYPE_INT16, i16_val);
break; break;
case GGUF_TYPE_INT32: case GGUF_TYPE_INT32:
i32_val = gguf_get_val_i32(fl->gguf_ctx, i); i32_val = gguf_get_val_i32(fl->gguf_ctx, i);
file.write_val<int32_t>(key, GGUF_TYPE_INT32, i32_val); file.write_val<int32_t>(key, GGUF_TYPE_INT32, i32_val);
break; break;
case GGUF_TYPE_INT8: case GGUF_TYPE_INT8:
i8_val = gguf_get_val_i8(fl->gguf_ctx, i); i8_val = gguf_get_val_i8(fl->gguf_ctx, i);
file.write_val<int8_t>(key, GGUF_TYPE_INT8, i8_val); file.write_val<int8_t>(key, GGUF_TYPE_INT8, i8_val);
break; break;
case GGUF_TYPE_STRING: case GGUF_TYPE_STRING:
str_val = gguf_get_val_str(fl->gguf_ctx, i); str_val = gguf_get_val_str(fl->gguf_ctx, i);
file.write_val<std::string>(key, GGUF_TYPE_STRING, str_val); file.write_val<std::string>(key, GGUF_TYPE_STRING, str_val);
break; break;
case GGUF_TYPE_UINT16: case GGUF_TYPE_UINT16:
u16_val = gguf_get_val_u16(fl->gguf_ctx, i); u16_val = gguf_get_val_u16(fl->gguf_ctx, i);
file.write_val<uint16_t>(key, GGUF_TYPE_UINT16, u16_val); file.write_val<uint16_t>(key, GGUF_TYPE_UINT16, u16_val);
break; break;
case GGUF_TYPE_UINT32: case GGUF_TYPE_UINT32:
u32_val = gguf_get_val_u32(fl->gguf_ctx, i); u32_val = gguf_get_val_u32(fl->gguf_ctx, i);
file.write_val<uint32_t>(key, GGUF_TYPE_UINT32, u32_val); file.write_val<uint32_t>(key, GGUF_TYPE_UINT32, u32_val);
break; break;
case GGUF_TYPE_UINT8: case GGUF_TYPE_UINT8:
u8_val = gguf_get_val_u8(fl->gguf_ctx, i); u8_val = gguf_get_val_u8(fl->gguf_ctx, i);
file.write_val<uint8_t>(key, GGUF_TYPE_UINT8, u8_val); file.write_val<uint8_t>(key, GGUF_TYPE_UINT8, u8_val);
break; break;
case GGUF_TYPE_ARRAY: case GGUF_TYPE_ARRAY:
arr_type = gguf_get_arr_type(fl->gguf_ctx, i); arr_type = gguf_get_arr_type(fl->gguf_ctx, i);
n_arr = gguf_get_arr_n(fl->gguf_ctx, i); n_arr = gguf_get_arr_n(fl->gguf_ctx, i);
if (arr_type == GGUF_TYPE_FLOAT32) { if (arr_type == GGUF_TYPE_FLOAT32) {
write_hparam_arr_f32(key, arr_type, i, n_arr); write_hparam_arr_f32(key, arr_type, i, n_arr);
} else if (arr_type == GGUF_TYPE_STRING) { } else if (arr_type == GGUF_TYPE_STRING) {
write_hparam_arr_str(key, GGUF_TYPE_STRING, i, n_arr); write_hparam_arr_str(key, GGUF_TYPE_STRING, i, n_arr);
} else { } else {
throw std::runtime_error("not implemented"); throw std::runtime_error("not implemented");
} }
break; break;
default: default:
throw std::runtime_error(format("cannot recognize value type for key %s\n", key)); throw std::runtime_error(format("cannot recognize value type for key %s\n", key));
} }
} }
} }
info_offset = file.tell(); info_offset = file.tell();
GGML_ASSERT(gguf_get_data_offset(fl->gguf_ctx) >= info_offset);
size_t count = gguf_get_data_offset(fl->gguf_ctx) - info_offset; size_t count = gguf_get_data_offset(fl->gguf_ctx) - info_offset;
file.write_zeros(count); file.write_zeros(count);
file.seek(info_offset, SEEK_SET); file.seek(info_offset, SEEK_SET);

View file

@ -137,7 +137,7 @@ extern "C" {
// model quantization parameters // model quantization parameters
typedef struct llama_model_quantize_params { typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params; } llama_model_quantize_params;