llama : add Mixtral support (#4406)

* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
This commit is contained in:
slaren 2023-12-13 13:04:25 +01:00 committed by GitHub
parent fecac45658
commit 799a1cb13b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 2370 additions and 395 deletions

View file

@ -20,8 +20,6 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
size_t size = ggml_nelements(tensor);
std::vector<float> data(size);
std::random_device rd;
#if 0
std::default_random_engine generator(rd());
std::uniform_real_distribution<float> distribution(min, max);
@ -31,6 +29,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
}
#endif
auto init_thread = [&](size_t start, size_t end) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_real_distribution<float> distribution(min, max);
@ -51,7 +50,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
t.join();
}
if (tensor->type == GGML_TYPE_F32) {
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
@ -71,23 +70,28 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
std::vector<uint8_t> buf(ggml_nbytes(t));
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
size_t bs = ggml_blck_size(t->type);
// access elements by index to avoid gaps in views
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
for (int64_t i0 = 0; i0 < t->ne[0]; i0++) {
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0];
float v;
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
if (t->type == GGML_TYPE_F16) {
v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]);
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_F32) {
v = *(float *) &buf[i];
tv.push_back(*(float *) &buf[i]);
} else if (t->type == GGML_TYPE_I32) {
v = *(int32_t *) &buf[i];
tv.push_back((float)*(int32_t *) &buf[i]);
} else if (ggml_is_quantized(t->type)) {
std::vector<float> vq(ggml_blck_size(t->type));
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
tv.insert(tv.end(), vq.begin(), vq.end());
} else {
GGML_ASSERT(false);
}
tv.push_back(v);
}
}
}
@ -233,6 +237,10 @@ static bool ggml_is_view_op(enum ggml_op op) {
struct test_case {
virtual ~test_case() {}
virtual std::string op_desc(ggml_tensor * t) {
return ggml_op_desc(t);
}
virtual std::string vars() {
return "";
}
@ -240,7 +248,7 @@ struct test_case {
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
virtual double max_nmse_err() {
return 1e-6;
return 1e-7;
}
virtual void initialize_tensors(ggml_context * ctx) {
@ -270,13 +278,13 @@ struct test_case {
ggml_tensor * out = build_graph(ctx);
if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
//printf(" %s: skipping\n", ggml_op_desc(out));
if (op_name != nullptr && op_desc(out) != op_name) {
//printf(" %s: skipping\n", op_desc(out).c_str());
ggml_free(ctx);
return true;
}
printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
// check if backends support op
@ -317,7 +325,7 @@ struct test_case {
for (size_t i = 0; i < f1.size(); i++) {
// check for nans
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
printf("NaN at index %zu ", i);
printf("[%s] NaN at index %zu (%f %f) ", ggml_op_desc(t1), i, f1[i], f2[i]);
ud->ok = false;
return true;
}
@ -325,12 +333,12 @@ struct test_case {
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
printf("inf sign mismatch: %f %f ", f1[i], f2[i]);
printf("[%s] inf sign mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
ud->ok = false;
return true;
}
} else {
printf("inf mismatch: %f %f ", f1[i], f2[i]);
printf("[%s] inf mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
ud->ok = false;
return true;
}
@ -339,10 +347,16 @@ struct test_case {
double err = nmse(f1.data(), f2.data(), f1.size());
if (err > ud->max_err) {
printf("NMSE = %f ", err);
printf("[%s] NMSE = %f ", ggml_op_desc(t1), err);
//for (int i = 0; i < f1.size(); i++) {
// printf("(%f, %f) ", f1[i], f2[i]);
//}
//printf("\n");
ud->ok = false;
}
return true;
GGML_UNUSED(index);
};
ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
@ -372,13 +386,13 @@ struct test_case {
ggml_tensor * out = build_graph(ctx);
if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
//printf(" %s: skipping\n", ggml_op_desc(out));
if (op_name != nullptr && op_desc(out) != op_name) {
//printf(" %s: skipping\n", op_desc(out).c_str());
ggml_free(ctx);
return true;
}
int len = printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
// check if backends support op
@ -430,8 +444,9 @@ struct test_case {
return size;
};
for (int i = 0; i < gf->n_nodes; i++) {
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out)
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
continue;
}
mem += tensor_op_size(gf->nodes[i]);
}
@ -486,17 +501,22 @@ struct test_get_rows : public test_case {
const int n; // cols
const int m; // rows
const int r; // rows to get
const int b; // batch size
const bool v; // view (non-contiguous src1)
std::string vars() override {
return VARS_TO_STR4(type, n, m, r);
return VARS_TO_STR6(type, n, m, r, b, v);
}
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3)
: type(type), n(n), m(m), r(r) {}
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
: type(type), n(n), m(m), r(r), b(b), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * in = ggml_new_tensor_2d(ctx, type, n, m);
ggml_tensor * rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, r);
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
if (v) {
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
}
ggml_tensor * out = ggml_get_rows(ctx, in, rows);
return out;
}
@ -504,12 +524,13 @@ struct test_get_rows : public test_case {
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) { continue; }
// rows
std::vector<int> data(r);
for (int i = 0; i < r; i++) {
std::vector<int> data(r*b);
for (int i = 0; i < r*b; i++) {
data[i] = rand() % m;
}
ggml_backend_tensor_set(t, data.data(), 0, r * sizeof(int));
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
} else {
init_tensor_uniform(t);
}
@ -770,11 +791,10 @@ struct test_mul_mat_id : public test_case {
const int64_t m;
const int64_t n;
const int64_t k;
const std::array<int64_t, 2> bs; // dims 3 and 4
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
const bool v; // view (non-contiguous ids)
std::string vars() override {
return VARS_TO_STR9(type_a, type_b, n_mats, id, m, n, k, bs, nr);
return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
}
double max_nmse_err() override {
@ -782,7 +802,7 @@ struct test_mul_mat_id : public test_case {
}
size_t op_size(ggml_tensor * t) override {
size_t a = ggml_nbytes(t->src[2]) * n * nr[0] * nr[1];
size_t a = ggml_nbytes(t->src[2]) * n;
size_t b = ggml_nbytes(t->src[1]) * m;
size_t c = ggml_nbytes(t);
return a + b + c;
@ -792,35 +812,41 @@ struct test_mul_mat_id : public test_case {
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
int n_mats = 2, int id = 0,
int64_t m = 32, int64_t n = 32, int64_t k = 32,
std::array<int64_t, 2> bs = {10, 10},
std::array<int64_t, 2> nr = {2, 2})
int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
: type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
m(m), n(n), k(k), bs(bs), nr(nr) {}
m(m), n(n), k(k), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
std::vector<ggml_tensor *> mats;
for (int i = 0; i < n_mats; i++) {
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
mats.push_back(a);
}
ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_mats);
ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), ids, id, b);
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
if (v) {
ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
}
ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
return out;
}
void initialize_tensors(ggml_context * ctx) override {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) { continue; }
// ids
std::vector<int> data(n_mats);
for (int i = 0; i < n_mats; i++) {
data[i] = i;
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<int32_t> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i % n_mats;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
}
std::shuffle(data.begin(), data.end(), std::default_random_engine(std::random_device()()));
ggml_backend_tensor_set(t, data.data(), 0, n_mats * sizeof(int));
} else {
init_tensor_uniform(t);
}
@ -1109,6 +1135,90 @@ struct test_sum_rows : public test_case {
}
};
// Mixtral MOE
struct test_moe : public test_case {
const int n_experts;
const int n_experts_per_tok;
const int n_tokens;
const int n_embd;
const int n_ff;
std::string op_desc(ggml_tensor * t) override {
return "MOE";
GGML_UNUSED(t);
}
std::string vars() override {
return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
}
test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
: n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
std::vector<ggml_tensor *> ffn_up_exp(n_experts);
std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
std::vector<ggml_tensor *> ffn_down_exp(n_experts);
for (int i = 0; i < n_experts; ++i) {
ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
}
ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd));
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
ggml_tensor * weights = ggml_get_rows(ctx,
ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
weights = ggml_div(ctx, weights, weights_sum);
// compute expert outputs
ggml_tensor * moe_out = nullptr;
for (int i = 0; i < n_experts_per_tok; ++i) {
ggml_tensor * cur_expert;
ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
cur_gate = ggml_silu(ctx, cur_gate);
cur_expert = ggml_mul(ctx, cur_up, cur_gate);
cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
cur_expert = ggml_mul(ctx, cur_expert,
ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
if (i == 0) {
moe_out = cur_expert;
} else {
moe_out = ggml_add(ctx, moe_out, cur_expert);
}
}
cur = moe_out;
return cur;
}
};
enum test_mode {
MODE_TEST,
MODE_PERF,
@ -1117,14 +1227,28 @@ enum test_mode {
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
std::vector<std::unique_ptr<test_case>> test_cases;
const ggml_type all_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16,
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
GGML_TYPE_Q6_K
};
// unary ops
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
test_cases.emplace_back(new test_unary((ggml_unary_op) op));
}
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_get_rows(type, 10, 5, 3));
test_cases.emplace_back(new test_get_rows(type, 16, 5, 3));
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
for (ggml_type type : all_types) {
for (int b : {1, 7}) {
for (bool v : {false, true}) {
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
}
}
}
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
@ -1134,7 +1258,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
test_cases.emplace_back(new test_dup());
test_cases.emplace_back(new test_cpy());
for (ggml_type type : all_types) {
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
}
test_cases.emplace_back(new test_cont());
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
@ -1144,6 +1272,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
};
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
@ -1170,8 +1299,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
test_cases.emplace_back(new test_scale());
@ -1180,16 +1309,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
}
const ggml_type all_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16,
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
GGML_TYPE_Q6_K
};
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
// FIXME: CPU crashes on f16xf16
@ -1213,9 +1332,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
for (int n_mats : {1, 2, 4}) {
for (int n_mats : {2, 4, 8}) {
for (int id = 0; id < n_mats; id++) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, {1, 1}, {1, 1}));
for (bool v : {false, true}) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
}
}
}
}
@ -1247,10 +1368,18 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_concat());
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
}
test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {10, 10, 10, 10}));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {2, 1, 1, 1}));
#if !defined(__SANITIZE_THREAD__)
// FIXME: these tests use too much memory with thread sanitizer
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 14336));
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
#endif
// run tests
if (mode == MODE_TEST) {
@ -1267,14 +1396,17 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
ggml_backend_free(backend_cpu);
return n_ok == test_cases.size();
} else if (mode == MODE_PERF) {
}
if (mode == MODE_PERF) {
for (auto & test : test_cases) {
test->eval_perf(backend, op_name);
}
return true;
} else {
GGML_ASSERT(false);
}
GGML_ASSERT(false);
return false;
}
static void usage(char ** argv) {
@ -1347,11 +1479,12 @@ int main(int argc, char ** argv) {
}
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
if (n_ok != ggml_backend_reg_get_count()) {
printf("\033[1;31mFAIL\033[0m\n");
return 1;
} else {
printf("\033[1;32mOK\033[0m\n");
return 0;
}
printf("\033[1;32mOK\033[0m\n");
return 0;
}