add README

This commit is contained in:
Radoslav Gerganov 2024-05-10 10:43:51 +03:00
parent 7c00fd5184
commit 7975f43eb1

66
examples/rpc/README.md Normal file
View file

@ -0,0 +1,66 @@
## Overview
The `rpc-server` allows running a `ggml` backend on a remote host.
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
This can be used for distributed LLM inference with `llama.cpp` in the following way:
```mermaid
flowchart TD
rpcb---|TCP|srva
rpcb---|TCP|srvb
rpcb-.-|TCP|srvn
subgraph hostn[Host N]
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
end
subgraph hostb[Host B]
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
end
subgraph hosta[Host A]
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
end
subgraph host[Main Host]
ggml[llama.cpp]---rpcb[RPC backend]
end
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
```
Each host can run a different backend, e.g. one with CUDA and another with Metal.
## Usage
On each host, build the corresponding backend with `cmake` and add `-DLLAMA_RPC=ON` to the build options.
For example, to build the CUDA backend with RPC support:
```bash
mkdir build-rpc-cuda
cd build-rpc-cuda
cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON
make -j
```
Then, start the `rpc-server` with the backend:
```bash
$ bin/rpc-server 0.0.0.0 50052
create_backend: using CUDA backend
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
Starting RPC server on 0.0.0.0:50052
```
On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`:
```bash
mkdir build-rpc
cd build-rpc
cmake .. -DLLAMA_RPC=ON
make -j
```
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
```bash
$ bin/main -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
```