From f89fe2732c5709f6e86d5f4aee2e6d2a561f2eb2 Mon Sep 17 00:00:00 2001 From: HanishKVC Date: Fri, 10 May 2024 15:51:58 +0530 Subject: [PATCH 01/56] Main+: optionally allow special tokens from user in interactive mode (#7097) @hanishkvc added a new `--interactive-specials` flag which would allow for inserting special tokens from user side into the embedding stream. --- common/common.cpp | 6 ++++++ common/common.h | 1 + examples/main/main.cpp | 2 +- 3 files changed, 8 insertions(+), 1 deletion(-) diff --git a/common/common.cpp b/common/common.cpp index 0535508ba..484e67334 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -901,6 +901,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.interactive = true; return true; } + if (arg == "--interactive-specials") { + params.interactive_specials = true; + return true; + } if (arg == "--embedding") { params.embedding = true; return true; @@ -1422,6 +1426,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -h, --help show this help message and exit\n"); printf(" --version show version and build info\n"); printf(" -i, --interactive run in interactive mode\n"); + printf(" --interactive-specials allow special tokens in user text, in interactive mode\n"); printf(" --interactive-first run in interactive mode and wait for input right away\n"); printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n"); printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); @@ -2652,6 +2657,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str()); fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); + fprintf(stream, "interactive_specials: %s # default: false\n", params.interactive_specials ? "true" : "false"); fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); fprintf(stream, "keep: %d # default: 0\n", params.n_keep); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); diff --git a/common/common.h b/common/common.h index 6f00a2cca..d80344f2a 100644 --- a/common/common.h +++ b/common/common.h @@ -140,6 +140,7 @@ struct gpt_params { bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode + bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix) bool chatml = false; // chatml mode (used for models trained on chatml syntax) bool prompt_cache_all = false; // save user input and generations to prompt cache diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 49acd6bab..f3e445c16 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -879,7 +879,7 @@ int main(int argc, char ** argv) { } const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); - const auto line_inp = ::llama_tokenize(ctx, buffer, false, false); + const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials); const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); From 4e3880978f8b1bf546dd4e6f3b524d6b8739c49c Mon Sep 17 00:00:00 2001 From: Justine Tunney Date: Fri, 10 May 2024 07:01:08 -0400 Subject: [PATCH 02/56] Fix memory bug in grammar parser (#7194) The llama.cpp grammar parser had a bug where forgetting to add a closing quotation mark to strings would cause parsing to crash. Anyone running a server on a public endpoint is advised to upgrade. To reproduce this bug ./llamafile -m foo.gguf -p bar --grammar 'root::="' Credit for discovering and reporting this issue goes to Eclypsium Security Researcher Richard Johnson . --- common/common.cpp | 8 +++----- common/grammar-parser.cpp | 9 +++++++++ examples/llava/llava-cli.cpp | 5 +++++ examples/main/main.cpp | 4 ++++ 4 files changed, 21 insertions(+), 5 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 484e67334..ba1ecf0e5 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1371,14 +1371,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } - if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) { throw std::invalid_argument("error: unknown argument: " + arg); } - } - - if (invalid_param) { - throw std::invalid_argument("error: invalid parameter for argument: " + arg); + if (invalid_param) { + throw std::invalid_argument("error: invalid parameter for argument: " + arg); + } } if (params.prompt_cache_all && diff --git a/common/grammar-parser.cpp b/common/grammar-parser.cpp index 2a1301569..fecb7cd71 100644 --- a/common/grammar-parser.cpp +++ b/common/grammar-parser.cpp @@ -142,6 +142,9 @@ namespace grammar_parser { pos++; last_sym_start = out_elements.size(); while (*pos != '"') { + if (!*pos) { + throw std::runtime_error("unexpected end of input"); + } auto char_pair = parse_char(pos); pos = char_pair.second; out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first}); @@ -156,6 +159,9 @@ namespace grammar_parser { } last_sym_start = out_elements.size(); while (*pos != ']') { + if (!*pos) { + throw std::runtime_error("unexpected end of input"); + } auto char_pair = parse_char(pos); pos = char_pair.second; enum llama_gretype type = last_sym_start < out_elements.size() @@ -164,6 +170,9 @@ namespace grammar_parser { out_elements.push_back({type, char_pair.first}); if (pos[0] == '-' && pos[1] != ']') { + if (!pos[1]) { + throw std::runtime_error("unexpected end of input"); + } auto endchar_pair = parse_char(pos + 1); pos = endchar_pair.second; out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first}); diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp index 157a680b5..da60ddf2f 100644 --- a/examples/llava/llava-cli.cpp +++ b/examples/llava/llava-cli.cpp @@ -189,6 +189,11 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_ LOG_TEE("\n"); struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams); + if (!ctx_sampling) { + fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__); + exit(1); + } + std::string response = ""; for (int i = 0; i < max_tgt_len; i++) { const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past); diff --git a/examples/main/main.cpp b/examples/main/main.cpp index f3e445c16..9dee41001 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -523,6 +523,10 @@ int main(int argc, char ** argv) { } struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams); + if (!ctx_sampling) { + fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__); + exit(1); + } while ((n_remain != 0 && !is_antiprompt) || params.interactive) { // predict From 25c6e82e7a1ad25a42b0894e87d9b5c557409516 Mon Sep 17 00:00:00 2001 From: slaren Date: Fri, 10 May 2024 14:28:01 +0200 Subject: [PATCH 03/56] llama : use n_vocab to differentiate between mistral 7B and llama3 8B (#7200) --- llama.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index e7b3fd8b4..2f1123d4e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3860,7 +3860,7 @@ static void llm_load_hparams( switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 26: model.type = e_model::MODEL_3B; break; - case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA + case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break; case 40: model.type = e_model::MODEL_13B; break; case 48: model.type = e_model::MODEL_34B; break; case 60: model.type = e_model::MODEL_30B; break; From 8c660242d708d3913a2adc2b6e4a9ee9cf5e4ce7 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 10 May 2024 17:53:04 +0300 Subject: [PATCH 04/56] convert : print "ignore_merges" field --- convert-hf-to-gguf-update.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index e64687722..b5eb41eac 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -161,6 +161,8 @@ for model in models: logger.info("normalizer: " + json.dumps(normalizer, indent=4)) pre_tokenizer = cfg["pre_tokenizer"] logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) + if "ignore_merges" in cfg["model"]: + logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) logger.info("") From 18e437665ce626dddbd79119aa7498493e7cb13b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 10 May 2024 18:20:10 +0300 Subject: [PATCH 05/56] metal : fix flash attention kernel requirements (#7169) * metal : fix flash attention kernel requirements ggml-ci * metal : fix ggml_metal_supports_op ggml-ci --- ggml-metal.m | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index c6817f01f..18ce5b88a 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -633,14 +633,14 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); @@ -772,8 +772,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_ARGSORT: case GGML_OP_LEAKY_RELU: - case GGML_OP_FLASH_ATTN_EXT: return true; + case GGML_OP_FLASH_ATTN_EXT: + return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: return ctx->support_simdgroup_reduction && From e849648888a11de13aaaa4cb2eda3f5a9c7b444d Mon Sep 17 00:00:00 2001 From: slaren Date: Fri, 10 May 2024 18:03:54 +0200 Subject: [PATCH 06/56] llama-bench : add pp+tg test type (#7199) --- examples/llama-bench/README.md | 18 +++++--- examples/llama-bench/llama-bench.cpp | 63 ++++++++++++++++++++++++---- scripts/compare-llama-bench.py | 8 +++- 3 files changed, 74 insertions(+), 15 deletions(-) diff --git a/examples/llama-bench/README.md b/examples/llama-bench/README.md index 10f37b441..857840564 100644 --- a/examples/llama-bench/README.md +++ b/examples/llama-bench/README.md @@ -26,16 +26,21 @@ options: -m, --model (default: models/7B/ggml-model-q4_0.gguf) -p, --n-prompt (default: 512) -n, --n-gen (default: 128) - -b, --batch-size (default: 512) - -ctk , --cache-type-k (default: f16) - -ctv , --cache-type-v (default: f16) - -t, --threads (default: 112) + -pg (default: 512,128) + -b, --batch-size (default: 2048) + -ub, --ubatch-size (default: 512) + -ctk, --cache-type-k (default: f16) + -ctv, --cache-type-v (default: f16) + -t, --threads (default: 16) -ngl, --n-gpu-layers (default: 99) -sm, --split-mode (default: layer) -mg, --main-gpu (default: 0) -nkvo, --no-kv-offload <0|1> (default: 0) + -fa, --flash-attn <0|1> (default: 0) -mmp, --mmap <0|1> (default: 1) - -ts, --tensor_split (default: 0) + --numa (default: disabled) + -embd, --embeddings <0|1> (default: 0) + -ts, --tensor-split (default: 0) -r, --repetitions (default: 5) -o, --output (default: md) -v, --verbose (default: 0) @@ -43,10 +48,11 @@ options: Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times. ``` -llama-bench can perform two types of tests: +llama-bench can perform three types of tests: - Prompt processing (pp): processing a prompt in batches (`-p`) - Text generation (tg): generating a sequence of tokens (`-n`) +- Prompt processing + text generation (pg): processing a prompt followed by generating a sequence of tokens (`-pg`) With the exception of `-r`, `-o` and `-v`, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. `-n 16,32`), or the option can be specified multiple times (e.g. `-n 16 -n 32`). diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 40128ec44..8b965e199 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -161,10 +161,17 @@ static const char * split_mode_str(llama_split_mode mode) { } } +static std::string pair_str(const std::pair & p) { + static char buf[32]; + snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second); + return buf; +} + struct cmd_params { std::vector model; std::vector n_prompt; std::vector n_gen; + std::vector> n_pg; std::vector n_batch; std::vector n_ubatch; std::vector type_k; @@ -188,6 +195,7 @@ static const cmd_params cmd_params_defaults = { /* model */ {"models/7B/ggml-model-q4_0.gguf"}, /* n_prompt */ {512}, /* n_gen */ {128}, + /* n_pg */ {{512, 128}}, /* n_batch */ {2048}, /* n_ubatch */ {512}, /* type_k */ {GGML_TYPE_F16}, @@ -215,10 +223,11 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -m, --model (default: %s)\n", join(cmd_params_defaults.model, ",").c_str()); printf(" -p, --n-prompt (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str()); printf(" -n, --n-gen (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str()); + printf(" -pg (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str()); printf(" -b, --batch-size (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str()); - printf(" -ub N, --ubatch-size (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str()); - printf(" -ctk , --cache-type-k (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str()); - printf(" -ctv , --cache-type-v (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); + printf(" -ub, --ubatch-size (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str()); + printf(" -ctk, --cache-type-k (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str()); + printf(" -ctv, --cache-type-v (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); printf(" -t, --threads (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); printf(" -ngl, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); printf(" -sm, --split-mode (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); @@ -304,6 +313,17 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { } auto p = split(argv[i], split_delim); params.n_gen.insert(params.n_gen.end(), p.begin(), p.end()); + } else if (arg == "-pg") { + if (++i >= argc) { + invalid_param = true; + break; + } + auto p = split(argv[i], ','); + if (p.size() != 2) { + invalid_param = true; + break; + } + params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])}); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; @@ -493,6 +513,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { if (params.model.empty()) { params.model = cmd_params_defaults.model; } if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; } if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; } + if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; } if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; } if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; } if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; } @@ -632,6 +653,31 @@ static std::vector get_cmd_params_instances(const cmd_param }; instances.push_back(instance); } + + for (const auto & n_pg : params.n_pg) { + if (n_pg.first == 0 && n_pg.second == 0) { + continue; + } + cmd_params_instance instance = { + /* .model = */ m, + /* .n_prompt = */ n_pg.first, + /* .n_gen = */ n_pg.second, + /* .n_batch = */ nb, + /* .n_ubatch = */ nub, + /* .type_k = */ tk, + /* .type_v = */ tv, + /* .n_threads = */ nt, + /* .n_gpu_layers = */ nl, + /* .split_mode = */ sm, + /* .main_gpu = */ mg, + /* .no_kv_offload= */ nkvo, + /* .flash_attn = */ fa, + /* .tensor_split = */ ts, + /* .use_mmap = */ mmp, + /* .embeddings = */ embd, + }; + instances.push_back(instance); + } } return instances; @@ -965,6 +1011,9 @@ struct markdown_printer : public printer { if (field == "n_gpu_layers") { return 3; } + if (field == "test") { + return 13; + } int width = std::max((int)field.length(), 10); @@ -1091,12 +1140,11 @@ struct markdown_printer : public printer { value = test::get_backend(); } else if (field == "test") { if (t.n_prompt > 0 && t.n_gen == 0) { - snprintf(buf, sizeof(buf), "pp %d", t.n_prompt); + snprintf(buf, sizeof(buf), "pp%d", t.n_prompt); } else if (t.n_gen > 0 && t.n_prompt == 0) { - snprintf(buf, sizeof(buf), "tg %d", t.n_gen); + snprintf(buf, sizeof(buf), "tg%d", t.n_gen); } else { - assert(false); - exit(1); + snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen); } value = buf; } else if (field == "t/s") { @@ -1297,6 +1345,7 @@ int main(int argc, char ** argv) { llama_kv_cache_clear(ctx); uint64_t t_start = get_time_ns(); + if (t.n_prompt > 0) { test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads); } diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index fed3c1ee3..0ede9e67c 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -325,8 +325,12 @@ table = [] for row in rows_show: n_prompt = int(row[-4]) n_gen = int(row[-3]) - assert n_prompt == 0 or n_gen == 0 - test_name = f"tg{n_gen}" if n_prompt == 0 else f"pp{n_prompt}" + if n_prompt != 0 and n_gen == 0: + test_name = f"pp{n_prompt}" + elif n_prompt == 0 and n_gen != 0: + test_name = f"tg{n_gen}" + else: + test_name = f"pp{n_prompt}+tg{n_gen}" # Regular columns test name avg t/s values Speedup # VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV table.append(list(row[:-4]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])]) From 9cb317f77e53067f7a138cc89ef7657148eae8e6 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 11 May 2024 10:32:41 +0300 Subject: [PATCH 07/56] ggml : full ALiBi support (#7192) * ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * ggml : fix assert message * vulkan : add dev notes * ggml : require mask when using ALiBi ggml-ci * convert : fix convert for refact models --- convert-hf-to-gguf.py | 12 ++ ggml-cuda.cu | 5 - ggml-cuda/alibi.cu | 63 ------- ggml-cuda/alibi.cuh | 5 - ggml-cuda/fattn.cu | 72 ++++++-- ggml-cuda/softmax.cu | 55 +++--- ggml-kompute.cpp | 12 +- ggml-metal.m | 148 ++++++---------- ggml-metal.metal | 120 ++++++------- ggml-sycl.cpp | 138 ++------------- ggml-vulkan.cpp | 6 +- ggml.c | 309 +++++---------------------------- ggml.h | 18 +- gguf-py/gguf/tensor_mapping.py | 4 + llama.cpp | 178 +++++++------------ tests/test-backend-ops.cpp | 30 ++-- 16 files changed, 350 insertions(+), 825 deletions(-) delete mode 100644 ggml-cuda/alibi.cu delete mode 100644 ggml-cuda/alibi.cuh diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 1dc18b2a5..3315ca74b 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1013,6 +1013,18 @@ class StarCoderModel(Model): class RefactModel(Model): model_arch = gguf.MODEL_ARCH.REFACT + def set_vocab(self): + super().set_vocab() + + # TODO: how to determine special FIM tokens automatically? + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, + special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) + special_vocab._set_special_token("prefix", 1) + special_vocab._set_special_token("suffix", 3) + special_vocab._set_special_token("middle", 2) + special_vocab._set_special_token("fsep", 4) # is this correct? + special_vocab.add_to_gguf(self.gguf_writer) + def set_gguf_parameters(self): hidden_dim = self.hparams["n_embd"] inner_dim = 4 * hidden_dim diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 6f89a7cc3..c5c778796 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -4,7 +4,6 @@ #include "ggml-cuda/common.cuh" #include "ggml-cuda/acc.cuh" -#include "ggml-cuda/alibi.cuh" #include "ggml-cuda/arange.cuh" #include "ggml-cuda/argsort.cuh" #include "ggml-cuda/binbcast.cuh" @@ -2277,9 +2276,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_ROPE: ggml_cuda_op_rope(ctx, dst); break; - case GGML_OP_ALIBI: - ggml_cuda_op_alibi(ctx, dst); - break; case GGML_OP_IM2COL: ggml_cuda_op_im2col(ctx, dst); break; @@ -2829,7 +2825,6 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: - case GGML_OP_ALIBI: case GGML_OP_IM2COL: case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: diff --git a/ggml-cuda/alibi.cu b/ggml-cuda/alibi.cu deleted file mode 100644 index 6c7f1fd95..000000000 --- a/ggml-cuda/alibi.cu +++ /dev/null @@ -1,63 +0,0 @@ -#include "alibi.cuh" - -static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows, - const int n_heads_log2_floor, const float m0, const float m1) { - const int col = blockDim.x*blockIdx.x + threadIdx.x; - - if (col >= ncols) { - return; - } - - const int row = blockDim.y*blockIdx.y + threadIdx.y; - const int i = row*ncols + col; - - const int k = row/k_rows; - - float m_k; - if (k < n_heads_log2_floor) { - m_k = powf(m0, k + 1); - } else { - m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); - } - - dst[i] = col * m_k + x[i]; -} - -static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, - const int k_rows, const int n_heads_log2_floor, const float m0, - const float m1, cudaStream_t stream) { - const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1); - const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE); - const dim3 block_nums(num_blocks_x, nrows, 1); - alibi_f32<<>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1); -} - -void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * src0 = dst->src[0]; - const float * src0_d = (const float *)src0->data; - float * dst_d = (float *)dst->data; - cudaStream_t stream = ctx.stream(); - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t nrows = ggml_nrows(src0); - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_head = ((int32_t *) dst->op_params)[1]; - float max_bias; - memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - - //GGML_ASSERT(ne01 + n_past == ne00); - GGML_ASSERT(n_head == ne02); - - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - - alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream); -} diff --git a/ggml-cuda/alibi.cuh b/ggml-cuda/alibi.cuh deleted file mode 100644 index 630adfc7f..000000000 --- a/ggml-cuda/alibi.cuh +++ /dev/null @@ -1,5 +0,0 @@ -#include "common.cuh" - -#define CUDA_ALIBI_BLOCK_SIZE 32 - -void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu index 7c486f482..ac5d6672b 100644 --- a/ggml-cuda/fattn.cu +++ b/ggml-cuda/fattn.cu @@ -23,6 +23,10 @@ static __global__ void flash_attn_vec_ext_f16( float * __restrict__ dst, float2 * __restrict__ dst_meta, const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, const int ne00, const int ne01, const int ne02, @@ -58,6 +62,18 @@ static __global__ void flash_attn_vec_ext_f16( const int stride_KV = nb11 / sizeof(half); const int stride_KV2 = nb11 / sizeof(half2); + half slopeh = __float2half(1.0f); + + // ALiBi + if (max_bias > 0.0f) { + const int h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slopeh = __float2half(powf(base, exph)); + } + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); constexpr int nwarps = D / WARP_SIZE; const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; @@ -141,7 +157,7 @@ static __global__ void flash_attn_vec_ext_f16( for (int j = 0; j < ncols; ++j) { sum2[j] = warp_reduce_sum(sum2[j]); half sum = __low2half(sum2[j]) + __high2half(sum2[j]); - sum += mask ? maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); + sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); if (ncols == 1) { kqmax_new = ggml_cuda_hmax(kqmax_new, sum); @@ -249,6 +265,10 @@ static __global__ void flash_attn_ext_f16( float * __restrict__ dst, float2 * __restrict__ dst_meta, const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, const int ne00, const int ne01, const int ne02, @@ -305,6 +325,20 @@ static __global__ void flash_attn_ext_f16( const int stride_Q = nb01 / sizeof(float); const int stride_KV = nb11 / sizeof(half); + half slopeh = __float2half(1.0f); + half2 slope2 = make_half2(1.0f, 1.0f); + + // ALiBi + if (max_bias > 0.0f) { + const int h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slopeh = __float2half(powf(base, exph)); + slope2 = make_half2(slopeh, slopeh); + } + frag_b Q_b[D/16][ncols/frag_n]; // A single buffer for temporarily holding tiles of KQ and VKQ parts: @@ -421,7 +455,7 @@ static __global__ void flash_attn_ext_f16( for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { const int k = k0 + threadIdx.x; - KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f; + KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f; KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]); } KQ_max_new = warp_reduce_max(KQ_max_new); @@ -464,7 +498,7 @@ static __global__ void flash_attn_ext_f16( for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { const int k = k0 + threadIdx.x; - KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f); + KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f); KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]); } KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new)))); @@ -710,8 +744,17 @@ template void launch_fattn_vec_ const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); const int shmem = 0; - float scale; - memcpy(&scale, KQV->op_params, sizeof(float)); + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); flash_attn_vec_ext_f16 <<>> ( @@ -720,7 +763,7 @@ template void launch_fattn_vec_ (const char *) V->data, mask ? ((const char *) mask->data) : nullptr, parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, - scale, + scale, max_bias, m0, m1, n_head_log2, Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], K->ne[0], K->ne[1], K->ne[2], K->ne[3], mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, @@ -761,8 +804,17 @@ template ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]); const int shmem = 0; - float scale; - memcpy(&scale, KQV->op_params, sizeof(float)); + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); flash_attn_ext_f16 <<>> ( @@ -771,7 +823,7 @@ template data, mask ? ((const char *) mask->data) : nullptr, (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, - scale, + scale, max_bias, m0, m1, n_head_log2, Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], K->ne[0], K->ne[1], K->ne[2], K->ne[3], mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, @@ -837,7 +889,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; - const int32_t precision = KQV->op_params[1]; + const int32_t precision = KQV->op_params[2]; if (!fp16_mma_available(cc)) { GGML_ASSERT(precision == GGML_PREC_DEFAULT); diff --git a/ggml-cuda/softmax.cu b/ggml-cuda/softmax.cu index 6ed225999..ca85285a3 100644 --- a/ggml-cuda/softmax.cu +++ b/ggml-cuda/softmax.cu @@ -11,7 +11,7 @@ __device__ float __forceinline__ t2f32(half val) { } template -static __global__ void soft_max_f32(const float * x, const T * mask, const T * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { +static __global__ void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { const int ncols = ncols_template == 0 ? ncols_par : ncols_template; const int tid = threadIdx.x; @@ -23,16 +23,16 @@ static __global__ void soft_max_f32(const float * x, const T * mask, const T * p const int warp_id = threadIdx.x / WARP_SIZE; const int lane_id = threadIdx.x % WARP_SIZE; - float slope = 0.0f; + float slope = 1.0f; // ALiBi if (max_bias > 0.0f) { const int h = rowx/nrows_y; // head index const float base = h < n_head_log2 ? m0 : m1; - const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; - slope = powf(base, exp); + slope = powf(base, exph); } extern __shared__ float data_soft_max_f32[]; @@ -53,7 +53,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, const T * p const int64_t ix = (int64_t)rowx*ncols + col; const int64_t iy = (int64_t)rowy*ncols + col; - const float val = x[ix]*scale + (mask ? t2f32(mask[iy]) : 0.0f) + (pos ? slope*t2f32(pos[col]) : 0.0f); + const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f); vals[col] = val; max_val = max(max_val, val); @@ -125,7 +125,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, const T * p } template -static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { +static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { int nth = WARP_SIZE; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; const dim3 block_dims(nth, 1, 1); @@ -133,8 +133,8 @@ static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, fl const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float); static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted."); - const uint32_t n_head_kv = nrows_x/nrows_y; - const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + const uint32_t n_head = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); @@ -142,43 +142,42 @@ static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, fl if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) { switch (ncols_x) { case 32: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 64: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 128: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 256: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 512: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 1024: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 2048: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 4096: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; default: - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; } } else { const size_t shmem_low = WARP_SIZE*sizeof(float); - soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); + soft_max_f32<<>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); } } void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; - const ggml_tensor * src2 = dst->src[2]; const float * src0_d = (const float *)src0->data; const void * src1_d = src1 ? (const void *)src1->data : nullptr; @@ -190,7 +189,6 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional - GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional const int64_t ne00 = src0->ne[0]; const int64_t nrows_x = ggml_nrows(src0); @@ -202,26 +200,15 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); - // positions tensor - void * src2_d = nullptr; - - const bool use_src2 = src2 != nullptr; - - if (use_src2) { - src2_d = (void *)src2->data; - } - - const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); if (use_f16) { const half * src1_dd = (const half *)src1_d; - const half * src2_dd = (const half *)src2_d; - soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); + soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); } else { const float * src1_dd = (const float *)src1_d; - const float * src2_dd = (const float *)src2_d; - soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); + soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); } } diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 9a469821d..3f033d58b 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1559,12 +1559,18 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml case GGML_OP_SOFT_MAX: { float scale; - memcpy(&scale, dst->op_params, sizeof(float)); + float max_bias; -#pragma message("TODO: add ggml_vk_soft_max() F16/F32 src1 and src2 support") + memcpy(&scale, (float *)dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float)); + +#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); - GGML_ASSERT(src2 == nullptr); + +#pragma message("TODO: add ALiBi support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192") + GGML_ASSERT(max_bias == 0.0f); ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); } break; diff --git a/ggml-metal.m b/ggml-metal.m index 18ce5b88a..1bbb8fb4f 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -169,7 +169,6 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_ROPE_F32, GGML_METAL_KERNEL_TYPE_ROPE_F16, - GGML_METAL_KERNEL_TYPE_ALIBI_F32, GGML_METAL_KERNEL_TYPE_IM2COL_F16, GGML_METAL_KERNEL_TYPE_IM2COL_F32, GGML_METAL_KERNEL_TYPE_UPSCALE_F32, @@ -623,7 +622,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); @@ -759,7 +757,6 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const case GGML_OP_GROUP_NORM: return ctx->support_simdgroup_reduction; case GGML_OP_NORM: - case GGML_OP_ALIBI: case GGML_OP_ROPE: case GGML_OP_IM2COL: return true; @@ -1358,13 +1355,12 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_OP_SOFT_MAX: { GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); - GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); int nth = 32; // SIMD width id pipeline = nil; - const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); if (ne00%4 == 0) { while (nth < ne00/4 && nth < 256) { @@ -1395,8 +1391,8 @@ static enum ggml_status ggml_metal_graph_compute( const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_y = src0->ne[1]; - const uint32_t n_head_kv = nrows_x/nrows_y; - const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + const uint32_t n_head = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); @@ -1408,20 +1404,15 @@ static enum ggml_status ggml_metal_graph_compute( } else { [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; } - if (id_src2) { - [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; - } else { - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:2]; - } - [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:4]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:5]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6]; - [encoder setBytes:&scale length:sizeof(scale) atIndex:7]; - [encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:8]; - [encoder setBytes:&m0 length:sizeof(m0) atIndex:9]; - [encoder setBytes:&m1 length:sizeof(m1) atIndex:10]; - [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:11]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:6]; + [encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:7]; + [encoder setBytes:&m0 length:sizeof(m0) atIndex:8]; + [encoder setBytes:&m1 length:sizeof(m1) atIndex:9]; + [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; @@ -2226,49 +2217,6 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; - case GGML_OP_ALIBI: - { - GGML_ASSERT((src0t == GGML_TYPE_F32)); - - const int nth = MIN(1024, ne00); - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_head = ((int32_t *) dst->op_params)[1]; - - float max_bias; - memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; - [encoder setBytes:&m1 length:sizeof( float) atIndex:19]; - [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; case GGML_OP_ROPE: { GGML_ASSERT(ne10 == ne02); @@ -2566,7 +2514,7 @@ static enum ggml_status ggml_metal_graph_compute( "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big"); const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30); - const int64_t ne31 = src3 ? src3->ne[1] : 0; + //const int64_t ne31 = src3 ? src3->ne[1] : 0; const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32); const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33); @@ -2578,7 +2526,16 @@ static enum ggml_status ggml_metal_graph_compute( const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t); float scale; - memcpy(&scale, dst->op_params, sizeof(float)); + float max_bias; + + memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale)); + memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias)); + + const uint32_t n_head = src0->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); id pipeline = nil; @@ -2615,34 +2572,37 @@ static enum ggml_status ggml_metal_graph_compute( } [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; - [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12]; - [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14]; - [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15]; - [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16]; - [encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18]; - [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19]; - [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20]; - [encoder setBytes:&ne31 length:sizeof( int64_t) atIndex:21]; - [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:22]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:23]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:24]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:25]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:26]; - [encoder setBytes:&scale length:sizeof( float) atIndex:27]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; + [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12]; + [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14]; + [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15]; + [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16]; + [encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19]; + [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20]; + [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:21]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:22]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:23]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:24]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:25]; + [encoder setBytes:&scale length:sizeof( float) atIndex:26]; + [encoder setBytes:&max_bias length:sizeof( float) atIndex:27]; + [encoder setBytes:&m0 length:sizeof(m0) atIndex:28]; + [encoder setBytes:&m1 length:sizeof(m1) atIndex:29]; + [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:30]; if (!use_vec_kernel) { // half8x8 kernel diff --git a/ggml-metal.metal b/ggml-metal.metal index 46c7d5039..ee9de57a3 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -356,7 +356,6 @@ template kernel void kernel_soft_max( device const char * src0, device const char * src1, - device const char * src2, device char * dst, constant int64_t & ne00, constant int64_t & ne01, @@ -378,10 +377,9 @@ kernel void kernel_soft_max( device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr; - device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr; device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); - float slope = 0.0f; + float slope = 1.0f; // ALiBi if (max_bias > 0.0f) { @@ -397,7 +395,7 @@ kernel void kernel_soft_max( float lmax = -INFINITY; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { - lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)); + lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)); } // find the max value in the block @@ -422,7 +420,7 @@ kernel void kernel_soft_max( // parallel sum float lsum = 0.0f; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { - const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val); + const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val); lsum += exp_psrc0; pdst[i00] = exp_psrc0; } @@ -461,7 +459,6 @@ template kernel void kernel_soft_max_4( device const char * src0, device const char * src1, - device const char * src2, device char * dst, constant int64_t & ne00, constant int64_t & ne01, @@ -483,10 +480,9 @@ kernel void kernel_soft_max_4( device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr; - device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr; device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; - float slope = 0.0f; + float slope = 1.0f; if (max_bias > 0.0f) { const int64_t h = i02; @@ -501,7 +497,7 @@ kernel void kernel_soft_max_4( float4 lmax4 = -INFINITY; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { - lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f))); + lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))); } const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); @@ -527,7 +523,7 @@ kernel void kernel_soft_max_4( // parallel sum float4 lsum4 = 0.0f; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { - const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f))) - max_val); + const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val); lsum4 += exp_psrc4; pdst4[i00] = exp_psrc4; } @@ -1595,60 +1591,6 @@ kernel void kernel_mul_mv_f16_f32_l4( } } -kernel void kernel_alibi_f32( - device const float * src0, - device float * dst, - constant int64_t & ne00, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne03, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, - constant uint64_t & nb03, - constant int64_t & ne0, - constant int64_t & ne1, - constant int64_t & ne2, - constant int64_t & ne3, - constant uint64_t & nb0, - constant uint64_t & nb1, - constant uint64_t & nb2, - constant uint64_t & nb3, - constant float & m0, - constant float & m1, - constant int & n_heads_log2_floor, - uint3 tgpig[[threadgroup_position_in_grid]], - uint3 tpitg[[thread_position_in_threadgroup]], - uint3 ntg[[threads_per_threadgroup]]) { - const int64_t i03 = tgpig[2]; - const int64_t i02 = tgpig[1]; - const int64_t i01 = tgpig[0]; - - const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; - - const int64_t i3 = n / (ne2*ne1*ne0); - const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); - const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; - //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); - - const int64_t k = i3*ne3 + i2; - - float m_k; - if (k < n_heads_log2_floor) { - m_k = pow(m0, k + 1); - } else { - m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1); - } - - device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1; - device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01; - for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { - const float src_v = *(device float *)(src_row + i00*nb00); - device float * dst_v = (device float *)(dst_row + i00*nb0); - *dst_v = i00 * m_k + src_v; - } -} - static float rope_yarn_ramp(const float low, const float high, const int i0) { const float y = (i0 / 2 - low) / max(0.001f, high - low); return 1.0f - min(1.0f, max(0.0f, y)); @@ -2116,13 +2058,16 @@ typedef void (flash_attn_ext_f16_t)( constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, - constant int64_t & ne31, constant uint64_t & nb31, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, threadgroup half * shared, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], @@ -2154,13 +2099,16 @@ kernel void kernel_flash_attn_ext_f16( constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, - constant int64_t & ne31, constant uint64_t & nb31, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, threadgroup half * shared [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], @@ -2257,6 +2205,19 @@ kernel void kernel_flash_attn_ext_f16( // prepare diagonal scale matrix simdgroup_float8x8 mscale(scale); + // prepare diagonal slope matrix + simdgroup_float8x8 mslope(1.0f); + + // ALiBi + if (max_bias > 0.0f) { + const short h = iq2; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + mslope = simdgroup_float8x8(pow(base, exph)); + } + // loop over the KV cache // each simdgroup handles blocks of Q rows and C columns for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { @@ -2279,9 +2240,10 @@ kernel void kernel_flash_attn_ext_f16( simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); } - // mqk = mqk*scale + mask + // mqk = mqk*scale + mask*slope simdgroup_half8x8 mm; simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false); + simdgroup_multiply(mm, mslope, mm); simdgroup_multiply_accumulate(mqk, mqk, mscale, mm); simdgroup_store(mqk, ss + 8*cc, TF, 0, false); @@ -2472,13 +2434,16 @@ kernel void kernel_flash_attn_ext_vec_f16( constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, - constant int64_t & ne31, constant uint64_t & nb31, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, threadgroup half * shared [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], @@ -2497,6 +2462,18 @@ kernel void kernel_flash_attn_ext_vec_f16( const short T = D + 2*nsg*SH; // shared memory size per query in (half) + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const short h = iq2; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + //threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix @@ -2603,10 +2580,10 @@ kernel void kernel_flash_attn_ext_vec_f16( mqk += simd_shuffle_down(mqk, 2); mqk += simd_shuffle_down(mqk, 1); - // mqk = mqk*scale + mask + // mqk = mqk*scale + mask*slope if (tiisg == 0) { float4 mm = (float4) mp4[ic/4 + cc]; - mqk = mqk*scale + mm; + mqk = mqk*scale + mm*slope; ss4[cc] = mqk; } @@ -2840,7 +2817,8 @@ kernel void kernel_cpy_f32_f16( for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); - dst_data[i00] = src[0]; + // TODO: is there a better way to handle -INFINITY? + dst_data[i00] = src[0] == -INFINITY ? -MAXHALF : src[0]; } } diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index 79aec4d9f..e93d2af63 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -3154,7 +3154,6 @@ typedef float (*vec_dot_q_mul_mat_sycl_t)( #define SYCL_SCALE_BLOCK_SIZE 256 #define SYCL_CLAMP_BLOCK_SIZE 256 #define SYCL_ROPE_BLOCK_SIZE 256 -#define SYCL_ALIBI_BLOCK_SIZE 32 #define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32 #define SYCL_QUANTIZE_BLOCK_SIZE 256 #define SYCL_DEQUANTIZE_BLOCK_SIZE 256 @@ -9316,32 +9315,6 @@ static void rope_glm_f32( dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta; } -static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows, - const int n_heads_log2_floor, const float m0, const float m1, - const sycl::nd_item<3> &item_ct1) { - const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) + - item_ct1.get_local_id(2); - - if (col >= ncols) { - return; - } - - const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) + - item_ct1.get_local_id(1); - const int i = row*ncols + col; - - const int k = row/k_rows; - - float m_k; - if (k < n_heads_log2_floor) { - m_k = dpct::pow(m0, k + 1); - } else { - m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1); - } - - dst[i] = col * m_k + x[i]; -} - static void k_sum_rows_f32(const float * x, float * dst, const int ncols, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(1); @@ -9443,7 +9416,7 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con template -static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par, +static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) { const int ncols = ncols_template == 0 ? ncols_par : ncols_template; @@ -9457,7 +9430,7 @@ static void soft_max_f32(const float * x, const float * mask, const float *pos, const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - float slope = 0.0f; + float slope = 1.0f; // ALiBi if (max_bias > 0.0f) { @@ -9482,7 +9455,7 @@ static void soft_max_f32(const float * x, const float * mask, const float *pos, const int ix = rowx*ncols + col; const int iy = rowy*ncols + col; - const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f); + const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f); vals[col] = val; max_val = sycl::max(max_val, val); @@ -12964,20 +12937,6 @@ static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows, }); } -static void alibi_f32_sycl(const float *x, float *dst, const int ncols, - const int nrows, const int k_rows, - const int n_heads_log2_floor, const float m0, - const float m1, dpct::queue_ptr stream) { - const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE); - const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE); - const sycl::range<3> block_nums(1, nrows, num_blocks_x); - stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - alibi_f32(x, dst, ncols, k_rows, - n_heads_log2_floor, m0, m1, item_ct1); - }); -} - static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); @@ -13058,7 +13017,7 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst, } template -static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par, +static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims, const size_t n_local_scratch, dpct::queue_ptr stream) { @@ -13068,7 +13027,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, const fl cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - soft_max_f32(x, mask, pos, dst, ncols_par, + soft_max_f32(x, mask, dst, ncols_par, nrows_y, scale, max_bias, m0, m1, n_head_log2, item_ct1, local_buf_acc.get_pointer()); @@ -13076,7 +13035,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, const fl }); } -static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos, +static void soft_max_f32_sycl(const float * x, const float * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, dpct::queue_ptr stream) { @@ -13098,60 +13057,60 @@ static void soft_max_f32_sycl(const float * x, const float * mask, const float * const size_t local_mem_size = stream->get_device().get_info(); if (n_local_scratch*sizeof(float) < local_mem_size) { if (ncols_x > max_block_size) { - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); return; } switch (ncols_x) { case 32: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 64: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 128: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 256: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 512: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 1024: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 2048: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; case 4096: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; default: - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, n_local_scratch, stream); break; } } else { - soft_max_f32_submitter(x, mask, pos, dst, ncols_x, nrows_y, scale, + soft_max_f32_submitter(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2, block_nums, block_dims, WARP_SIZE, stream); } @@ -14562,36 +14521,6 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1, (void) src1_dd; } -inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1, - ggml_tensor *dst, const float *src0_dd, - const float *src1_dd, float *dst_dd, - const dpct::queue_ptr &main_stream) { - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne); - const int64_t nrows = ggml_nrows(src0); - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_head = ((int32_t *) dst->op_params)[1]; - float max_bias; - memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - - //GGML_ASSERT(ne01 + n_past == ne00); - GGML_ASSERT(n_head == ne02); - - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - - alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream); - - (void) src1; - (void) src1_dd; -} - static void ggml_sycl_op_pool2d(const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, @@ -14746,12 +14675,9 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0, GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - const ggml_tensor * src2 = dst->src[2]; - -#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 and src2 support") +#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional - GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional const int64_t ne00 = src0->ne[0]; const int64_t nrows_x = ggml_nrows(src0); @@ -14763,25 +14689,7 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0, memcpy(&scale, dst->op_params + 0, sizeof(float)); memcpy(&max_bias, dst->op_params + 1, sizeof(float)); - // positions tensor - float * src2_dd = nullptr; - sycl_pool_alloc src2_f; - - const bool use_src2 = src2 != nullptr; - - if (use_src2) { - const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU; - - if (src2_on_device) { - ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra; - src2_dd = (float *) src2_extra->data_device[g_main_device]; - } else { - src2_dd = src2_f.alloc(ggml_nelements(src2)); - SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream)); - } - } - - soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, + soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream); } @@ -16232,10 +16140,6 @@ static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, g ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope); } -static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi); -} - static void ggml_sycl_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pool2d); } @@ -16612,9 +16516,6 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_ case GGML_OP_ROPE: func = ggml_sycl_rope; break; - case GGML_OP_ALIBI: - func = ggml_sycl_alibi; - break; case GGML_OP_IM2COL: func = ggml_sycl_im2col; break; @@ -17744,7 +17645,6 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: - case GGML_OP_ALIBI: case GGML_OP_IM2COL: case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index 95f718974..b9449be03 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -3830,9 +3830,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return nullptr; case GGML_OP_SOFT_MAX: GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); - GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32 || src2->type == GGML_TYPE_F16); - if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && (src2 == nullptr || src2->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { + if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_soft_max_f32; } if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && src2->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { @@ -4286,6 +4285,9 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); +#pragma message("TODO: src2 is no longer used in soft_max - should be removed and ALiBi calculation should be updated") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192") + ggml_vk_op_f32(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, { ncols, src1 != nullptr ? nrows_y : (uint32_t)0, diff --git a/ggml.c b/ggml.c index 093d38d00..4ee5d24af 100644 --- a/ggml.c +++ b/ggml.c @@ -2185,7 +2185,6 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "SOFT_MAX_BACK", "ROPE", "ROPE_BACK", - "ALIBI", "CLAMP", "CONV_TRANSPOSE_1D", "IM2COL", @@ -2227,7 +2226,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77"); +static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2276,7 +2275,6 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "soft_max_back(x)", "rope(x)", "rope_back(x)", - "alibi(x)", "clamp(x)", "conv_transpose_1d(x)", "im2col(x)", @@ -2318,7 +2316,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77"); +static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -5646,7 +5644,6 @@ static struct ggml_tensor * ggml_soft_max_impl( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * mask, - struct ggml_tensor * pos, float scale, float max_bias, bool inplace) { @@ -5660,18 +5657,8 @@ static struct ggml_tensor * ggml_soft_max_impl( GGML_ASSERT(mask->ne[1] >= a->ne[1]); } - if (pos) { - GGML_ASSERT(ggml_is_vector(pos)); - GGML_ASSERT(pos->type == GGML_TYPE_F16 || pos->type == GGML_TYPE_F32); - GGML_ASSERT(pos->ne[0] == a->ne[0]); - } - - if (pos && mask) { - GGML_ASSERT(pos->type == mask->type); - } - if (max_bias > 0.0f) { - GGML_ASSERT(pos); + GGML_ASSERT(mask); } bool is_node = false; @@ -5689,7 +5676,6 @@ static struct ggml_tensor * ggml_soft_max_impl( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = mask; - result->src[2] = pos; return result; } @@ -5697,23 +5683,22 @@ static struct ggml_tensor * ggml_soft_max_impl( struct ggml_tensor * ggml_soft_max( struct ggml_context * ctx, struct ggml_tensor * a) { - return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false); + return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false); } struct ggml_tensor * ggml_soft_max_inplace( struct ggml_context * ctx, struct ggml_tensor * a) { - return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true); + return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true); } struct ggml_tensor * ggml_soft_max_ext( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * mask, - struct ggml_tensor * pos, float scale, float max_bias) { - return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false); + return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false); } // ggml_soft_max_back @@ -5928,37 +5913,6 @@ struct ggml_tensor * ggml_rope_back( return result; } -// ggml_alibi - -struct ggml_tensor * ggml_alibi( - struct ggml_context * ctx, - struct ggml_tensor * a, - int n_past, - int n_head, - float bias_max) { - GGML_ASSERT(n_past >= 0); - bool is_node = false; - - if (a->grad) { - GGML_ASSERT(false); // TODO: implement backward - is_node = true; - } - - // TODO: when implement backward, fix this: - //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - struct ggml_tensor * result = ggml_view_tensor(ctx, a); - - int32_t op_params[3] = { n_past, n_head }; - memcpy(op_params + 2, &bias_max, sizeof(float)); - ggml_set_op_params(result, op_params, sizeof(op_params)); - - result->op = GGML_OP_ALIBI; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src[0] = a; - - return result; -} - // ggml_clamp struct ggml_tensor * ggml_clamp( @@ -6486,9 +6440,11 @@ struct ggml_tensor * ggml_flash_attn_ext( struct ggml_tensor * k, struct ggml_tensor * v, struct ggml_tensor * mask, - float scale) { + float scale, + float max_bias) { GGML_ASSERT(ggml_can_mul_mat(k, q)); // TODO: check if vT can be multiplied by (k*qT) + if (mask) { GGML_ASSERT(ggml_is_contiguous(mask)); GGML_ASSERT(mask->ne[2] == 1); @@ -6498,6 +6454,10 @@ struct ggml_tensor * ggml_flash_attn_ext( //GGML_ASSERT(ggml_can_repeat_rows(mask, qk)); } + if (max_bias > 0.0f) { + GGML_ASSERT(mask); + } + bool is_node = false; if (q->grad || k->grad || v->grad) { @@ -6508,7 +6468,7 @@ struct ggml_tensor * ggml_flash_attn_ext( int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); - float params[] = { scale }; + float params[] = { scale, max_bias }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_FLASH_ATTN_EXT; @@ -6528,7 +6488,7 @@ void ggml_flash_attn_ext_set_prec( const int32_t prec_i32 = (int32_t) prec; - ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos + ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second } // ggml_flash_ff @@ -13333,7 +13293,6 @@ static void ggml_compute_forward_soft_max_f32( const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; - const struct ggml_tensor * src2 = dst->src[2]; assert(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst)); @@ -13359,8 +13318,8 @@ static void ggml_compute_forward_soft_max_f32( // TODO: is this supposed to be ceil instead of floor? // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 - const uint32_t n_head_kv = ne02; - const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv)); + const uint32_t n_head = ne02; + const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); @@ -13377,13 +13336,13 @@ static void ggml_compute_forward_soft_max_f32( float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; - // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching - ggml_fp16_t * pos_f16 = src2 ? (ggml_fp16_t *) src2->data : src0->data; - float * pos_f32 = src2 ? (float *) src2->data : src0->data; - - const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); for (int i1 = ir0; i1 < ir1; i1++) { + // ALiBi + const uint32_t h = (i1/ne01)%ne02; // head + const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f; + float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); @@ -13396,27 +13355,11 @@ static void ggml_compute_forward_soft_max_f32( if (mp_f32) { if (use_f16) { for (int i = 0; i < nc; ++i) { - wp[i] += GGML_FP16_TO_FP32(mp_f16[i]); + wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]); } } else { for (int i = 0; i < nc; ++i) { - wp[i] += mp_f32[i]; - } - } - } - - // ALiBi bias - if (max_bias > 0.0f) { - const uint32_t h = (i1/ne01)%ne02; // head - const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1); - - if (use_f16) { - for (int i = 0; i < nc; ++i) { - wp[i] += slope*GGML_FP16_TO_FP32(pos_f16[i]); - } - } else { - for (int i = 0; i < nc; ++i) { - wp[i] += slope*pos_f32[i]; + wp[i] += slope*mp_f32[i]; } } } @@ -13578,178 +13521,6 @@ static void ggml_compute_forward_soft_max_back( } } -// ggml_compute_forward_alibi - -static void ggml_compute_forward_alibi_f32( - const struct ggml_compute_params * params, - struct ggml_tensor * dst) { - - const struct ggml_tensor * src0 = dst->src[0]; - - assert(params->ith == 0); - - if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { - return; - } - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_head = ((int32_t *) dst->op_params)[1]; - float max_bias; - memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - - const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 - const int64_t ne1 = src0->ne[1]; // seq_len_without_past - const int64_t ne2 = src0->ne[2]; // n_head -> this is k - //const int64_t ne3 = src0->ne[3]; // 1 -> bsz - - const int64_t n = ggml_nrows(src0); - const int64_t ne2_ne3 = n/ne1; // ne2*ne3 - - const size_t nb0 = src0->nb[0]; - const size_t nb1 = src0->nb[1]; - const size_t nb2 = src0->nb[2]; - //const int nb3 = src0->nb[3]; - - GGML_ASSERT(nb0 == sizeof(float)); - GGML_ASSERT(n_head == ne2); - - // add alibi to src0 (KQ_scaled) - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - - for (int64_t k = 0; k < ne2_ne3; k++) { - // TODO: k*nb2 or k*nb3 - float m_k; - - if (k < n_heads_log2_floor) { - m_k = powf(m0, k + 1); - } else { - m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); - } - - for (int64_t i = 0; i < ne0; i++) { - for (int64_t j = 0; j < ne1; j++) { - float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); - float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); - pdst[0] = i * m_k + src[0]; - } - } - } -} - -static void ggml_compute_forward_alibi_f16( - const struct ggml_compute_params * params, - struct ggml_tensor * dst) { - - const struct ggml_tensor * src0 = dst->src[0]; - - assert(params->ith == 0); - - if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { - return; - } - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_head = ((int32_t *) dst->op_params)[1]; - float max_bias; - memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - - const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 - const int ne1 = src0->ne[1]; // seq_len_without_past - const int ne2 = src0->ne[2]; // n_head -> this is k - //const int ne3 = src0->ne[3]; // 1 -> bsz - - const int n = ggml_nrows(src0); - const int ne2_ne3 = n/ne1; // ne2*ne3 - - const int nb0 = src0->nb[0]; - const int nb1 = src0->nb[1]; - const int nb2 = src0->nb[2]; - //const int nb3 = src0->nb[3]; - - GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); - //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past; - GGML_ASSERT(n_head == ne2); - - // add alibi to src0 (KQ_scaled) - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - - for (int k = 0; k < ne2_ne3; k++) { - // TODO: k*nb2 or k*nb3 - float m_k; - - if (k < n_heads_log2_floor) { - m_k = powf(m0, k + 1); - } else { - m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); - } - - for (int i = 0; i < ne0; i++) { - for (int j = 0; j < ne1; j++) { - ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); - float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); - - // we return F32 - pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]); - } - } - } -} - -static void ggml_compute_forward_alibi( - const struct ggml_compute_params * params, - struct ggml_tensor * dst) { - - const struct ggml_tensor * src0 = dst->src[0]; - - switch (src0->type) { - case GGML_TYPE_F16: - { - ggml_compute_forward_alibi_f16(params, dst); - } break; - case GGML_TYPE_F32: - { - ggml_compute_forward_alibi_f32(params, dst); - } break; - case GGML_TYPE_BF16: - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q5_0: - case GGML_TYPE_Q5_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_Q8_1: - case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: - case GGML_TYPE_Q4_K: - case GGML_TYPE_Q5_K: - case GGML_TYPE_Q6_K: - case GGML_TYPE_IQ2_XXS: - case GGML_TYPE_IQ2_XS: - case GGML_TYPE_IQ3_XXS: - case GGML_TYPE_IQ1_S: - case GGML_TYPE_IQ1_M: - case GGML_TYPE_IQ4_NL: - case GGML_TYPE_IQ4_XS: - case GGML_TYPE_IQ3_S: - case GGML_TYPE_IQ2_S: - case GGML_TYPE_Q8_K: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_I64: - case GGML_TYPE_F64: - case GGML_TYPE_COUNT: - { - GGML_ASSERT(false); - } break; - } -} - // ggml_compute_forward_clamp static void ggml_compute_forward_clamp_f32( @@ -15763,8 +15534,17 @@ static void ggml_compute_forward_flash_attn_ext_f16( const int ir0 = dr*ith; const int ir1 = MIN(ir0 + dr, nr); - float scale = 1.0f; - memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); + + const uint32_t n_head = neq2; + const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); // loop over n_batch and n_head for (int ir = ir0; ir < ir1; ++ir) { @@ -15773,6 +15553,9 @@ static void ggml_compute_forward_flash_attn_ext_f16( const int iq2 = (ir - iq3*neq2*neq1)/neq1; const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + const uint32_t h = iq2; // head + const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f; + float S = 0.0f; float M = -INFINITY; @@ -15796,7 +15579,7 @@ static void ggml_compute_forward_flash_attn_ext_f16( // loop over n_kv and n_head_kv // ref: https://arxiv.org/pdf/2112.05682.pdf for (int64_t ic = 0; ic < nek1; ++ic) { - const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f; + const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f; if (mv == -INFINITY) { continue; } @@ -15867,7 +15650,7 @@ static void ggml_compute_forward_flash_attn_ext( const struct ggml_tensor * v, const struct ggml_tensor * mask, struct ggml_tensor * dst) { - switch (dst->op_params[1]) { + switch (dst->op_params[2]) { case GGML_PREC_DEFAULT: case GGML_PREC_F32: { @@ -17630,10 +17413,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_rope_back(params, tensor); } break; - case GGML_OP_ALIBI: - { - ggml_compute_forward_alibi(params, tensor); - } break; case GGML_OP_CLAMP: { ggml_compute_forward_clamp(params, tensor); @@ -18652,10 +18431,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor zero_table); } } break; - case GGML_OP_ALIBI: - { - GGML_ASSERT(false); // TODO: not implemented - } break; case GGML_OP_CLAMP: { GGML_ASSERT(false); // TODO: not implemented @@ -19428,10 +19203,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ { n_tasks = n_threads; } break; - case GGML_OP_ALIBI: - { - n_tasks = 1; //TODO - } break; case GGML_OP_CLAMP: { n_tasks = 1; //TODO diff --git a/ggml.h b/ggml.h index fe6053822..76c332831 100644 --- a/ggml.h +++ b/ggml.h @@ -468,7 +468,6 @@ extern "C" { GGML_OP_SOFT_MAX_BACK, GGML_OP_ROPE, GGML_OP_ROPE_BACK, - GGML_OP_ALIBI, GGML_OP_CLAMP, GGML_OP_CONV_TRANSPOSE_1D, GGML_OP_IM2COL, @@ -1428,15 +1427,13 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); - // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope)) + // fused soft_max(a*scale + mask*(ALiBi slope)) // mask is optional - // pos is required when max_bias > 0.0f // max_bias = 0.0f for no ALiBi GGML_API struct ggml_tensor * ggml_soft_max_ext( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * mask, - struct ggml_tensor * pos, float scale, float max_bias); @@ -1538,16 +1535,6 @@ extern "C" { float xpos_base, bool xpos_down); - // alibi position embedding - // in-place, returns view(a) - GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi( - struct ggml_context * ctx, - struct ggml_tensor * a, - int n_past, - int n_head, - float bias_max), - "use ggml_soft_max_ext instead (will be removed in Mar 2024)"); - // clamp // in-place, returns view(a) GGML_API struct ggml_tensor * ggml_clamp( @@ -1744,7 +1731,8 @@ extern "C" { struct ggml_tensor * k, struct ggml_tensor * v, struct ggml_tensor * mask, - float scale); + float scale, + float max_bias); GGML_API void ggml_flash_attn_ext_set_prec( struct ggml_tensor * a, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index e5750d419..990fe63c2 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -137,6 +137,7 @@ class TensorNameMap: "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert "transformer.h.{bid}.attn.k_proj", # gpt-j + "transformer.h.{bid}.attn.k", # refact "model.layers.layers.{bid}.self_attn.k_proj", # plamo "model.layers.{bid}.attention.wk", # internlm2 "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok @@ -148,6 +149,7 @@ class TensorNameMap: "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert "transformer.h.{bid}.attn.v_proj", # gpt-j + "transformer.h.{bid}.attn.v", # refact "model.layers.layers.{bid}.self_attn.v_proj", # plamo "model.layers.{bid}.attention.wv", # internlm2 "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok @@ -229,6 +231,7 @@ class TensorNameMap: "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert "transformer.h.{bid}.mlp.fc_in", # gpt-j + "transformer.h.{bid}.mlp.linear_3", # refact "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon "transformer.h.{bid}.mlp.w1", # qwen @@ -266,6 +269,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mlp.gate_proj", # plamo "model.layers.{bid}.feed_forward.w1", # internlm2 "encoder.layers.{bid}.mlp.fc12", # nomic-bert + "transformer.h.{bid}.mlp.linear_1", # refact ), MODEL_TENSOR.FFN_GATE_EXP: ( diff --git a/llama.cpp b/llama.cpp index 2f1123d4e..dede68cb5 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1845,7 +1845,7 @@ struct llama_hparams { float f_logit_scale = 0.0f; bool causal_attn = true; - bool use_alibi = false; // currently, we need KQ_pos data for ALiBi-based models + bool use_alibi = false; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; @@ -2317,7 +2317,6 @@ struct llama_context { struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] - struct ggml_tensor * inp_KQ_pos; // F32 [n_kv] struct ggml_tensor * inp_K_shift; // I32 [kv_size] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] @@ -6500,7 +6499,6 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * wo_b, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, - struct ggml_tensor * kq_pos, int32_t n_tokens, int32_t n_kv, float kq_scale, @@ -6530,10 +6528,6 @@ static struct ggml_tensor * llm_build_kqv( GGML_UNUSED(model); GGML_UNUSED(n_ctx); - // note: if this assert triggers, then some check has failed earlier - // the idea is to detect during context creation that ALiBi would be used and disable Flash Attention - GGML_ASSERT(kq_pos == nullptr && "ALiBi is not yet supported with Flash Attention"); - // split cached v into n_head heads (not transposed) struct ggml_tensor * v = ggml_view_3d(ctx, kv.v_l[il], @@ -6543,7 +6537,7 @@ static struct ggml_tensor * llm_build_kqv( 0); cb(v, "v", il); - cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale); + cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias); if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) { ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); @@ -6574,28 +6568,8 @@ static struct ggml_tensor * llm_build_kqv( kq = ggml_scale(ctx, kq, 30); } -#if defined(GGML_USE_KOMPUTE) -#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute") -#pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") -#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") - if (hparams.use_alibi) { - kq = ggml_scale(ctx, kq, kq_scale); - cb(kq, "kq_scaled", il); - - kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias); - cb(kq, "kq_scaled_alibi", il); - - kq = ggml_add(ctx, kq, kq_mask); - cb(kq, "kq_masked", il); - - kq = ggml_soft_max(ctx, kq); - cb(kq, "kq_soft_max", il); - } else -#endif - { - kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); - } + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); GGML_ASSERT(kv.size == n_ctx); @@ -6645,7 +6619,6 @@ static struct ggml_tensor * llm_build_kv( struct ggml_tensor * v_cur, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, - struct ggml_tensor * kq_pos, int32_t n_tokens, int32_t kv_head, int32_t n_kv, @@ -6664,7 +6637,7 @@ static struct ggml_tensor * llm_build_kv( struct ggml_tensor * cur; cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b, - q_cur, kq_mask, kq_pos, n_tokens, n_kv, kq_scale, cb, il); + q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il); cb(cur, "kqv_out", il); return cur; @@ -6771,18 +6744,17 @@ struct llm_build_context { ctx0 = ggml_init(params); - lctx.inp_tokens = nullptr; - lctx.inp_embd = nullptr; - lctx.inp_pos = nullptr; + lctx.inp_tokens = nullptr; + lctx.inp_embd = nullptr; + lctx.inp_pos = nullptr; lctx.inp_out_ids = nullptr; lctx.inp_KQ_mask = nullptr; - lctx.inp_KQ_pos = nullptr; lctx.inp_K_shift = nullptr; - lctx.inp_mean = nullptr; - lctx.inp_cls = nullptr; - lctx.inp_s_copy = nullptr; - lctx.inp_s_mask = nullptr; - lctx.inp_s_seq = nullptr; + lctx.inp_mean = nullptr; + lctx.inp_cls = nullptr; + lctx.inp_s_copy = nullptr; + lctx.inp_s_mask = nullptr; + lctx.inp_s_seq = nullptr; } void free() { @@ -6932,19 +6904,6 @@ struct llm_build_context { return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask; } - struct ggml_tensor * build_inp_KQ_pos(bool causal = true) { - if (causal) { - lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv); - } else { - // TODO: this will be needed for ALiBi-based BERT models - // https://github.com/ggerganov/llama.cpp/pull/6826 - lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_tokens); - } - cb(lctx.inp_KQ_pos, "KQ_pos", -1); - ggml_set_input(lctx.inp_KQ_pos); - return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_pos, GGML_TYPE_F16) : lctx.inp_KQ_pos; - } - struct ggml_tensor * build_inp_mean() { lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); cb(lctx.inp_mean, "inp_mean", -1); @@ -7050,7 +7009,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7143,9 +7102,6 @@ struct llm_build_context { // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7190,7 +7146,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7260,9 +7216,6 @@ struct llm_build_context { // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7297,7 +7250,7 @@ struct llm_build_context { cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7417,7 +7370,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7542,7 +7495,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -7694,7 +7647,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7806,7 +7759,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8010,7 +7963,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Q, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Q, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8076,9 +8029,6 @@ struct llm_build_context { // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -8106,7 +8056,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8246,7 +8196,7 @@ struct llm_build_context { struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); cb(kq, "kq", il); - kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias); + kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias); cb(kq, "kq_soft_max_ext", il); struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens))); @@ -8363,9 +8313,6 @@ struct llm_build_context { // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); - inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, @@ -8399,7 +8346,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8464,9 +8411,6 @@ struct llm_build_context { // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); - if (model.pos_embd) { // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); @@ -8530,13 +8474,13 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } else { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } } @@ -8680,7 +8624,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8798,7 +8742,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8911,7 +8855,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9025,7 +8969,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9180,7 +9124,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -9297,7 +9241,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -9410,7 +9354,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } struct ggml_tensor * sa_out = cur; @@ -9513,7 +9457,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9620,7 +9564,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9736,7 +9680,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9853,7 +9797,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9983,7 +9927,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -10104,7 +10048,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -10223,7 +10167,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -10513,7 +10457,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -10644,7 +10588,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, nullptr, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -11032,11 +10976,21 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { f = -INFINITY; } else { - f = 0.0f; + if (hparams.use_alibi) { + f = -fabs(lctx.kv_self.cells[i].pos - pos); + } else { + f = 0.0f; + } } data[h*(n_kv*n_tokens) + j*n_kv + i] = f; } } + + for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { + for (int j = 0; j < n_kv; ++j) { + data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; + } + } } } else { // when using kv cache, the mask needs to match the kv cache size @@ -11055,7 +11009,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { float f = -INFINITY; for (int s = 0; s < batch.n_seq_id[i]; ++s) { if (batch.seq_id[i][s] == seq_id) { - f = 0.0f; + if (hparams.use_alibi) { + f = -fabs(batch.pos[i] - batch.pos[j]); + } else { + f = 0.0f; + } break; } } @@ -11071,21 +11029,6 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } - // ALiBi requires the KQ_pos tensor to provide the sequence position of each token in the batch - // this allows to process multiple sequences in parallel with ALiBi-based models - if (hparams.use_alibi) { - const int64_t n_kv = kv_self.n; - - GGML_ASSERT(lctx.inp_KQ_pos); - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer)); - - float * data = (float *) lctx.inp_KQ_pos->data; - - for (int i = 0; i < n_kv; ++i) { - data[i] = float(lctx.kv_self.cells[i].pos); - } - } - if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = batch.n_tokens; @@ -15509,11 +15452,6 @@ struct llama_context * llama_new_context_with_model( } } - if (cparams.flash_attn && hparams.use_alibi) { - LLAMA_LOG_WARN("%s: flash_attn is not yet compatible with ALiBi - forcing off\n", __func__); - cparams.flash_attn = false; - } - if (cparams.flash_attn && model->arch == LLM_ARCH_GROK) { LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); cparams.flash_attn = false; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 0d66de5d9..731788b95 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1111,11 +1111,7 @@ struct test_soft_max : public test_case { if (this->mask) { mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]); } - ggml_tensor * pos = nullptr; - if (max_bias > 0.0f) { - pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]); - } - ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias); + ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias); return out; } }; @@ -1490,23 +1486,25 @@ struct test_flash_attn_ext : public test_case { const int64_t kv; // kv size const int64_t nb; // batch size + const float max_bias; // ALiBi + std::string vars() override { - return VARS_TO_STR4(hs, nh, kv, nb); + return VARS_TO_STR5(hs, nh, kv, nb, max_bias); } double max_nmse_err() override { return 5e-4; } - test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8) - : hs(hs), nh(nh), kv(kv), nb(nb) {} + test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, float max_bias = 0.0f) + : hs(hs), nh(nh), kv(kv), nb(nb), max_bias(max_bias) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1); ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1); - ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs)); + ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs), max_bias); return out; } }; @@ -1611,7 +1609,7 @@ public: struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); - kq = ggml_soft_max_ext(ctx, kq, kq_mask, nullptr, kq_scale, 0.0f); + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f); // split cached v into n_head heads struct ggml_tensor * v = @@ -2128,6 +2126,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op #endif for (bool mask : {false, true}) { for (float max_bias : {0.0f, 8.0f}) { + if (!mask && max_bias > 0.0f) continue; for (float scale : {1.0f, 0.1f}) { for (int64_t ne0 : {16, 1024}) { for (int64_t ne1 : {16, 1024}) { @@ -2141,7 +2140,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f)); - test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 8.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { @@ -2180,10 +2178,12 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op #else for (int hs : { 64, 80, 128, 256, }) { #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) - for (int nh : { 32, }) { - for (int kv : { 512, 1024, }) { - for (int nb : { 1, 2, 4, 8, }) { - test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb)); + for (float max_bias : {0.0f, 8.0f}) { + for (int nh : { 32, }) { + for (int kv : { 512, 1024, }) { + for (int nb : { 1, 2, 4, 8, }) { + test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, max_bias)); + } } } } From b83cc3f5b303ff30c52874b2d5864dc6385ebf9f Mon Sep 17 00:00:00 2001 From: Joan Fontanals Date: Sat, 11 May 2024 09:46:09 +0200 Subject: [PATCH 08/56] llama : add Jina Embeddings architecture (#6826) * feat: first things to do * feat: create tensors for Jina architecture * fix: use other tensors * feat: embedding gets results * fix: fix usage of ALIBI * fix: clean prints * fix: do some cleanup unused vars * fix: revert changes to Makefile and CMakeLists * fix: revert some changes * fix: fix small detail * fix: fix convert formatting * fix: fix linting and editor * feat: set proper vocab settings * fix: JinaBertForMaskedLM registration * feat: support q_normalization and k_normalization in Jina arch * feat: handle gpt2 tokenizer with Jina architecture * feat: example comments in embedding * feat: rename Jina Bert to Jina Bert V2 * fix: add some changes as per review * feat: proper KQ_pos for Jina embeddings * feat: add capacity to load models ES and DE for Spanish * llama : fix pre-tokenizers * ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * minor : clean-up * embedding : add warning about missing SEP --------- Co-authored-by: Georgi Gerganov --- convert-hf-to-gguf-update.py | 3 + convert-hf-to-gguf.py | 48 +++++++- examples/embedding/embedding.cpp | 12 +- gguf-py/gguf/constants.py | 18 +++ gguf-py/gguf/tensor_mapping.py | 6 + llama.cpp | 190 ++++++++++++++++++++++++------- 6 files changed, 236 insertions(+), 41 deletions(-) diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index b5eb41eac..e757d5ccb 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -74,6 +74,9 @@ models = [ {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, + {"name": "jina-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! + {"name": "jina-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, + {"name": "jina-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, ] # make directory "models/tokenizers" if it doesn't exist diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 3315ca74b..fbaed64da 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -404,8 +404,17 @@ class Model: # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf res = "olmo" if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": - # ref: https://huggingface.co/databricks/dbrx-instruct + # ref: https://huggingface.co/databricks/dbrx-base res = "dbrx" + if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en + res = "jina-en" + if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es + res = "jina-es" + if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de + res = "jina-de" if res is None: logger.warning("\n") @@ -2289,6 +2298,43 @@ class OlmoModel(Model): return [(self.map_tensor_name(name), data_torch)] +@Model.register("JinaBertModel", "JinaBertForMaskedLM") +class JinaBertV2Model(BertModel): + model_arch = gguf.MODEL_ARCH.JINA_BERT_V2 + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.intermediate_size = self.hparams["intermediate_size"] + + def get_tensors(self): + for name, data in super().get_tensors(): + if 'gated_layers' in name: + d1 = data[:self.intermediate_size, :] + name1 = name.replace('gated_layers', 'gated_layers_w') + d2 = data[self.intermediate_size:, :] + name2 = name.replace('gated_layers', 'gated_layers_v') + yield name1, d1 + yield name2, d2 + continue + + yield name, data + + def set_vocab(self, *args, **kwargs): + tokenizer_class = 'BertTokenizer' + with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f: + tokenizer_class = json.load(f)['tokenizer_class'] + + if tokenizer_class == 'BertTokenizer': + super().set_vocab() + elif tokenizer_class == 'RobertaTokenizer': + self._set_vocab_gpt2() + self.gguf_writer.add_token_type_count(2) + else: + raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel') + self.gguf_writer.add_add_bos_token(True) + self.gguf_writer.add_add_eos_token(True) + + ###### CONVERSION LOGIC ###### diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 6a93147d7..c85a2da53 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -49,6 +49,12 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu } float * out = output + batch.seq_id[i][0] * n_embd; + //TODO: I would also add a parameter here to enable normalization or not. + /*fprintf(stdout, "unnormalized_embedding:"); + for (int hh = 0; hh < n_embd; hh++) { + fprintf(stdout, "%9.6f ", embd[hh]); + } + fprintf(stdout, "\n");*/ llama_embd_normalize(embd, out, n_embd); } } @@ -123,10 +129,12 @@ int main(int argc, char ** argv) { inputs.push_back(inp); } - // add SEP if not present + // check if the last token is SEP + // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true' for (auto & inp : inputs) { if (inp.empty() || inp.back() != llama_token_sep(model)) { - inp.push_back(llama_token_sep(model)); + fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__); + fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__); } } diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 5951c0bb0..a4fbfc5e0 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -118,6 +118,7 @@ class MODEL_ARCH(IntEnum): REFACT = auto() BERT = auto() NOMIC_BERT = auto() + JINA_BERT_V2 = auto() BLOOM = auto() STABLELM = auto() QWEN = auto() @@ -195,6 +196,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", MODEL_ARCH.NOMIC_BERT: "nomic-bert", + MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2", MODEL_ARCH.BLOOM: "bloom", MODEL_ARCH.STABLELM: "stablelm", MODEL_ARCH.QWEN: "qwen", @@ -380,6 +382,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_UP, MODEL_TENSOR.LAYER_OUT_NORM, ], + MODEL_ARCH.JINA_BERT_V2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.TOKEN_EMBD_NORM, + MODEL_TENSOR.TOKEN_TYPES, + MODEL_TENSOR.ATTN_OUT_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.LAYER_OUT_NORM, + ], MODEL_ARCH.MPT: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 990fe63c2..8e1cac915 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -243,6 +243,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.w3", # internlm2 "encoder.layers.{bid}.mlp.fc11", # nomic-bert "model.layers.{bid}.mlp.c_fc", # starcoder2 + "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -269,6 +270,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mlp.gate_proj", # plamo "model.layers.{bid}.feed_forward.w1", # internlm2 "encoder.layers.{bid}.mlp.fc12", # nomic-bert + "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 "transformer.h.{bid}.mlp.linear_1", # refact ), @@ -303,6 +305,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.w2", # internlm2 "encoder.layers.{bid}.mlp.fc2", # nomic-bert "model.layers.{bid}.mlp.c_proj", # starcoder2 + "encoder.layer.{bid}.mlp.wo", # jina-bert-v2 ), MODEL_TENSOR.FFN_DOWN_EXP: ( @@ -321,6 +324,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.q_norm", # cohere "transformer.blocks.{bid}.attn.q_ln", # sea-lion + "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2 ), MODEL_TENSOR.ATTN_K_NORM: ( @@ -328,6 +332,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.k_norm", # cohere "transformer.blocks.{bid}.attn.k_ln", # sea-lion + "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2 ), MODEL_TENSOR.ROPE_FREQS: ( @@ -338,6 +343,7 @@ class TensorNameMap: "encoder.layer.{bid}.output.LayerNorm", # bert "encoder.layers.{bid}.norm2", # nomic-bert "transformer.decoder_layer.{bid}.rms_norm_3", # Grok + "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2 ), MODEL_TENSOR.SSM_IN: ( diff --git a/llama.cpp b/llama.cpp index dede68cb5..cdff28cda 100644 --- a/llama.cpp +++ b/llama.cpp @@ -205,6 +205,7 @@ enum llm_arch { LLM_ARCH_REFACT, LLM_ARCH_BERT, LLM_ARCH_NOMIC_BERT, + LLM_ARCH_JINA_BERT_V2, LLM_ARCH_BLOOM, LLM_ARCH_STABLELM, LLM_ARCH_QWEN, @@ -228,39 +229,40 @@ enum llm_arch { }; static const std::map LLM_ARCH_NAMES = { - { LLM_ARCH_LLAMA, "llama" }, - { LLM_ARCH_FALCON, "falcon" }, - { LLM_ARCH_GROK, "grok" }, - { LLM_ARCH_GPT2, "gpt2" }, - { LLM_ARCH_GPTJ, "gptj" }, - { LLM_ARCH_GPTNEOX, "gptneox" }, - { LLM_ARCH_MPT, "mpt" }, - { LLM_ARCH_BAICHUAN, "baichuan" }, - { LLM_ARCH_STARCODER, "starcoder" }, - { LLM_ARCH_PERSIMMON, "persimmon" }, - { LLM_ARCH_REFACT, "refact" }, - { LLM_ARCH_BERT, "bert" }, - { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, - { LLM_ARCH_BLOOM, "bloom" }, - { LLM_ARCH_STABLELM, "stablelm" }, - { LLM_ARCH_QWEN, "qwen" }, - { LLM_ARCH_QWEN2, "qwen2" }, - { LLM_ARCH_QWEN2MOE, "qwen2moe" }, - { LLM_ARCH_PHI2, "phi2" }, - { LLM_ARCH_PHI3, "phi3" }, - { LLM_ARCH_PLAMO, "plamo" }, - { LLM_ARCH_CODESHELL, "codeshell" }, - { LLM_ARCH_ORION, "orion" }, - { LLM_ARCH_INTERNLM2, "internlm2" }, - { LLM_ARCH_MINICPM, "minicpm" }, - { LLM_ARCH_GEMMA, "gemma" }, - { LLM_ARCH_STARCODER2, "starcoder2" }, - { LLM_ARCH_MAMBA, "mamba" }, - { LLM_ARCH_XVERSE, "xverse" }, - { LLM_ARCH_COMMAND_R, "command-r" }, - { LLM_ARCH_DBRX, "dbrx" }, - { LLM_ARCH_OLMO, "olmo" }, - { LLM_ARCH_UNKNOWN, "(unknown)" }, + { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_FALCON, "falcon" }, + { LLM_ARCH_GROK, "grok" }, + { LLM_ARCH_GPT2, "gpt2" }, + { LLM_ARCH_GPTJ, "gptj" }, + { LLM_ARCH_GPTNEOX, "gptneox" }, + { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN, "baichuan" }, + { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_PERSIMMON, "persimmon" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BERT, "bert" }, + { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, + { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, + { LLM_ARCH_BLOOM, "bloom" }, + { LLM_ARCH_STABLELM, "stablelm" }, + { LLM_ARCH_QWEN, "qwen" }, + { LLM_ARCH_QWEN2, "qwen2" }, + { LLM_ARCH_QWEN2MOE, "qwen2moe" }, + { LLM_ARCH_PHI2, "phi2" }, + { LLM_ARCH_PHI3, "phi3" }, + { LLM_ARCH_PLAMO, "plamo" }, + { LLM_ARCH_CODESHELL, "codeshell" }, + { LLM_ARCH_ORION, "orion" }, + { LLM_ARCH_INTERNLM2, "internlm2" }, + { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_STARCODER2, "starcoder2" }, + { LLM_ARCH_MAMBA, "mamba" }, + { LLM_ARCH_XVERSE, "xverse" }, + { LLM_ARCH_COMMAND_R, "command-r" }, + { LLM_ARCH_DBRX, "dbrx" }, + { LLM_ARCH_OLMO, "olmo" }, + { LLM_ARCH_UNKNOWN, "(unknown)" }, }; enum llm_kv { @@ -691,6 +693,25 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_JINA_BERT_V2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_BLOOM, { @@ -3778,6 +3799,12 @@ static void llm_load_hparams( // get hparams kv ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); + + // everything past this point is not vocab-related + if (hparams.vocab_only) { + return; + } + ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff); @@ -3961,6 +3988,19 @@ static void llm_load_hparams( model.type = e_model::MODEL_335M; break; // bge-large } } break; + case LLM_ARCH_JINA_BERT_V2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + hparams.f_max_alibi_bias = 8.0f; + + switch (hparams.n_layer) { + case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small + case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base + } + } break; case LLM_ARCH_NOMIC_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); @@ -4382,7 +4422,9 @@ static void llm_load_vocab( tokenizer_pre == "starcoder") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; } else if ( - tokenizer_pre == "gpt-2") { + tokenizer_pre == "gpt-2" || + tokenizer_pre == "jina-es" || + tokenizer_pre == "jina-de") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; } else if ( tokenizer_pre == "refact") { @@ -5241,6 +5283,50 @@ static bool llm_load_tensors( layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); } } break; + case LLM_ARCH_JINA_BERT_V2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings + model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings + model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm + model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; // JinaBertLayer + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false); + layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false); + + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false); + + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens + layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens + + layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm + layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); + layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); + } + } break; case LLM_ARCH_BLOOM: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -6317,7 +6403,7 @@ static struct ggml_tensor * llm_build_ffn( llm_ffn_gate_type type_gate, const llm_build_cb & cb, int il) { - struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur); + struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur; cb(tmp, "ffn_up", il); if (up_b) { @@ -8118,8 +8204,11 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; + struct ggml_tensor * inp_pos = nullptr; - struct ggml_tensor * inp_pos = build_inp_pos(); + if (model.arch != LLM_ARCH_JINA_BERT_V2) { + inp_pos = build_inp_pos(); + } struct ggml_tensor * inp_mean = build_inp_mean(); struct ggml_tensor * inp_cls = build_inp_cls(); @@ -8150,13 +8239,26 @@ struct llm_build_context { struct ggml_tensor * Vcur; // self-attention - if (model.arch == LLM_ARCH_BERT) { + if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) { Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq); cb(Qcur, "Qcur", il); + if (model.layers[il].attn_q_norm) { + Qcur = llm_build_norm(ctx0, Qcur, hparams, + model.layers[il].attn_q_norm, + model.layers[il].attn_q_norm_b, + LLM_NORM, cb, il); + } + Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk); cb(Kcur, "Kcur", il); + if (model.layers[il].attn_k_norm) { + Kcur = llm_build_norm(ctx0, Kcur, hparams, + model.layers[il].attn_k_norm, + model.layers[il].attn_k_norm_b, + LLM_NORM, cb, il); + } Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv); cb(Vcur, "Vcur", il); @@ -8247,6 +8349,13 @@ struct llm_build_context { model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + } else if (model.arch == LLM_ARCH_JINA_BERT_V2) { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_PAR, cb, il); } else { cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, @@ -10769,6 +10878,7 @@ static struct ggml_cgraph * llama_build_graph( result = llm.build_refact(); } break; case LLM_ARCH_BERT: + case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_NOMIC_BERT: { result = llm.build_bert(); @@ -12695,7 +12805,10 @@ static std::vector llama_tokenize_internal(const llama_vocab & } } - GGML_ASSERT(vocab.special_add_eos != 1); + if (add_special && vocab.special_add_eos == 1) { + GGML_ASSERT(vocab.special_add_eos != -1); + output.push_back(vocab.special_eos_id); + } } break; case LLAMA_VOCAB_TYPE_WPM: { @@ -15746,6 +15859,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_REFACT: case LLM_ARCH_BLOOM: case LLM_ARCH_MAMBA: + case LLM_ARCH_JINA_BERT_V2: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values From 5ae3426b0b64672991563d4c28b2018b9f961467 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 11 May 2024 10:11:28 +0200 Subject: [PATCH 09/56] server: fix reported top tokens for temperature 0 (#7203) --- common/sampling.cpp | 6 +++--- common/sampling.h | 2 +- examples/server/server.cpp | 6 +++--- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/common/sampling.cpp b/common/sampling.cpp index 3715a7985..f0f1b92d3 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -35,7 +35,7 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_ result->prev.resize(params.n_prev); - result->n_considered = 0; + result->n_valid = 0; llama_sampling_set_rng_seed(result, params.seed); @@ -66,7 +66,7 @@ void llama_sampling_reset(llama_sampling_context * ctx) { std::fill(ctx->prev.begin(), ctx->prev.end(), 0); ctx->cur.clear(); - ctx->n_considered = 0; + ctx->n_valid = 0; } void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) { @@ -256,7 +256,7 @@ static llama_token llama_sampling_sample_impl( } } - ctx_sampling->n_considered = cur_p.size; + ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size; return id; } diff --git a/common/sampling.h b/common/sampling.h index 5b73ecdcd..655732ad1 100644 --- a/common/sampling.h +++ b/common/sampling.h @@ -81,7 +81,7 @@ struct llama_sampling_context { // TODO: replace with ring-buffer std::vector prev; std::vector cur; - size_t n_considered; + size_t n_valid; // Number of correct top tokens with correct probabilities. std::mt19937 rng; }; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 305f79492..2bf4026d5 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -2270,10 +2270,10 @@ struct server_context { const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs); if (n_probs > 0) { - const size_t n_considered = slot.ctx_sampling->n_considered; + const size_t n_valid = slot.ctx_sampling->n_valid; // Make sure at least n_probs top tokens are at the front of the vector: - if (slot.sparams.temp == 0.0f && n_probs > n_considered) { + if (slot.sparams.temp == 0.0f && n_probs > n_valid) { llama_sample_top_k(ctx, &cur_p, n_probs, 0); } @@ -2289,7 +2289,7 @@ struct server_context { for (size_t i = 0; i < n_probs; ++i) { result.probs.push_back({ cur_p.data[i].id, - i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability. + i >= n_valid ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability. }); } } From f99e1e456eaf69cc38c1982a2693ce41c0f897ef Mon Sep 17 00:00:00 2001 From: Haoxiang Fei Date: Sat, 11 May 2024 16:12:06 +0800 Subject: [PATCH 10/56] llama : lookup word in vocab before doing BPE merges (#7193) * fix: llama-3 ignore_merges * test: add test for llama-3 bpe ignore_merges * fix: set ignore_merges only for llama-3 * fix: test-tokenizer-1-bpe --ingore-merges detection * fix: copy to fix fallthrough * fix: change ignore_merges to bool * fix: add ignore merges tests to cmake * llama : alternative merge ignore logic --------- Co-authored-by: Haoxiang Fei Co-authored-by: Georgi Gerganov --- llama.cpp | 14 ++++++++++++- models/ggml-vocab-llama-bpe.gguf.inp | 2 ++ models/ggml-vocab-llama-bpe.gguf.out | 1 + tests/CMakeLists.txt | 2 +- tests/test-tokenizer-1-bpe.cpp | 30 +++++++++++++++++++++++++--- 5 files changed, 44 insertions(+), 5 deletions(-) diff --git a/llama.cpp b/llama.cpp index cdff28cda..e91ad7285 100644 --- a/llama.cpp +++ b/llama.cpp @@ -12253,13 +12253,14 @@ struct llm_tokenizer_bpe { void tokenize(const std::string & text, std::vector & output) { int final_prev_index = -1; + bool ignore_merges = false; std::vector word_collection; switch (vocab.type) { case LLAMA_VOCAB_TYPE_BPE: switch (vocab.type_pre) { case LLAMA_VOCAB_PRE_TYPE_LLAMA3: - case LLAMA_VOCAB_PRE_TYPE_DBRX: + ignore_merges = true; word_collection = unicode_regex_split(text, { // original regex from tokenizer.json //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", @@ -12268,6 +12269,12 @@ struct llm_tokenizer_bpe { "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }); break; + case LLAMA_VOCAB_PRE_TYPE_DBRX: + word_collection = unicode_regex_split(text, { + // same as llama3 + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }); + break; case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: word_collection = unicode_regex_split(text, { "[\r\n]", @@ -12351,6 +12358,11 @@ struct llm_tokenizer_bpe { int index = 0; size_t offset = 0; + if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) { + symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); + offset = word.size(); + } + while (offset < word.size()) { llm_symbol sym; size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); diff --git a/models/ggml-vocab-llama-bpe.gguf.inp b/models/ggml-vocab-llama-bpe.gguf.inp index 0a89107c6..9380bf355 100644 --- a/models/ggml-vocab-llama-bpe.gguf.inp +++ b/models/ggml-vocab-llama-bpe.gguf.inp @@ -104,3 +104,5 @@ __ggml_vocab_test__ 🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL __ggml_vocab_test__ + Việt +__ggml_vocab_test__ diff --git a/models/ggml-vocab-llama-bpe.gguf.out b/models/ggml-vocab-llama-bpe.gguf.out index 1f00e3812..1f3607fb6 100644 --- a/models/ggml-vocab-llama-bpe.gguf.out +++ b/models/ggml-vocab-llama-bpe.gguf.out @@ -41,3 +41,4 @@ 8765 8765 1644 8765 8765 8765 198 4815 15073 66597 8004 1602 2355 79772 11187 9468 248 222 320 8416 8 27623 114 102470 9468 234 104 31643 320 36773 100166 98634 8 26602 227 11410 99 247 9468 99 247 220 18 220 1644 220 8765 220 8765 18 220 8765 1644 220 8765 8765 220 8765 8765 18 220 8765 8765 1644 220 18 13 18 220 18 497 18 220 18 1131 18 220 21549 222 98629 241 45358 233 21549 237 45358 224 21549 244 21549 115 21549 253 45358 223 21549 253 21549 95 98629 227 76460 223 949 37046 101067 19000 23182 102301 9263 18136 16 36827 21909 56560 54337 19175 102118 13373 64571 34694 3114 112203 80112 3436 106451 14196 14196 74694 3089 3089 29249 17523 3001 27708 7801 358 3077 1027 364 83 820 568 596 1070 11 364 793 499 2771 30 364 44 539 2771 358 3358 1304 433 11 364 35 499 1093 1063 15600 30 1226 6 43712 264 64966 43 + 101798 diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index d409a1d6b..766a01752 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -92,7 +92,7 @@ target_link_libraries(test-tokenizer-1-bpe PRIVATE common) install(TARGETS test-tokenizer-1-bpe RUNTIME) # TODO: disabled due to slowness -#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf --ignore-merges) #llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) #llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-aquila ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) #llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf) diff --git a/tests/test-tokenizer-1-bpe.cpp b/tests/test-tokenizer-1-bpe.cpp index a0e2caf94..209a04ad6 100644 --- a/tests/test-tokenizer-1-bpe.cpp +++ b/tests/test-tokenizer-1-bpe.cpp @@ -13,15 +13,27 @@ #include int main(int argc, char **argv) { - if (argc < 2) { - fprintf(stderr, "Usage: %s \n", argv[0]); + if (argc < 2 || argc > 3) { + fprintf(stderr, "Usage: %s [--ignore-merges]\n", argv[0]); return 1; } const std::string fname = argv[1]; + bool ignore_merges = false; + if (argc == 3) { + if (std::strcmp(argv[2], "--ignore-merges") != 0) { + fprintf(stderr, "Usage: %s [--ignore-merges]\n", argv[0]); + return 1; + } + ignore_merges = true; + } fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); + if (ignore_merges) { + fprintf(stderr, "%s : ignoring merges for tokens inside vocab\n", __func__); + } + llama_model * model; llama_context * ctx; @@ -65,7 +77,19 @@ int main(int argc, char **argv) { std::string str = llama_detokenize_bpe(ctx, std::vector(1, i)); try { auto cps = unicode_cpts_from_utf8(str); - std::vector tokens = llama_tokenize(ctx, str, false); + std::vector tokens = llama_tokenize(ctx, str, false, true); + if (ignore_merges && tokens.size() > 1) { + fprintf(stderr, + "%s : error: token %d detokenizes to '%s'(%zu) but " + "tokenization of this to multiple tokens: [", + __func__, i, str.c_str(), str.length()); + fprintf(stderr, "%d", tokens[0]); + for (size_t i = 1; i < tokens.size(); i++) { + fprintf(stderr, ", %d", tokens[i]); + } + fprintf(stderr, "]\n"); + return 2; + } std::string check = llama_detokenize_bpe(ctx, tokens); if (check != str) { fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n", From 988631335a20d06497f58be0b8ba13adb4323a22 Mon Sep 17 00:00:00 2001 From: Steve Grubb Date: Sat, 11 May 2024 04:13:02 -0400 Subject: [PATCH 11/56] server : free llama_batch on exit (#7212) * [server] Cleanup a memory leak on exit There are a couple memory leaks on exit of the server. This hides others. After cleaning this up, you can see leaks on slots. But that is another patch to be sent after this. * make tab into spaces --- examples/server/server.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 2bf4026d5..55c1d4129 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -673,6 +673,8 @@ struct server_context { llama_free_model(model); model = nullptr; } + + llama_batch_free(batch); } bool load_model(const gpt_params & params_) { From 3292733f95d4632a956890a438af5192e7031c12 Mon Sep 17 00:00:00 2001 From: CrispStrobe <154636388+CrispStrobe@users.noreply.github.com> Date: Sat, 11 May 2024 10:18:35 +0200 Subject: [PATCH 12/56] convert : skip unaccessible HF repos (#7210) --- convert-hf-to-gguf-update.py | 22 ++++++++++++++++++++-- 1 file changed, 20 insertions(+), 2 deletions(-) diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index e757d5ccb..cd2674a0e 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -145,8 +145,17 @@ for model in models: if tokt == TOKENIZER_TYPE.SPM: continue + # Skip if the tokenizer folder does not exist or there are other download issues previously + if not os.path.exists(f"models/tokenizers/{name}"): + logger.warning(f"Directory for tokenizer {name} not found. Skipping...") + continue + # create the tokenizer - tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + try: + tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + except OSError as e: + logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") + continue # Skip to the next model if the tokenizer can't be loaded chktok = tokenizer.encode(chktxt) chkhsh = sha256(str(chktok).encode()).hexdigest() @@ -287,8 +296,17 @@ for model in models: name = model["name"] tokt = model["tokt"] + # Skip if the tokenizer folder does not exist or there are other download issues previously + if not os.path.exists(f"models/tokenizers/{name}"): + logger.warning(f"Directory for tokenizer {name} not found. Skipping...") + continue + # create the tokenizer - tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + try: + tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + except OSError as e: + logger.error(f"Failed to load tokenizer for model {name}. Error: {e}") + continue # Skip this model and continue with the next one in the loop with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: for text in tests: From ef0d5e3ec9f99003af3ff326384816c02850ea3f Mon Sep 17 00:00:00 2001 From: Borislav Stanimirov Date: Thu, 25 Apr 2024 17:24:07 +0300 Subject: [PATCH 13/56] build: fix and ignore msvc warnings (ggml/805) --- ggml-backend.c | 4 ++-- ggml-quants.c | 6 ++++++ 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/ggml-backend.c b/ggml-backend.c index f5bdcf078..dd090a583 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -1182,9 +1182,9 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st static char * fmt_size(size_t size) { static char buffer[128]; if (size >= 1024*1024) { - sprintf(buffer, "%zuM", size/1024/1024); + snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024); } else { - sprintf(buffer, "%zuK", size/1024); + snprintf(buffer, sizeof(buffer), "%zuK", size/1024); } return buffer; } diff --git a/ggml-quants.c b/ggml-quants.c index 9883b6f8c..00334c5fe 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -14,6 +14,12 @@ #include // for qsort #include // for GGML_ASSERT +#if defined(_MSC_VER) +// disable "possible loss of data" to avoid warnings for hundreds of casts +// we should just be careful :) +#pragma warning(disable: 4244 4267) +#endif + #define UNUSED GGML_UNUSED // some compilers don't provide _mm256_set_m128i, e.g. gcc 7 From f5ef34e428f3886544590ecb2d532e4d333c114c Mon Sep 17 00:00:00 2001 From: Justina Cho Date: Wed, 1 May 2024 14:44:26 -0700 Subject: [PATCH 14/56] feat: implemented sigmoid function (ggml/806) * added sigmoid function * implemented metal kernel for sigmoid * implemented cuda kernel for sigmoid * added sigmoid unary op and incremented count --- ggml-cuda.cu | 4 +++ ggml-cuda/unary.cu | 26 ++++++++++++++++ ggml-cuda/unary.cuh | 3 ++ ggml-metal.m | 15 ++++++++++ ggml-metal.metal | 7 +++++ ggml.c | 73 ++++++++++++++++++++++++++++++++++++++++++++- ggml.h | 9 ++++++ 7 files changed, 136 insertions(+), 1 deletion(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index c5c778796..5b6c90919 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2204,6 +2204,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_UNARY_OP_RELU: ggml_cuda_op_relu(ctx, dst); break; + case GGML_UNARY_OP_SIGMOID: + ggml_cuda_op_sigmoid(ctx, dst); + break; case GGML_UNARY_OP_HARDSIGMOID: ggml_cuda_op_hardsigmoid(ctx, dst); break; @@ -2716,6 +2719,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_HARDSIGMOID: case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_GELU_QUICK: diff --git a/ggml-cuda/unary.cu b/ggml-cuda/unary.cu index 1a7f09469..ac03d5c6f 100644 --- a/ggml-cuda/unary.cu +++ b/ggml-cuda/unary.cu @@ -48,6 +48,15 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) { dst[i] = fmaxf(x[i], 0); } +static __global__ void sigmoid_f32(const float * x, float * dst, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + dst[i] = 1.0f / (1.0f + expf(-x[i])); +} + static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -108,6 +117,11 @@ static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_ relu_f32<<>>(x, dst, k); } +static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE; + sigmoid_f32<<>>(x, dst, k); +} + static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE; hardsigmoid_f32<<>>(x, dst, k); @@ -188,6 +202,18 @@ void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } +void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); +} + void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; diff --git a/ggml-cuda/unary.cuh b/ggml-cuda/unary.cuh index 2002ed989..a1d07c04f 100644 --- a/ggml-cuda/unary.cuh +++ b/ggml-cuda/unary.cuh @@ -4,6 +4,7 @@ #define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_TANH_BLOCK_SIZE 256 #define CUDA_RELU_BLOCK_SIZE 256 +#define CUDA_SIGMOID_BLOCK_SIZE 256 #define CUDA_HARDSIGMOID_BLOCK_SIZE 256 #define CUDA_HARDSWISH_BLOCK_SIZE 256 #define CUDA_SQR_BLOCK_SIZE 256 @@ -18,6 +19,8 @@ void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-metal.m b/ggml-metal.m index 1bbb8fb4f..66c398d54 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -40,6 +40,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_CLAMP, GGML_METAL_KERNEL_TYPE_TANH, GGML_METAL_KERNEL_TYPE_RELU, + GGML_METAL_KERNEL_TYPE_SIGMOID, GGML_METAL_KERNEL_TYPE_GELU, GGML_METAL_KERNEL_TYPE_GELU_4, GGML_METAL_KERNEL_TYPE_GELU_QUICK, @@ -493,6 +494,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); @@ -730,6 +732,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_SILU: @@ -1237,6 +1240,18 @@ static enum ggml_status ggml_metal_graph_compute( const int64_t n = ggml_nelements(dst); + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_SIGMOID: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_GELU: diff --git a/ggml-metal.metal b/ggml-metal.metal index ee9de57a3..0c6d32798 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -229,6 +229,13 @@ kernel void kernel_relu( dst[tpig] = max(0.0f, src0[tpig]); } +kernel void kernel_sigmoid( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig])); +} + kernel void kernel_tanh( device const float * src0, device float * dst, diff --git a/ggml.c b/ggml.c index 4ee5d24af..4f3011583 100644 --- a/ggml.c +++ b/ggml.c @@ -1949,6 +1949,7 @@ inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); } +inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); } // TODO: optimize performance inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } @@ -2329,6 +2330,7 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { "TANH", "ELU", "RELU", + "SIGMOID", "GELU", "GELU_QUICK", "SILU", @@ -2336,7 +2338,7 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { "HARDSIGMOID", }; -static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12"); +static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); @@ -4561,6 +4563,20 @@ struct ggml_tensor * ggml_leaky_relu( return result; } +// ggml_sigmoid + +struct ggml_tensor * ggml_sigmoid( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID); +} + +struct ggml_tensor * ggml_sigmoid_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID); +} + // ggml_gelu struct ggml_tensor * ggml_gelu( @@ -10852,6 +10868,52 @@ static void ggml_compute_forward_relu( } } +// ggml_compute_forward_sigmoid + +static void ggml_compute_forward_sigmoid_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sigmoid_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sigmoid( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sigmoid_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_gelu static void ggml_compute_forward_gelu_f32( @@ -16617,6 +16679,10 @@ static void ggml_compute_forward_unary( { ggml_compute_forward_relu(params, dst); } break; + case GGML_UNARY_OP_SIGMOID: + { + ggml_compute_forward_sigmoid(params, dst); + } break; case GGML_UNARY_OP_GELU: { ggml_compute_forward_gelu(params, dst); @@ -18601,6 +18667,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor zero_table); } } break; + case GGML_UNARY_OP_SIGMOID: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_UNARY_OP_GELU: { GGML_ASSERT(false); // TODO: not implemented @@ -19130,6 +19200,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads { diff --git a/ggml.h b/ggml.h index 76c332831..3fe95ed57 100644 --- a/ggml.h +++ b/ggml.h @@ -519,6 +519,7 @@ extern "C" { GGML_UNARY_OP_TANH, GGML_UNARY_OP_ELU, GGML_UNARY_OP_RELU, + GGML_UNARY_OP_SIGMOID, GGML_UNARY_OP_GELU, GGML_UNARY_OP_GELU_QUICK, GGML_UNARY_OP_SILU, @@ -1073,6 +1074,14 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_sigmoid( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sigmoid_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_gelu( struct ggml_context * ctx, struct ggml_tensor * a); From fae9d234b6606693704eca62fe4aefbb6c6abb45 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 11 May 2024 12:02:39 +0300 Subject: [PATCH 15/56] sync : ggml ggml-ci --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index d4400695b..c5bd3ef55 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -98875cdb7e9ceeb726d1c196d2fecb3cbb59b93a +8cd3975bf21657c6d1e80c7c61830977b962539e From 5a419926b0c4efab0531401aea91522aaea9fd07 Mon Sep 17 00:00:00 2001 From: compilade Date: Sat, 11 May 2024 11:06:26 -0400 Subject: [PATCH 16/56] convert-hf : support bfloat16 conversion (#7158) * convert-hf : support bfloat16 conversion * gguf-py : flake8 fixes * convert-hf : add missing space after comma * convert-hf : get bit-exact same output as ./quantize The quantization version was missing. * convert-hf : don't round bf16 NANs * convert-hf : save some memory with np.int16 intermediate bf16 weights * convert-hf : more closely match llama.cpp with which weights to keep in f32 * convert-hf : add --outtype auto-f16 A reason for this to exist is for model quantizers who want an initial GGUF with the most fidelity to the original model while still using a 16-bit float type instead of 32-bit floats. * convert-hf : remove a semicolon because flake8 doesn't like it It's a reflex from when programming in C/C++, I guess. * convert-hf : support outtype templating in outfile name * convert-hf : rename --outtype auto-f16 to --outtype auto --- convert-hf-to-gguf.py | 265 ++++++++++++++++++------------------ gguf-py/gguf/__init__.py | 1 + gguf-py/gguf/constants.py | 44 ++++++ gguf-py/gguf/gguf_writer.py | 51 +------ gguf-py/gguf/lazy.py | 225 ++++++++++++++++++++++++++++++ 5 files changed, 404 insertions(+), 182 deletions(-) create mode 100644 gguf-py/gguf/lazy.py diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index fbaed64da..ec7f4dd75 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -12,7 +12,7 @@ import sys from enum import IntEnum from pathlib import Path from hashlib import sha256 -from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast, overload +from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast import numpy as np import torch @@ -48,7 +48,6 @@ class Model: dir_model: Path ftype: int - fname_out: Path is_big_endian: bool endianess: gguf.GGUFEndian use_temp_file: bool @@ -56,20 +55,20 @@ class Model: part_names: list[str] is_safetensors: bool hparams: dict[str, Any] - gguf_writer: gguf.GGUFWriter block_count: int tensor_map: gguf.TensorNameMap tensor_names: set[str] | None + fname_out: Path + gguf_writer: gguf.GGUFWriter # subclasses should define this! model_arch: gguf.MODEL_ARCH - def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool): - if self.__class__ == Model: - raise TypeError(f"{self.__class__.__name__!r} should not be directly instantiated") + def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool): + if type(self) is Model: + raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") self.dir_model = dir_model self.ftype = ftype - self.fname_out = fname_out self.is_big_endian = is_big_endian self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file @@ -79,10 +78,23 @@ class Model: if not self.is_safetensors: self.part_names = Model.get_model_part_names(self.dir_model, ".bin") self.hparams = Model.load_hparams(self.dir_model) - self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file) self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) self.tensor_names = None + if self.ftype == gguf.LlamaFileType.GUESSED: + # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie. + _, first_tensor = next(self.get_tensors()) + if first_tensor.dtype == torch.float16: + logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})") + self.ftype = gguf.LlamaFileType.MOSTLY_F16 + else: + logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})") + self.ftype = gguf.LlamaFileType.MOSTLY_BF16 + ftype_up: str = self.ftype.name.partition("_")[2].upper() + ftype_lw: str = ftype_up.lower() + # allow templating the file name with the output ftype, useful with the "auto" ftype + self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up) + self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file) @classmethod def __init_subclass__(cls): @@ -142,14 +154,27 @@ class Model: raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}") def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str: - name: str = gguf.TENSOR_NAMES[key] if key not in gguf.MODEL_TENSORS[self.model_arch]: raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}") + name: str = gguf.TENSOR_NAMES[key] if "{bid}" in name: assert bid is not None name = name.format(bid=bid) return name + suffix + def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool: + if key not in gguf.MODEL_TENSORS[self.model_arch]: + return False + key_name: str = gguf.TENSOR_NAMES[key] + if "{bid}" in key_name: + if bid is None: + return False + key_name = key_name.format(bid=bid) + else: + if bid is not None: + return False + return name == (key_name + suffix) + def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str: new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes) if new_name is None: @@ -215,6 +240,23 @@ class Model: return False def write_tensors(self): + # same as ggml_compute_fp32_to_bf16 in ggml-impl.h + def np_fp32_to_bf16(n: np.ndarray): + # force nan to quiet + n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n) + # flush subnormals to zero + n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n) + # round to nearest even + n = (n + (0x7fff + ((n >> 16) & 1))) >> 16 + return n.astype(np.int16) + + # Doing this row-wise is much, much faster than element-wise, hence the signature + v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)") + if self.lazy: + # TODO: find a way to implicitly wrap np.vectorize functions + # NOTE: the type is changed to reflect otypes passed to np.vectorize above + v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16) + max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") for name, data_torch in self.get_tensors(): @@ -239,35 +281,60 @@ class Model: data: np.ndarray = data # type hint n_dims = len(data.shape) data_dtype = data.dtype - - # if f32 desired, convert any float16 to float32 - if self.ftype == 0 and data_dtype == np.float16: - data = data.astype(np.float32) + data_qtype: gguf.GGMLQuantizationType | None = None # when both are True, f32 should win extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims) extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims) # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors - extra_f32 = extra_f32 or n_dims == 1 or new_name.endswith("_norm.weight") + # Conditions should closely match those in llama_model_quantize_internal in llama.cpp + extra_f32 = any(cond for cond in ( + extra_f32, + n_dims == 1, + new_name.endswith("_norm.weight"), + )) + + # Some tensor types are always in float32 + extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in ( + gguf.MODEL_TENSOR.FFN_GATE_INP, + gguf.MODEL_TENSOR.POS_EMBD, + gguf.MODEL_TENSOR.TOKEN_TYPES, + )) # if f16 desired, convert any float32 2-dim weight tensors to float16 - extra_f16 = extra_f16 or (name.endswith(".weight") and n_dims >= 2) + extra_f16 = any(cond for cond in ( + extra_f16, + (name.endswith(".weight") and n_dims >= 2), + )) - # when both extra_f32 and extra_f16 are False, convert to float32 by default - if self.ftype == 1 and data_dtype == np.float16 and (extra_f32 or not extra_f16): - data = data.astype(np.float32) + if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32: + if self.ftype == gguf.LlamaFileType.MOSTLY_F16: + if data_dtype != np.float16: + data = data.astype(np.float16) + data_qtype = gguf.GGMLQuantizationType.F16 - if self.ftype == 1 and data_dtype == np.float32 and extra_f16 and not extra_f32: - data = data.astype(np.float16) + elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16: + if data_dtype != np.float32: + data = data.astype(np.float32) + data = v_fp32_to_bf16(data.view(np.int32)) + assert data.dtype == np.int16 + data_qtype = gguf.GGMLQuantizationType.BF16 + + else: # by default, convert to float32 + if data_dtype != np.float32: + data = data.astype(np.float32) + data_qtype = gguf.GGMLQuantizationType.F32 + + assert data_qtype is not None # reverse shape to make it similar to the internal ggml dimension order shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}" # n_dims is implicit in the shape - logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data.dtype}, shape = {shape_str}") + logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") - self.gguf_writer.add_tensor(new_name, data) + self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype) def write(self): self.write_tensors() @@ -2044,12 +2111,6 @@ class BertModel(Model): return [(self.map_tensor_name(name), data_torch)] - def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: - del new_name, bid, n_dims # unused - - # not used with get_rows, must be F32 - return name == "embeddings.token_type_embeddings.weight" - @Model.register("NomicBertModel") class NomicBertModel(BertModel): @@ -2339,92 +2400,40 @@ class JinaBertV2Model(BertModel): # tree of lazy tensors -class LazyTorchTensor: - _meta: Tensor - _data: Tensor | None - _args: tuple - _func: Callable[[tuple], Tensor] | None - - def __init__(self, *, meta: Tensor, data: Tensor | None = None, args: tuple = (), func: Callable[[tuple], Tensor] | None = None): - self._meta = meta - self._data = data - self._args = args - self._func = func - - @staticmethod - def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any: - # TODO: dict and set - if isinstance(o, (list, tuple)): - L = [] - for item in o: - L.append(LazyTorchTensor._recurse_apply(item, fn)) - if isinstance(o, tuple): - L = tuple(L) - return L - elif isinstance(o, LazyTorchTensor): - return fn(o) - else: - return o - - def _wrap_fn(self, fn: Callable, use_self: bool = False) -> Callable[[Any], LazyTorchTensor]: - def wrapped_fn(*args, **kwargs): - if kwargs is None: - kwargs = {} - args = ((self,) if use_self else ()) + args - - meta_args = LazyTorchTensor._recurse_apply(args, lambda t: t._meta) - - return LazyTorchTensor(meta=fn(*meta_args, **kwargs), args=args, func=lambda a: fn(*a, **kwargs)) - return wrapped_fn - - def __getattr__(self, __name: str) -> Any: - meta_attr = getattr(self._meta, __name) - if callable(meta_attr): - return self._wrap_fn(getattr(torch.Tensor, __name), use_self=True) - elif isinstance(meta_attr, torch.Tensor): - # for things like self.T - return self._wrap_fn(lambda s: getattr(s, __name))(self) - else: - return meta_attr +class LazyTorchTensor(gguf.LazyBase): + _tensor_type = torch.Tensor + # to keep the type-checker happy + dtype: torch.dtype + shape: torch.Size + # only used when converting a torch.Tensor to a np.ndarray _dtype_map: dict[torch.dtype, type] = { torch.float16: np.float16, torch.float32: np.float32, } - def numpy(self) -> gguf.LazyTensor: + def numpy(self) -> gguf.LazyNumpyTensor: dtype = self._dtype_map[self.dtype] - return gguf.LazyTensor(lambda: LazyTorchTensor.to_eager(self).numpy(), dtype=dtype, shape=self.shape) + return gguf.LazyNumpyTensor( + meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)), + lazy=self._lazy, + args=(self,), + func=(lambda s: s[0].numpy()) + ) - @overload - @staticmethod - def to_eager(t: Tensor | LazyTorchTensor) -> Tensor: ... - - @overload - @staticmethod - def to_eager(t: tuple) -> tuple: ... - - @staticmethod - def to_eager(t: Any) -> Any: - def simple_to_eager(_t: LazyTorchTensor) -> Tensor: - # wake up the lazy tensor - if _t._data is None and _t._func is not None: - # recurse into its arguments - _t._args = LazyTorchTensor.to_eager(_t._args) - _t._data = _t._func(_t._args) - if _t._data is not None: - return _t._data - else: - raise ValueError(f"Could not compute lazy tensor {_t!r} with args {_t._args!r}") - - # recurse into lists and/or tuples, keeping their structure - return LazyTorchTensor._recurse_apply(t, simple_to_eager) - - @staticmethod - def from_eager(t: Tensor) -> Tensor: - if (t.__class__ == LazyTorchTensor): + @classmethod + def eager_to_meta(cls, t: Tensor) -> Tensor: + if t.is_meta: return t - return LazyTorchTensor(meta=t.detach().to("meta"), data=t) # type: ignore + return t.detach().to("meta") + + @classmethod + def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor: + m = m.detach() + if not m.is_meta: + m = m.to("meta") + m.dtype = dtype + return m @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): @@ -2435,28 +2444,8 @@ class LazyTorchTensor: if func is torch.Tensor.numpy: return args[0].numpy() - if func is torch.equal: - eager_args = LazyTorchTensor.to_eager(args) - return func(*eager_args, **kwargs) - return LazyTorchTensor._wrap_fn(args[0], func)(*args, **kwargs) - - # special methods bypass __getattr__, so they need to be added manually - # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup - # NOTE: LazyTorchTensor can't be a subclass of Tensor (and then be used - # as self._meta is currently used), because then the following - # operations would by default not be wrapped, and so not propagated - # when the tensor is made eager. - # It's better to get non-silent errors for not-yet-supported operators. - # TODO: add more when needed to avoid clutter, or find a more concise way - def __neg__(self, *args): # mamba - return self._wrap_fn(torch.Tensor.__neg__)(self, *args) - - def __add__(self, *args): # gemma - return self._wrap_fn(torch.Tensor.__add__)(self, *args) - - def __getitem__(self, *args): # bloom falcon refact internlm2 - return self._wrap_fn(torch.Tensor.__getitem__)(self, *args) + return LazyTorchTensor._wrap_fn(func)(*args, **kwargs) def parse_args() -> argparse.Namespace: @@ -2472,11 +2461,11 @@ def parse_args() -> argparse.Namespace: ) parser.add_argument( "--outfile", type=Path, - help="path to write to; default: based on input", + help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", ) parser.add_argument( - "--outtype", type=str, choices=["f32", "f16"], default="f16", - help="output format - use f32 for float32, f16 for float16", + "--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16", + help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", ) parser.add_argument( "--bigendian", action="store_true", @@ -2530,16 +2519,18 @@ def main() -> None: logger.error(f'Error: {args.model} is not a directory') sys.exit(1) - ftype_map = { - "f32": gguf.GGMLQuantizationType.F32, - "f16": gguf.GGMLQuantizationType.F16, + ftype_map: dict[str, gguf.LlamaFileType] = { + "f32": gguf.LlamaFileType.ALL_F32, + "f16": gguf.LlamaFileType.MOSTLY_F16, + "bf16": gguf.LlamaFileType.MOSTLY_BF16, + "auto": gguf.LlamaFileType.GUESSED, } if args.outfile is not None: fname_out = args.outfile else: # output in the same directory as the model by default - fname_out = dir_model / f'ggml-model-{args.outtype}.gguf' + fname_out = dir_model / 'ggml-model-{ftype}.gguf' logger.info(f"Loading model: {dir_model.name}") @@ -2555,14 +2546,16 @@ def main() -> None: logger.info("Set model tokenizer") model_instance.set_vocab() + model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) + if args.vocab_only: - logger.info(f"Exporting model vocab to '{fname_out}'") + logger.info(f"Exporting model vocab to '{model_instance.fname_out}'") model_instance.write_vocab() else: - logger.info(f"Exporting model to '{fname_out}'") + logger.info(f"Exporting model to '{model_instance.fname_out}'") model_instance.write() - logger.info(f"Model successfully exported to '{fname_out}'") + logger.info(f"Model successfully exported to '{model_instance.fname_out}'") if __name__ == '__main__': diff --git a/gguf-py/gguf/__init__.py b/gguf-py/gguf/__init__.py index 110ab342c..e5d5806c8 100644 --- a/gguf-py/gguf/__init__.py +++ b/gguf-py/gguf/__init__.py @@ -1,4 +1,5 @@ from .constants import * +from .lazy import * from .gguf_reader import * from .gguf_writer import * from .tensor_mapping import * diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index a4fbfc5e0..978fcada3 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -10,6 +10,7 @@ from typing import Any GGUF_MAGIC = 0x46554747 # "GGUF" GGUF_VERSION = 3 GGUF_DEFAULT_ALIGNMENT = 32 +GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h # # metadata keys @@ -838,6 +839,49 @@ class GGMLQuantizationType(IntEnum): BF16 = 30 +# TODO: add GGMLFileType from ggml_ftype in ggml.h + + +# from llama_ftype in llama.h +# ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE. +class LlamaFileType(IntEnum): + ALL_F32 = 0 + MOSTLY_F16 = 1 # except 1d tensors + MOSTLY_Q4_0 = 2 # except 1d tensors + MOSTLY_Q4_1 = 3 # except 1d tensors + MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16 + # MOSTLY_Q4_2 = 5 # support has been removed + # MOSTLY_Q4_3 = 6 # support has been removed + MOSTLY_Q8_0 = 7 # except 1d tensors + MOSTLY_Q5_0 = 8 # except 1d tensors + MOSTLY_Q5_1 = 9 # except 1d tensors + MOSTLY_Q2_K = 10 # except 1d tensors + MOSTLY_Q3_K_S = 11 # except 1d tensors + MOSTLY_Q3_K_M = 12 # except 1d tensors + MOSTLY_Q3_K_L = 13 # except 1d tensors + MOSTLY_Q4_K_S = 14 # except 1d tensors + MOSTLY_Q4_K_M = 15 # except 1d tensors + MOSTLY_Q5_K_S = 16 # except 1d tensors + MOSTLY_Q5_K_M = 17 # except 1d tensors + MOSTLY_Q6_K = 18 # except 1d tensors + MOSTLY_IQ2_XXS = 19 # except 1d tensors + MOSTLY_IQ2_XS = 20 # except 1d tensors + MOSTLY_Q2_K_S = 21 # except 1d tensors + MOSTLY_IQ3_XS = 22 # except 1d tensors + MOSTLY_IQ3_XXS = 23 # except 1d tensors + MOSTLY_IQ1_S = 24 # except 1d tensors + MOSTLY_IQ4_NL = 25 # except 1d tensors + MOSTLY_IQ3_S = 26 # except 1d tensors + MOSTLY_IQ3_M = 27 # except 1d tensors + MOSTLY_IQ2_S = 28 # except 1d tensors + MOSTLY_IQ2_M = 29 # except 1d tensors + MOSTLY_IQ4_XS = 30 # except 1d tensors + MOSTLY_IQ1_M = 31 # except 1d tensors + MOSTLY_BF16 = 32 # except 1d tensors + + GUESSED = 1024 # not specified in the model file + + class GGUFEndian(IntEnum): LITTLE = 0 BIG = 1 diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 8dcf9330b..96574358d 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -7,7 +7,7 @@ import struct import tempfile from enum import Enum, auto from io import BufferedWriter -from typing import IO, Any, Callable, Sequence, Mapping +from typing import IO, Any, Sequence, Mapping from string import ascii_letters, digits import numpy as np @@ -28,47 +28,6 @@ from .constants import ( logger = logging.getLogger(__name__) -class LazyTensor: - data: Callable[[], np.ndarray[Any, Any]] - # to avoid too deep recursion - functions: list[Callable[[np.ndarray[Any, Any]], np.ndarray[Any, Any]]] - dtype: np.dtype[Any] - shape: tuple[int, ...] - - def __init__(self, data: Callable[[], np.ndarray[Any, Any]], *, dtype: type, shape: tuple[int, ...]): - self.data = data - self.functions = [] - self.dtype = np.dtype(dtype) - self.shape = shape - - def astype(self, dtype: type, **kwargs) -> LazyTensor: - self.functions.append(lambda n: n.astype(dtype, **kwargs)) - self.dtype = np.dtype(dtype) - return self - - @property - def nbytes(self) -> int: - size = 1 - for n in self.shape: - size *= n - return size * self.dtype.itemsize - - def tofile(self, *args, **kwargs) -> None: - data = self.data() - for f in self.functions: - data = f(data) - assert data.shape == self.shape - assert data.dtype == self.dtype - assert data.nbytes == self.nbytes - self.functions = [] - self.data = lambda: data - data.tofile(*args, **kwargs) - - def byteswap(self, *args, **kwargs) -> LazyTensor: - self.functions.append(lambda n: n.byteswap(*args, **kwargs)) - return self - - class WriterState(Enum): EMPTY = auto() HEADER = auto() @@ -79,7 +38,7 @@ class WriterState(Enum): class GGUFWriter: fout: BufferedWriter temp_file: tempfile.SpooledTemporaryFile[bytes] | None - tensors: list[np.ndarray[Any, Any] | LazyTensor] + tensors: list[np.ndarray[Any, Any]] _simple_value_packing = { GGUFValueType.UINT8: "B", GGUFValueType.INT8: "b", @@ -278,7 +237,7 @@ class GGUFWriter: self.ti_data_count += 1 def add_tensor( - self, name: str, tensor: np.ndarray[Any, Any] | LazyTensor, raw_shape: Sequence[int] | None = None, + self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None, ) -> None: if self.endianess == GGUFEndian.BIG: @@ -303,7 +262,7 @@ class GGUFWriter: if pad != 0: fp.write(bytes([0] * pad)) - def write_tensor_data(self, tensor: np.ndarray[Any, Any] | LazyTensor) -> None: + def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None: if self.state is not WriterState.TI_DATA: raise ValueError(f'Expected output file to contain tensor info, got {self.state}') @@ -391,7 +350,7 @@ class GGUFWriter: def add_name(self, name: str) -> None: self.add_string(Keys.General.NAME, name) - def add_quantization_version(self, quantization_version: GGMLQuantizationType) -> None: + def add_quantization_version(self, quantization_version: int) -> None: self.add_uint32( Keys.General.QUANTIZATION_VERSION, quantization_version) diff --git a/gguf-py/gguf/lazy.py b/gguf-py/gguf/lazy.py new file mode 100644 index 000000000..650bea11c --- /dev/null +++ b/gguf-py/gguf/lazy.py @@ -0,0 +1,225 @@ +from __future__ import annotations +from abc import ABC, ABCMeta, abstractmethod + +import logging +from typing import Any, Callable +from collections import deque + +import numpy as np +from numpy.typing import DTypeLike + + +logger = logging.getLogger(__name__) + + +class LazyMeta(ABCMeta): + + def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs): + def __getattr__(self, __name: str) -> Any: + meta_attr = getattr(self._meta, __name) + if callable(meta_attr): + return type(self)._wrap_fn( + (lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)), + use_self=self, + ) + elif isinstance(meta_attr, self._tensor_type): + # e.g. self.T with torch.Tensor should still be wrapped + return type(self)._wrap_fn(lambda s: getattr(s, __name))(self) + else: + # no need to wrap non-tensor properties, + # and they likely don't depend on the actual contents of the tensor + return meta_attr + + namespace["__getattr__"] = __getattr__ + + # need to make a builder for the wrapped wrapper to copy the name, + # or else it fails with very cryptic error messages, + # because somehow the same string would end up in every closures + def mk_wrap(op_name: str, *, meta_noop: bool = False): + # need to wrap the wrapper to get self + def wrapped_special_op(self, *args, **kwargs): + return type(self)._wrap_fn( + getattr(type(self)._tensor_type, op_name), + meta_noop=meta_noop, + )(self, *args, **kwargs) + return wrapped_special_op + + # special methods bypass __getattr__, so they need to be added manually + # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup + # NOTE: doing this from a metaclass is very convenient + # TODO: make this even more comprehensive + for binary_op in ( + "lt", "le", "eq", "ne", "ge", "gt", "not" + "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul", + "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor", + "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor", + "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor", + ): + attr_name = f"__{binary_op}__" + # the result of these operators usually has the same shape and dtype as the input, + # so evaluation on the meta tensor can be skipped. + namespace[attr_name] = mk_wrap(attr_name, meta_noop=True) + + for special_op in ( + "getitem", "setitem", "len", + ): + attr_name = f"__{special_op}__" + namespace[attr_name] = mk_wrap(attr_name, meta_noop=False) + + return super().__new__(cls, name, bases, namespace, **kwargs) + + +# Tree of lazy tensors +class LazyBase(ABC, metaclass=LazyMeta): + _tensor_type: type + _meta: Any + _data: Any | None + _lazy: deque[LazyBase] # shared within a graph, to avoid deep recursion when making eager + _args: tuple + _func: Callable[[tuple], Any] | None + + def __init__(self, *, meta: Any, data: Any | None = None, lazy: deque[LazyBase] | None = None, args: tuple = (), func: Callable[[tuple], Any] | None = None): + super().__init__() + self._meta = meta + self._data = data + self._lazy = lazy if lazy is not None else deque() + self._args = args + self._func = func + assert self._func is not None or self._data is not None + if self._data is None: + self._lazy.append(self) + + def __init_subclass__(cls) -> None: + if "_tensor_type" not in cls.__dict__: + raise TypeError(f"property '_tensor_type' must be defined for {cls!r}") + return super().__init_subclass__() + + @staticmethod + def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any: + # TODO: dict and set + if isinstance(o, (list, tuple)): + L = [] + for item in o: + L.append(LazyBase._recurse_apply(item, fn)) + if isinstance(o, tuple): + L = tuple(L) + return L + elif isinstance(o, LazyBase): + return fn(o) + else: + return o + + @classmethod + def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]: + def wrapped_fn(*args, **kwargs): + if kwargs is None: + kwargs = {} + args = ((use_self,) if use_self is not None else ()) + args + + meta_args = LazyBase._recurse_apply(args, lambda t: t._meta) + + if isinstance(meta_noop, bool) and not meta_noop: + try: + res = fn(*meta_args, **kwargs) + except NotImplementedError: + # running some operations on PyTorch's Meta tensors can cause this exception + res = None + else: + # some operators don't need to actually run on the meta tensors + assert len(args) > 0 + res = args[0] + assert isinstance(res, cls) + res = res._meta + # allow operations to override the dtype + if meta_noop is not True: + res = cls.meta_with_dtype(res, meta_noop) + + if isinstance(res, cls._tensor_type): + def collect_replace(t: LazyBase): + if collect_replace.shared_lazy is None: + collect_replace.shared_lazy = t._lazy + else: + collect_replace.shared_lazy.extend(t._lazy) + t._lazy = collect_replace.shared_lazy + + # emulating a static variable + collect_replace.shared_lazy = None + + LazyBase._recurse_apply(args, collect_replace) + + shared_lazy = collect_replace.shared_lazy + + return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs)) + else: + del res # not needed + # non-tensor return likely relies on the contents of the args + # (e.g. the result of torch.equal) + eager_args = cls.to_eager(args) + return fn(*eager_args, **kwargs) + return wrapped_fn + + @classmethod + def to_eager(cls, t: Any) -> Any: + def simple_to_eager(_t: LazyBase) -> Any: + def already_eager_to_eager(_t: LazyBase) -> Any: + assert _t._data is not None + return _t._data + + while _t._data is None: + lt = _t._lazy.popleft() + if lt._data is not None: + raise ValueError(f"{lt} did not belong in the lazy queue") + assert lt._func is not None + lt._args = cls._recurse_apply(lt._args, already_eager_to_eager) + lt._data = lt._func(lt._args) + # sanity check + assert lt._data.dtype == lt._meta.dtype + assert lt._data.shape == lt._meta.shape + + return _t._data + + # recurse into lists and/or tuples, keeping their structure + return cls._recurse_apply(t, simple_to_eager) + + @classmethod + def eager_to_meta(cls, t: Any) -> Any: + return cls.meta_with_dtype(t, t.dtype) + + # must be overridden, meta tensor init is backend-specific + @classmethod + @abstractmethod + def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass + + @classmethod + def from_eager(cls, t: Any) -> Any: + if type(t) is cls: + # already eager + return t + elif isinstance(t, cls._tensor_type): + return cls(meta=cls.eager_to_meta(t), data=t) + else: + return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}") + + +class LazyNumpyTensor(LazyBase): + _tensor_type = np.ndarray + + @classmethod + def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]: + # The initial idea was to use np.nan as the fill value, + # but non-float types like np.int16 can't use that. + # So zero it is. + cheat = np.zeros(1, dtype) + return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape)) + + def astype(self, dtype, *args, **kwargs): + meta = type(self).meta_with_dtype(self._meta, dtype) + full_args = (self, dtype,) + args + # very important to pass the shared _lazy deque, or else there's an infinite loop somewhere. + return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs))) + + def tofile(self, *args, **kwargs): + eager = LazyNumpyTensor.to_eager(self) + return eager.tofile(*args, **kwargs) + + # TODO: __array_function__ From 72c177c1f6c16693eee319d4ebd4eaab5e630dd2 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Sat, 11 May 2024 17:28:10 +0200 Subject: [PATCH 17/56] fix system prompt handling (#7153) --- examples/server/server.cpp | 20 +++++++------------- 1 file changed, 7 insertions(+), 13 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 55c1d4129..ceaeb1f76 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -651,9 +651,6 @@ struct server_context { std::string system_prompt; std::vector system_tokens; - std::string name_user; // this should be the antiprompt - std::string name_assistant; - // slots / clients std::vector slots; json default_generation_settings_for_props; @@ -1100,15 +1097,11 @@ struct server_context { system_need_update = false; } - void system_prompt_set(const json & sys_props) { - system_prompt = sys_props.value("prompt", ""); - name_user = sys_props.value("anti_prompt", ""); - name_assistant = sys_props.value("assistant_name", ""); + bool system_prompt_set(const std::string & sys_prompt) { + system_prompt = sys_prompt; LOG_VERBOSE("system prompt process", { {"system_prompt", system_prompt}, - {"name_user", name_user}, - {"name_assistant", name_assistant}, }); // release all slots @@ -1117,6 +1110,7 @@ struct server_context { } system_need_update = true; + return true; } bool process_token(completion_token_output & result, server_slot & slot) { @@ -1536,7 +1530,8 @@ struct server_context { } if (task.data.contains("system_prompt")) { - system_prompt_set(task.data.at("system_prompt")); + std::string sys_prompt = json_value(task.data, "system_prompt", std::string()); + system_prompt_set(sys_prompt); for (server_slot & slot : slots) { slot.n_past = 0; @@ -2920,7 +2915,7 @@ int main(int argc, char ** argv) { server_params_parse(argc, argv, sparams, params); if (!sparams.system_prompt.empty()) { - ctx_server.system_prompt_set(json::parse(sparams.system_prompt)); + ctx_server.system_prompt_set(sparams.system_prompt); } if (params.model_alias == "unknown") { @@ -3409,8 +3404,7 @@ int main(int argc, char ** argv) { const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = { - { "user_name", ctx_server.name_user.c_str() }, - { "assistant_name", ctx_server.name_assistant.c_str() }, + { "system_prompt", ctx_server.system_prompt.c_str() }, { "default_generation_settings", ctx_server.default_generation_settings_for_props }, { "total_slots", ctx_server.params.n_parallel } }; From fed0108491a3a3cbec6c6480dc8667ffff9d7659 Mon Sep 17 00:00:00 2001 From: Josh Ramer Date: Sat, 11 May 2024 12:26:35 -0500 Subject: [PATCH 18/56] Scripting & documenting debugging one test without anything else in the loop. (#7096) * A little documentation that shares my quick tips for working in the repository. * Update startup-testing-debugging.md * script that shows a menu of tests to pick from & run the debugger on * debug-test.sh: Refactor CLI help message * debug-test.sh: documentation update * debug-test.sh: CLI Help output corrections * debug-test.sh: minor doc fix --------- authored-by: Josh Ramer Assisted-by: brian khuu --- docs/debugging-tests.md | 88 ++++++++++++++++++++++++++++++ scripts/debug-test.sh | 117 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 205 insertions(+) create mode 100644 docs/debugging-tests.md create mode 100755 scripts/debug-test.sh diff --git a/docs/debugging-tests.md b/docs/debugging-tests.md new file mode 100644 index 000000000..51a125e19 --- /dev/null +++ b/docs/debugging-tests.md @@ -0,0 +1,88 @@ +# Debugging Tests Tips + +## How to run & debug a specific test without anything else to keep the feedback loop short? + +There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number. + +For example, running the following command will output an interactive list from which you can select a test. It takes this form: + +`debug-test.sh [OPTION]... ` + +It will then build & run in the debugger for you. + +```bash +./scripts/debug-test.sh test-tokenizer + +# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows: +>>> b main +``` + +For further reference use `debug-test.sh -h` to print help. + +  + +### How does the script work? +If you want to be able to use the concepts contained in the script separately, the important ones are briefly outlined below. + +#### Step 1: Reset and Setup folder context + +From base of this repository, let's create `build-ci-debug` as our build context. + +```bash +rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug +``` + +#### Step 2: Setup Build Environment and Compile Test Binaries + +Setup and trigger a build under debug mode. You may adapt the arguments as needed, but in this case these are sane defaults. + +```bash +cmake -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON .. +make -j +``` + +#### Step 3.1: Identify Test Command for Debugging + +The output of this command will give you the command & arguments needed to run GDB. + +* `-R test-tokenizer` : looks for all the test files named `test-tokenizer*` (R=Regex) +* `-N` : "show-only" disables test execution & shows test commands that you can feed to GDB. +* `-V` : Verbose Mode + +```bash +ctest -R "test-tokenizer" -V -N +``` + +This may return output similar to below (focusing on key lines to pay attention to): + +```bash +... +1: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf" +1: Working Directory: . +Labels: main + Test #1: test-tokenizer-0-llama-spm +... +4: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-falcon.gguf" +4: Working Directory: . +Labels: main + Test #4: test-tokenizer-0-falcon +... +``` + +So for test #1 we can tell these two pieces of relevant information: +* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0` +* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf` + +#### Step 3.2: Run GDB on test command + +Based on the ctest 'test command' report above we can then run a gdb session via this command below: + +```bash +gdb --args ${Test Binary} ${Test GGUF Model} +``` + +Example: + +```bash +gdb --args ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf" +``` diff --git a/scripts/debug-test.sh b/scripts/debug-test.sh new file mode 100755 index 000000000..231a23d69 --- /dev/null +++ b/scripts/debug-test.sh @@ -0,0 +1,117 @@ +#!/bin/bash +test_suite=${1:-} +test_number=${2:-} + +PROG=${0##*/} +build_dir="build-ci-debug" + +if [ x"$1" = x"-h" ] || [ x"$1" = x"--help" ]; then + echo "Usage: $PROG [OPTION]... (test_number)" + echo "Debug specific ctest program." + echo + echo "Options:" + echo " -h, --help Display this help and exit" + echo + echo "Arguments:" + echo " (Mandatory) Supply one regex to the script to filter tests" + echo " (test_number) (Optional) Test number to run a specific test" + echo + echo "Example:" + echo " $PROG test-tokenizer" + echo " $PROG test-tokenizer 3" + echo + exit 0 +fi + +# Function to select and debug a test +function select_test() { + test_suite=${1:-test} + test_number=${2:-} + + # Sanity Check If Tests Is Detected + printf "\n\nGathering tests that fit REGEX: ${test_suite} ...\n" + tests=($(ctest -R ${test_suite} -V -N | grep -E " +Test +#[0-9]+*" | cut -d':' -f2 | awk '{$1=$1};1')) + if [ ${#tests[@]} -eq 0 ] + then + echo "No tests avaliable... check your compliation process..." + echo "Exiting." + exit 1 + fi + + if [ -z $test_number ] + then + # List out avaliable tests + printf "Which test would you like to debug?\n" + id=0 + for s in "${tests[@]}" + do + echo "Test# ${id}" + echo " $s" + ((id++)) + done + + # Prompt user which test they wanted to run + printf "\nRun test#? " + read test_number + else + printf "\nUser Already Requested #${test_number}" + fi + + # Start GDB with the requested test binary and arguments + printf "Debugging(GDB) test: ${tests[test_number]}\n" + # Change IFS (Internal Field Separator) + sIFS=$IFS + IFS=$'\n' + + # Get test args + gdb_args=($(ctest -R ${test_suite} -V -N | grep "Test command" | cut -d':' -f3 | awk '{$1=$1};1' )) + IFS=$sIFS + printf "Debug arguments: ${gdb_args[test_number]}\n\n" + + # Expand paths if needed + args=() + for x in $(echo ${gdb_args[test_number]} | sed -e 's/"\/\"//') + do + args+=($(echo $x | sed -e 's/.*\/..\//..\//')) + done + + # Execute debugger + echo "gdb args: ${args[@]}" + gdb --args ${args[@]} +} + +# Step 0: Check the args +if [ -z "$test_suite" ] +then + echo "Usage: $PROG [OPTION]... (test_number)" + echo "Supply one regex to the script to filter tests," + echo "and optionally a test number to run a specific test." + echo "Use --help flag for full instructions" + exit 1 +fi + +# Step 1: Reset and Setup folder context +## Sanity check that we are actually in a git repo +repo_root=$(git rev-parse --show-toplevel) +if [ ! -d "$repo_root" ]; then + echo "Error: Not in a Git repository." + exit 1 +fi + +## Reset folder to root context of git repo +pushd "$repo_root" || exit 1 + +## Create and enter build directory +rm -rf "$build_dir" && mkdir "$build_dir" || exit 1 + +# Step 2: Setup Build Environment and Compile Test Binaries +cmake -B "./$build_dir" -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON || exit 1 +pushd "$build_dir" && make -j || exit 1 + +# Step 3: Debug the Test +select_test "$test_suite" "$test_number" + +# Step 4: Return to the directory from which the user ran the command. +popd || exit 1 +popd || exit 1 +popd || exit 1 From 325756d28df7d018a7bac424e1b3bc8acb4ecf07 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 11 May 2024 16:25:50 +0300 Subject: [PATCH 19/56] ggml : resolve merge (ggml/0) ggml-ci --- ggml.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/ggml.c b/ggml.c index 4f3011583..b96a82a41 100644 --- a/ggml.c +++ b/ggml.c @@ -4,7 +4,6 @@ #include "ggml-impl.h" #include "ggml-quants.h" #include "ggml.h" -#include "sgemm.h" #if defined(_MSC_VER) || defined(__MINGW32__) #include // using malloc.h with MSC/MINGW @@ -37,6 +36,10 @@ #undef GGML_USE_LLAMAFILE #endif +#ifdef GGML_USE_LLAMAFILE +#include "sgemm.h" +#endif + #if defined(_MSC_VER) // disable "possible loss of data" to avoid hundreds of casts // we should just be careful :) From 6aeff24f8b91e145e92d17ec7ce3adc4ef60b8e9 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 11 May 2024 16:57:53 +0300 Subject: [PATCH 20/56] metal : fix indent (ggml/0) --- ggml-metal.m | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index 66c398d54..28dec762a 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1195,24 +1195,24 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_CLAMP: - { - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline; + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline; - float min; - float max; - memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float)); - memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float)); + float min; + float max; + memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float)); + memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float)); - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&min length:sizeof(min) atIndex:2]; - [encoder setBytes:&max length:sizeof(max) atIndex:3]; + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&min length:sizeof(min) atIndex:2]; + [encoder setBytes:&max length:sizeof(max) atIndex:3]; - const int64_t n = ggml_nelements(dst); + const int64_t n = ggml_nelements(dst); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { // we are not taking into account the strides, so for now require contiguous tensors From 1622ac023f42e5e01c163321cd98c6596aa9402d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 11 May 2024 21:35:05 +0300 Subject: [PATCH 21/56] sync : ggml --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index c5bd3ef55..46b874c64 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -8cd3975bf21657c6d1e80c7c61830977b962539e +d2ad1793f45922665c99f5cf4244dcab77e16c00 From 7bd4ffb78062587e4012a1c24186223f09b1bc70 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 11 May 2024 21:36:20 +0300 Subject: [PATCH 22/56] metal : fix warnings (skipme) (#0) --- ggml-metal.metal | 4 ++-- scripts/sync-ggml.last | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/ggml-metal.metal b/ggml-metal.metal index 0c6d32798..7af4e8f93 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -2217,7 +2217,7 @@ kernel void kernel_flash_attn_ext_f16( // ALiBi if (max_bias > 0.0f) { - const short h = iq2; + const uint32_t h = iq2; const float base = h < n_head_log2 ? m0 : m1; const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; @@ -2473,7 +2473,7 @@ kernel void kernel_flash_attn_ext_vec_f16( // ALiBi if (max_bias > 0.0f) { - const short h = iq2; + const uint32_t h = iq2; const float base = h < n_head_log2 ? m0 : m1; const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 46b874c64..1ea320429 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -d2ad1793f45922665c99f5cf4244dcab77e16c00 +30f54cbb3ada3e4c5bc6924de3e5918e5be4ff11 From b228aba91ac2cd9eb90e9d423ba1d0d20e0117e2 Mon Sep 17 00:00:00 2001 From: slaren Date: Sun, 12 May 2024 02:29:33 +0200 Subject: [PATCH 23/56] remove convert-lora-to-ggml.py (#7204) --- CMakeLists.txt | 11 -- ci/run.sh | 95 ----------- convert-lora-to-ggml.py | 150 ------------------ requirements.txt | 1 - .../requirements-convert-lora-to-ggml.txt | 2 - 5 files changed, 259 deletions(-) delete mode 100755 convert-lora-to-ggml.py delete mode 100644 requirements/requirements-convert-lora-to-ggml.txt diff --git a/CMakeLists.txt b/CMakeLists.txt index aa65b0d6c..362ab3673 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1281,17 +1281,6 @@ install( WORLD_READ WORLD_EXECUTE DESTINATION ${CMAKE_INSTALL_BINDIR}) -install( - FILES convert-lora-to-ggml.py - PERMISSIONS - OWNER_READ - OWNER_WRITE - OWNER_EXECUTE - GROUP_READ - GROUP_EXECUTE - WORLD_READ - WORLD_EXECUTE - DESTINATION ${CMAKE_INSTALL_BINDIR}) if (LLAMA_METAL) install( FILES ggml-metal.metal diff --git a/ci/run.sh b/ci/run.sh index e67c1a5ff..d5972480b 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -365,47 +365,6 @@ function gg_run_open_llama_3b_v2 { cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log - # lora - function compare_ppl { - qnt="$1" - ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) - ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) - - if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then - printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2" - return 20 - fi - - printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2" - return 0 - } - - path_lora="../models-mnt/open-llama/3B-v2/lora" - path_shakespeare="../models-mnt/shakespeare" - - shakespeare="${path_shakespeare}/shakespeare.txt" - lora_shakespeare="${path_lora}/ggml-adapter-model.bin" - - gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json - gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin - gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt - - python3 ../convert-lora-to-ggml.py ${path_lora} - - # f16 - (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log - (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log - compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log - - # q8_0 - (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log - (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log - compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log - - # q8_0 + f16 lora-base - (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log - compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log - set +e } @@ -416,7 +375,6 @@ function gg_sum_open_llama_3b_v2 { gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)" - gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)" gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" @@ -429,11 +387,6 @@ function gg_sum_open_llama_3b_v2 { gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" - gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)" - gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)" - gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)" - gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)" - gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)" } # open_llama_7b_v2 @@ -549,48 +502,6 @@ function gg_run_open_llama_7b_v2 { cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log - # lora - function compare_ppl { - qnt="$1" - ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) - ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) - - if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then - printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2" - return 20 - fi - - printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2" - return 0 - } - - path_lora="../models-mnt/open-llama/7B-v2/lora" - path_shakespeare="../models-mnt/shakespeare" - - shakespeare="${path_shakespeare}/shakespeare.txt" - lora_shakespeare="${path_lora}/ggml-adapter-model.bin" - - gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json - gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin - gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt - - python3 ../convert-lora-to-ggml.py ${path_lora} - - # f16 - (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log - (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log - compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log - - # currently not supported by the CUDA backend - # q8_0 - #(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log - #(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log - #compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log - - # q8_0 + f16 lora-base - #(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log - #compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log - set +e } @@ -601,7 +512,6 @@ function gg_sum_open_llama_7b_v2 { gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)" - gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)" gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" @@ -614,11 +524,6 @@ function gg_sum_open_llama_7b_v2 { gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" - gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)" - gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)" - #gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)" - #gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)" - #gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)" } # bge-small diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py deleted file mode 100755 index f09fa85fe..000000000 --- a/convert-lora-to-ggml.py +++ /dev/null @@ -1,150 +0,0 @@ -#!/usr/bin/env python3 -from __future__ import annotations - -import logging -import json -import os -import struct -import sys -from pathlib import Path -from typing import Any, BinaryIO, Sequence - -import numpy as np -import torch - -if 'NO_LOCAL_GGUF' not in os.environ: - sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) -import gguf - -logging.basicConfig(level=logging.DEBUG) -logger = logging.getLogger("lora-to-gguf") - -NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} - - -def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: - fout.write(b"ggla"[::-1]) # magic (ggml lora) - fout.write(struct.pack("i", 1)) # file version - fout.write(struct.pack("i", params["r"])) - # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int - # but some models ship a float value instead - # let's convert to int, but fail if lossless conversion is not possible - assert ( - int(params["lora_alpha"]) == params["lora_alpha"] - ), "cannot convert float to int losslessly" - fout.write(struct.pack("i", int(params["lora_alpha"]))) - - -def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None: - sname = name.encode("utf-8") - fout.write( - struct.pack( - "iii", - len(shape), - len(sname), - NUMPY_TYPE_TO_FTYPE[data_type.name], - ) - ) - fout.write(struct.pack("i" * len(shape), *shape[::-1])) - fout.write(sname) - fout.seek((fout.tell() + 31) & -32) - - -if __name__ == '__main__': - if len(sys.argv) < 2: - logger.info(f"Usage: python {sys.argv[0]} [arch]") - logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'") - logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") - sys.exit(1) - - input_json = os.path.join(sys.argv[1], "adapter_config.json") - input_model = os.path.join(sys.argv[1], "adapter_model.bin") - output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") - - if os.path.exists(input_model): - model = torch.load(input_model, map_location="cpu") - else: - input_model = os.path.join(sys.argv[1], "adapter_model.safetensors") - # lazy import load_file only if lora is in safetensors format. - from safetensors.torch import load_file - model = load_file(input_model, device="cpu") - - arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" - - if arch_name not in gguf.MODEL_ARCH_NAMES.values(): - logger.error(f"Error: unsupported architecture {arch_name}") - sys.exit(1) - - arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] - name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone - - with open(input_json, "r") as f: - params = json.load(f) - - if params["peft_type"] != "LORA": - logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") - sys.exit(1) - - if params["fan_in_fan_out"] is True: - logger.error("Error: param fan_in_fan_out is not supported") - sys.exit(1) - - if params["bias"] is not None and params["bias"] != "none": - logger.error("Error: param bias is not supported") - sys.exit(1) - - # TODO: these seem to be layers that have been trained but without lora. - # doesn't seem widely used but eventually should be supported - if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: - logger.error("Error: param modules_to_save is not supported") - sys.exit(1) - - with open(output_path, "wb") as fout: - fout.truncate() - - write_file_header(fout, params) - for k, v in model.items(): - orig_k = k - if k.endswith(".default.weight"): - k = k.replace(".default.weight", ".weight") - if k in ["llama_proj.weight", "llama_proj.bias"]: - continue - if k.endswith("lora_A.weight"): - if v.dtype != torch.float16 and v.dtype != torch.float32: - v = v.float() - v = v.T - else: - v = v.float() - - t = v.detach().numpy() - - prefix = "base_model.model." - if k.startswith(prefix): - k = k[len(prefix) :] - - lora_suffixes = (".lora_A.weight", ".lora_B.weight") - if k.endswith(lora_suffixes): - suffix = k[-len(lora_suffixes[0]):] - k = k[: -len(lora_suffixes[0])] - else: - logger.error(f"Error: unrecognized tensor name {orig_k}") - sys.exit(1) - - tname = name_map.get_name(k) - if tname is None: - logger.error(f"Error: could not map tensor name {orig_k}") - logger.error(" Note: the arch parameter must be specified if the model is not llama") - sys.exit(1) - - if suffix == ".lora_A.weight": - tname += ".weight.loraA" - elif suffix == ".lora_B.weight": - tname += ".weight.loraB" - else: - assert False - - logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") - write_tensor_header(fout, tname, t.shape, t.dtype) - t.tofile(fout) - - logger.info(f"Converted {input_json} and {input_model} to {output_path}") diff --git a/requirements.txt b/requirements.txt index fc1e28278..e7d14e16a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -9,5 +9,4 @@ -r ./requirements/requirements-convert-hf-to-gguf.txt -r ./requirements/requirements-convert-hf-to-gguf-update.txt -r ./requirements/requirements-convert-llama-ggml-to-gguf.txt --r ./requirements/requirements-convert-lora-to-ggml.txt -r ./requirements/requirements-convert-persimmon-to-gguf.txt diff --git a/requirements/requirements-convert-lora-to-ggml.txt b/requirements/requirements-convert-lora-to-ggml.txt deleted file mode 100644 index 6ac402610..000000000 --- a/requirements/requirements-convert-lora-to-ggml.txt +++ /dev/null @@ -1,2 +0,0 @@ --r ./requirements-convert.txt -torch~=2.1.1 From 6f1b63606fc68a09d62d1d74dbd156c35219026d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 12 May 2024 18:30:23 +0300 Subject: [PATCH 24/56] cmake : fix version cmp (#7227) --- CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 362ab3673..1c3b5c8e4 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -296,7 +296,7 @@ if (LLAMA_BLAS) if (LLAMA_STATIC) set(BLA_STATIC ON) endif() - if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22) + if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22) set(BLA_SIZEOF_INTEGER 8) endif() From dc685be46622a8fabfd57cfa804237c8f15679b8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sun, 12 May 2024 19:40:45 +0200 Subject: [PATCH 25/56] CUDA: add FP32 FlashAttention vector kernel (#7188) * CUDA: add FP32 FlashAttention vector kernel * fixup! CUDA: add FP32 FlashAttention vector kernel * fixup! fixup! CUDA: add FP32 FlashAttention vector kernel * fixup! fixup! fixup! CUDA: add FP32 FlashAttention vector kernel --- ggml-cuda.cu | 11 +- ggml-cuda/common.cuh | 4 + ggml-cuda/fattn-common.cuh | 47 ++++ ggml-cuda/fattn-vec-f16.cu | 430 +++++++++++++++++++++++++++++++++ ggml-cuda/fattn-vec-f16.cuh | 5 + ggml-cuda/fattn-vec-f32.cu | 384 +++++++++++++++++++++++++++++ ggml-cuda/fattn-vec-f32.cuh | 3 + ggml-cuda/fattn.cu | 468 ++---------------------------------- tests/test-backend-ops.cpp | 5 +- 9 files changed, 899 insertions(+), 458 deletions(-) create mode 100644 ggml-cuda/fattn-common.cuh create mode 100644 ggml-cuda/fattn-vec-f16.cu create mode 100644 ggml-cuda/fattn-vec-f16.cuh create mode 100644 ggml-cuda/fattn-vec-f32.cu create mode 100644 ggml-cuda/fattn-vec-f32.cuh diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5b6c90919..75a2ad480 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2713,6 +2713,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t } GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context; switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { @@ -2840,8 +2841,16 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_LEAKY_RELU: - case GGML_OP_FLASH_ATTN_EXT: return true; + case GGML_OP_FLASH_ATTN_EXT: +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128; +#else + if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) { + return true; + } + return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA; +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) default: return false; } diff --git a/ggml-cuda/common.cuh b/ggml-cuda/common.cuh index 44e67e040..b6f0bc36a 100644 --- a/ggml-cuda/common.cuh +++ b/ggml-cuda/common.cuh @@ -321,6 +321,10 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { #define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA +static bool fast_fp16_available(const int cc) { + return cc >= CC_PASCAL && cc != 610; +} + static bool fp16_mma_available(const int cc) { return cc < CC_OFFSET_AMD && cc >= CC_VOLTA; } diff --git a/ggml-cuda/fattn-common.cuh b/ggml-cuda/fattn-common.cuh new file mode 100644 index 000000000..33f640691 --- /dev/null +++ b/ggml-cuda/fattn-common.cuh @@ -0,0 +1,47 @@ +#define FATTN_KQ_STRIDE 256 +#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction. +#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs. + +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(D, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_combine_results( + const float * __restrict__ VKQ_parts, + const float2 * __restrict__ VKQ_meta, + float * __restrict__ dst) { + VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x; + VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x; + dst += D * gridDim.y*blockIdx.x; + + const int tid = threadIdx.x; + __builtin_assume(tid < D); + + __shared__ float2 meta[parallel_blocks]; + if (tid < 2*parallel_blocks) { + ((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid]; + } + + __syncthreads(); + + float kqmax = meta[0].x; +#pragma unroll + for (int l = 1; l < parallel_blocks; ++l) { + kqmax = max(kqmax, meta[l].x); + } + + float VKQ_numerator = 0.0f; + float VKQ_denominator = 0.0f; +#pragma unroll + for (int l = 0; l < parallel_blocks; ++l) { + const float diff = meta[l].x - kqmax; + const float KQ_max_scale = expf(diff); + const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD); + *((uint32_t *) &KQ_max_scale) &= ftz_mask; + + VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid]; + VKQ_denominator += KQ_max_scale * meta[l].y; + } + + dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator; +} diff --git a/ggml-cuda/fattn-vec-f16.cu b/ggml-cuda/fattn-vec-f16.cu new file mode 100644 index 000000000..cbf5f7835 --- /dev/null +++ b/ggml-cuda/fattn-vec-f16.cu @@ -0,0 +1,430 @@ +#include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-vec-f16.cuh" + +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(D, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_vec_ext_f16( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { +#if FP16_AVAILABLE + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const int stride_KV = nb11 / sizeof(half); + const int stride_KV2 = nb11 / sizeof(half2); + + half slopeh = __float2half(1.0f); + + // ALiBi + if (max_bias > 0.0f) { + const int h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slopeh = __float2half(powf(base, exph)); + } + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + constexpr int nwarps = D / WARP_SIZE; + const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; + __builtin_assume(tid < D); + + __shared__ half KQ[ncols*D]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + KQ[j*D + tid] = -HALF_MAX_HALF; + } + half2 * KQ2 = (half2 *) KQ; + + half kqmax[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax[j] = -HALF_MAX_HALF; + } + half kqsum[ncols] = {0.0f}; + + __shared__ half kqmax_shared[ncols][WARP_SIZE]; + __shared__ half kqsum_shared[ncols][WARP_SIZE]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + if (threadIdx.y == 0) { + kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF; + kqsum_shared[j][threadIdx.x] = 0.0f; + } + } + __syncthreads(); + + // Convert Q to half2 and store in registers: + half2 Q_h2[ncols][D/(2*WARP_SIZE)]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i]; + Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); + } + } + + half2 VKQ[ncols] = {{0.0f, 0.0f}}; + + const int k_start = parallel_blocks == 1 ? 0 : ip*D; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { + // Calculate KQ tile and keep track of new maximum KQ values: + + // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression, + // see https://github.com/ggerganov/llama.cpp/pull/7061 . + // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable). + half kqmax_new = kqmax[0]; + half kqmax_new_arr[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax_new_arr[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + + if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { + break; + } + + half2 sum2[ncols] = {{0.0f, 0.0f}}; +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE]; + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + sum2[j] = warp_reduce_sum(sum2[j]); + half sum = __low2half(sum2[j]) + __high2half(sum2[j]); + sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); + + if (ncols == 1) { + kqmax_new = ggml_cuda_hmax(kqmax_new, sum); + } else { + kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum); + } + + if (threadIdx.x == 0) { + KQ[j*D + i_KQ] = sum; + } + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j]; + + kqmax_new_j = warp_reduce_max(kqmax_new_j); + if (threadIdx.x == 0) { + kqmax_shared[j][threadIdx.y] = kqmax_new_j; + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + half kqmax_new_j = kqmax_shared[j][threadIdx.x]; + kqmax_new_j = warp_reduce_max(kqmax_new_j); + + const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j); + kqmax[j] = kqmax_new_j; + + const half val = hexp(KQ[j*D + tid] - kqmax[j]); + kqsum[j] = kqsum[j]*KQ_max_scale + val; + KQ[j*D + tid] = val; + + VKQ[j] *= __half2half2(KQ_max_scale); + } + + __syncthreads(); + +#pragma unroll + for (int k0 = 0; k0 < D; k0 += 2) { + if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) { + break; + } + + half2 V_k; + reinterpret_cast(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid]; + reinterpret_cast(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + VKQ[j] += V_k*KQ2[j*(D/2) + k0/2]; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqsum[j] = warp_reduce_sum(kqsum[j]); + if (threadIdx.x == 0) { + kqsum_shared[j][threadIdx.y] = kqsum[j]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; + kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); + + half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ])); + if (parallel_blocks == 1) { + dst_val /= kqsum[j_VKQ]; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; + } + + if (parallel_blocks != 1 && tid != 0) { +#pragma unroll + for (int j = 0; j < ncols; ++j) { + dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]); + } + } +#else + NO_DEVICE_CODE; +#endif // FP16_AVAILABLE +} + +template void launch_fattn_vec_f16( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc dst_tmp(pool); + ggml_cuda_pool_alloc dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + flash_attn_vec_ext_f16 + <<>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, max_bias, m0, m1, n_head_log2, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if (parallel_blocks == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results + <<>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + const int32_t precision = KQV->op_params[2]; + GGML_ASSERT(precision == GGML_PREC_DEFAULT); + + constexpr int cols_per_block = 1; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 256: + launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } +} + +void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + const int32_t precision = KQV->op_params[2]; + GGML_ASSERT(precision == GGML_PREC_DEFAULT); + GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); + + if (Q->ne[1] == 1) { + constexpr int cols_per_block = 1; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] == 2) { + constexpr int cols_per_block = 2; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 4) { + constexpr int cols_per_block = 4; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 8) { + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 1; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } +} diff --git a/ggml-cuda/fattn-vec-f16.cuh b/ggml-cuda/fattn-vec-f16.cuh new file mode 100644 index 000000000..c7023610a --- /dev/null +++ b/ggml-cuda/fattn-vec-f16.cuh @@ -0,0 +1,5 @@ +#include "common.cuh" + +void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + +void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-cuda/fattn-vec-f32.cu b/ggml-cuda/fattn-vec-f32.cu new file mode 100644 index 000000000..40c336ce3 --- /dev/null +++ b/ggml-cuda/fattn-vec-f32.cu @@ -0,0 +1,384 @@ +#include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-vec-f32.cuh" + +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(D, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_vec_ext_f32( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const int stride_KV = nb11 / sizeof(half); + const int stride_KV2 = nb11 / sizeof(half2); + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const int h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = powf(base, exph); + } + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + constexpr int nwarps = D / WARP_SIZE; + const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; + __builtin_assume(tid < D); + + __shared__ float KQ[ncols*D]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + KQ[j*D + tid] = -FLT_MAX/2.0f; + } + + float kqmax[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax[j] = -FLT_MAX/2.0f; + } + float kqsum[ncols] = {0.0f}; + + __shared__ float kqmax_shared[ncols][WARP_SIZE]; + __shared__ float kqsum_shared[ncols][WARP_SIZE]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + if (threadIdx.y == 0) { + kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f; + kqsum_shared[j][threadIdx.x] = 0.0f; + } + } + __syncthreads(); + + // Convert Q to half2 and store in registers: + float2 Q_h2[ncols][D/(2*WARP_SIZE)]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i]; + Q_h2[j][i0/WARP_SIZE].x *= scale; + Q_h2[j][i0/WARP_SIZE].y *= scale; + } + } + + float VKQ[ncols] = {0.0f}; + + const int k_start = parallel_blocks == 1 ? 0 : ip*D; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { + // Calculate KQ tile and keep track of new maximum KQ values: + + float kqmax_new_arr[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax_new_arr[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + + if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { + break; + } + + float sum[ncols] = {0.0f}; +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x; + sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y; + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + sum[j] = warp_reduce_sum(sum[j]); + sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; + + kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]); + + if (threadIdx.x == 0) { + KQ[j*D + i_KQ] = sum[j]; + } + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float kqmax_new_j = kqmax_new_arr[j]; + + kqmax_new_j = warp_reduce_max(kqmax_new_j); + if (threadIdx.x == 0) { + kqmax_shared[j][threadIdx.y] = kqmax_new_j; + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float kqmax_new_j = kqmax_shared[j][threadIdx.x]; + kqmax_new_j = warp_reduce_max(kqmax_new_j); + + const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j); + kqmax[j] = kqmax_new_j; + + const float val = expf(KQ[j*D + tid] - kqmax[j]); + kqsum[j] = kqsum[j]*KQ_max_scale + val; + KQ[j*D + tid] = val; + + VKQ[j] *= KQ_max_scale; + } + + __syncthreads(); + +#pragma unroll + for (int k = 0; k < D; ++k) { + if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) { + break; + } + + const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]); +#pragma unroll + for (int j = 0; j < ncols; ++j) { + VKQ[j] += V_ki*KQ[j*D + k]; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqsum[j] = warp_reduce_sum(kqsum[j]); + if (threadIdx.x == 0) { + kqsum_shared[j][threadIdx.y] = kqsum[j]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; + kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); + + float dst_val = VKQ[j_VKQ]; + if (parallel_blocks == 1) { + dst_val /= kqsum[j_VKQ]; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; + } + + if (parallel_blocks != 1 && tid != 0) { +#pragma unroll + for (int j = 0; j < ncols; ++j) { + dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]); + } + } +} + +template void launch_fattn_vec_f32( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc dst_tmp(pool); + ggml_cuda_pool_alloc dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + flash_attn_vec_ext_f32 + <<>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, max_bias, m0, m1, n_head_log2, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if (parallel_blocks == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results + <<>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); + + if (Q->ne[1] == 1) { + constexpr int cols_per_block = 1; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] == 2) { + constexpr int cols_per_block = 2; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 4) { + constexpr int cols_per_block = 4; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 8) { + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 1; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } +} diff --git a/ggml-cuda/fattn-vec-f32.cuh b/ggml-cuda/fattn-vec-f32.cuh new file mode 100644 index 000000000..614d54ae3 --- /dev/null +++ b/ggml-cuda/fattn-vec-f32.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu index ac5d6672b..419f8e752 100644 --- a/ggml-cuda/fattn.cu +++ b/ggml-cuda/fattn.cu @@ -1,4 +1,7 @@ #include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-vec-f16.cuh" +#include "fattn-vec-f32.cuh" #include "fattn.cuh" #include @@ -7,251 +10,6 @@ #include #endif -#define FATTN_KQ_STRIDE 256 -#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction. -#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs. - -template // D == head size -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -__launch_bounds__(D, 1) -#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -static __global__ void flash_attn_vec_ext_f16( - const char * __restrict__ Q, - const char * __restrict__ K, - const char * __restrict__ V, - const char * __restrict__ mask, - float * __restrict__ dst, - float2 * __restrict__ dst_meta, - const float scale, - const float max_bias, - const float m0, - const float m1, - const uint32_t n_head_log2, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int nb31, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { -#if FP16_AVAILABLE - //In this kernel Q, K, V are matrices while i, j, k are matrix indices. - - const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. - const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. - - const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. - const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); - const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); - const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape - const half * maskh = (const half *) mask + ne11*ic0; - - const int stride_KV = nb11 / sizeof(half); - const int stride_KV2 = nb11 / sizeof(half2); - - half slopeh = __float2half(1.0f); - - // ALiBi - if (max_bias > 0.0f) { - const int h = blockIdx.y; - - const float base = h < n_head_log2 ? m0 : m1; - const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; - - slopeh = __float2half(powf(base, exph)); - } - - static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); - constexpr int nwarps = D / WARP_SIZE; - const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; - __builtin_assume(tid < D); - - __shared__ half KQ[ncols*D]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - KQ[j*D + tid] = -HALF_MAX_HALF; - } - half2 * KQ2 = (half2 *) KQ; - - half kqmax[ncols]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqmax[j] = -HALF_MAX_HALF; - } - half kqsum[ncols] = {0.0f}; - - __shared__ half kqmax_shared[ncols][WARP_SIZE]; - __shared__ half kqsum_shared[ncols][WARP_SIZE]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - if (threadIdx.y == 0) { - kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF; - kqsum_shared[j][threadIdx.x] = 0.0f; - } - } - __syncthreads(); - - // Convert Q to half2 and store in registers: - half2 Q_h2[ncols][D/(2*WARP_SIZE)]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { -#pragma unroll - for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - - const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i]; - Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); - } - } - - half2 VKQ[ncols] = {{0.0f, 0.0f}}; - - const int k_start = parallel_blocks == 1 ? 0 : ip*D; - for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { - // Calculate KQ tile and keep track of new maximum KQ values: - - // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression, - // see https://github.com/ggerganov/llama.cpp/pull/7061 . - // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable). - half kqmax_new = kqmax[0]; - half kqmax_new_arr[ncols]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqmax_new_arr[j] = kqmax[j]; - } - -#pragma unroll - for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { - const int i_KQ = i_KQ_0 + threadIdx.y; - - if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { - break; - } - - half2 sum2[ncols] = {{0.0f, 0.0f}}; -#pragma unroll - for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { - const int k_KQ = k_KQ_0 + threadIdx.x; - - const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE]; - } - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - sum2[j] = warp_reduce_sum(sum2[j]); - half sum = __low2half(sum2[j]) + __high2half(sum2[j]); - sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); - - if (ncols == 1) { - kqmax_new = ggml_cuda_hmax(kqmax_new, sum); - } else { - kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum); - } - - if (threadIdx.x == 0) { - KQ[j*D + i_KQ] = sum; - } - } - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j]; - - kqmax_new_j = warp_reduce_max(kqmax_new_j); - if (threadIdx.x == 0) { - kqmax_shared[j][threadIdx.y] = kqmax_new_j; - } - } - - __syncthreads(); - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - half kqmax_new_j = kqmax_shared[j][threadIdx.x]; - kqmax_new_j = warp_reduce_max(kqmax_new_j); - - const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j); - kqmax[j] = kqmax_new_j; - - const half val = hexp(KQ[j*D + tid] - kqmax[j]); - kqsum[j] = kqsum[j]*KQ_max_scale + val; - KQ[j*D + tid] = val; - - VKQ[j] *= __half2half2(KQ_max_scale); - } - - __syncthreads(); - -#pragma unroll - for (int k0 = 0; k0 < D; k0 += 2) { - if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) { - break; - } - - half2 V_k; - reinterpret_cast(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid]; - reinterpret_cast(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - VKQ[j] += V_k*KQ2[j*(D/2) + k0/2]; - } - } - - __syncthreads(); - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqsum[j] = warp_reduce_sum(kqsum[j]); - if (threadIdx.x == 0) { - kqsum_shared[j][threadIdx.y] = kqsum[j]; - } - } - - __syncthreads(); - -#pragma unroll - for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { - kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; - kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); - - half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ])); - if (parallel_blocks == 1) { - dst_val /= kqsum[j_VKQ]; - } - const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; - dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; - } - - if (parallel_blocks != 1 && tid != 0) { -#pragma unroll - for (int j = 0; j < ncols; ++j) { - dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]); - } - } -#else - NO_DEVICE_CODE; -#endif // FP16_AVAILABLE -} - // D == head size, VKQ_stride == num VKQ rows calculated in parallel: template #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) @@ -655,54 +413,6 @@ static __global__ void flash_attn_ext_f16( #endif // FP16_MMA_AVAILABLE } -template // D == head size -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -__launch_bounds__(D, 1) -#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -static __global__ void flash_attn_combine_results( - const float * __restrict__ VKQ_parts, - const float2 * __restrict__ VKQ_meta, - float * __restrict__ dst) { -#if FP16_AVAILABLE - VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x; - VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x; - dst += D * gridDim.y*blockIdx.x; - - const int tid = threadIdx.x; - __builtin_assume(tid < D); - - __shared__ float2 meta[parallel_blocks]; - if (tid < 2*parallel_blocks) { - ((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid]; - } - - __syncthreads(); - - float kqmax = meta[0].x; -#pragma unroll - for (int l = 1; l < parallel_blocks; ++l) { - kqmax = max(kqmax, meta[l].x); - } - - float VKQ_numerator = 0.0f; - float VKQ_denominator = 0.0f; -#pragma unroll - for (int l = 0; l < parallel_blocks; ++l) { - const float diff = meta[l].x - kqmax; - const float KQ_max_scale = expf(diff); - const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD); - *((uint32_t *) &KQ_max_scale) &= ftz_mask; - - VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid]; - VKQ_denominator += KQ_max_scale * meta[l].y; - } - - dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator; -#else - NO_DEVICE_CODE; -#endif // FP16_AVAILABLE -} - constexpr int get_max_power_of_2(int x) { return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1; } @@ -727,66 +437,6 @@ static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed."); static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed."); static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed."); -template void launch_fattn_vec_f16( - const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, - ggml_cuda_pool & pool, cudaStream_t main_stream -) { - ggml_cuda_pool_alloc dst_tmp(pool); - ggml_cuda_pool_alloc dst_tmp_meta(pool); - - if (parallel_blocks > 1) { - dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); - dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); - } - - constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; - const dim3 block_dim(WARP_SIZE, nwarps, 1); - const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); - const int shmem = 0; - - float scale = 1.0f; - float max_bias = 0.0f; - - memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); - memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); - - const uint32_t n_head = Q->ne[2]; - const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); - - const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); - - flash_attn_vec_ext_f16 - <<>> ( - (const char *) Q->data, - (const char *) K->data, - (const char *) V->data, - mask ? ((const char *) mask->data) : nullptr, - parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, - scale, max_bias, m0, m1, n_head_log2, - Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], - K->ne[0], K->ne[1], K->ne[2], K->ne[3], - mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, - Q->nb[1], Q->nb[2], Q->nb[3], - K->nb[1], K->nb[2], K->nb[3], - KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] - ); - CUDA_CHECK(cudaGetLastError()); - - if (parallel_blocks == 1) { - return; - } - - const dim3 block_dim_combine(D, 1, 1); - const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); - const int shmem_combine = 0; - - flash_attn_combine_results - <<>> - (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); - CUDA_CHECK(cudaGetLastError()); -} - template void launch_fattn_f16_impl( const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, ggml_cuda_pool & pool, cudaStream_t main_stream @@ -891,95 +541,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const int32_t precision = KQV->op_params[2]; + if (!fast_fp16_available(cc)) { + ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); + return; + } + if (!fp16_mma_available(cc)) { - GGML_ASSERT(precision == GGML_PREC_DEFAULT); - GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); - - if (Q->ne[1] == 1) { - constexpr int cols_per_block = 1; - constexpr int parallel_blocks = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 128: - launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - default: - GGML_ASSERT(false); - break; - } - return; - } - - if (Q->ne[1] == 2) { - constexpr int cols_per_block = 2; - constexpr int parallel_blocks = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 128: - launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - default: - GGML_ASSERT(false); - break; - } - return; - } - - if (Q->ne[1] <= 4) { - constexpr int cols_per_block = 4; - constexpr int parallel_blocks = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 128: - launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - default: - GGML_ASSERT(false); - break; - } - return; - } - - if (Q->ne[1] <= 8) { - constexpr int cols_per_block = 8; - constexpr int parallel_blocks = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 128: - launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - default: - GGML_ASSERT(false); - break; - } - return; - } - - constexpr int cols_per_block = 8; - constexpr int parallel_blocks = 1; - switch (Q->ne[0]) { - case 64: - launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 128: - launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - default: - GGML_ASSERT(false); - break; - } + ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst); return; } if (precision != GGML_PREC_DEFAULT) { + if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) { + ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); + return; + } + if (Q->ne[1] <= 32 || Q->ne[0] > 128) { constexpr int cols_per_block = 16; constexpr int nwarps = 4; @@ -1037,22 +614,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst } if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) { - constexpr int cols_per_block = 1; - constexpr int parallel_blocks = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 128: - launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - case 256: - launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); - break; - default: - GGML_ASSERT(false); - break; - } + ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); return; } diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 731788b95..45a2cb85a 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2,6 +2,7 @@ #include #include #include + #include #include #include @@ -2173,11 +2174,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_timestep_embedding()); test_cases.emplace_back(new test_leaky_relu()); -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) - for (int hs : { 64, 128, }) { // other head sizes not implemented -#else for (int hs : { 64, 80, 128, 256, }) { -#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) for (float max_bias : {0.0f, 8.0f}) { for (int nh : { 32, }) { for (int kv : { 512, 1024, }) { From 0d5cef78aeafae4d4e6d56e2d4bcda771af58cc9 Mon Sep 17 00:00:00 2001 From: Neo Zhang <14088817+arthw@users.noreply.github.com> Date: Mon, 13 May 2024 08:02:55 +0800 Subject: [PATCH 26/56] [SYCL] update CI with oneapi 2024.1 (#7235) Co-authored-by: Zhang --- .github/workflows/build.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 2d747e688..3408b74ac 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -898,7 +898,7 @@ jobs: shell: bash env: - WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe + WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel steps: From cbf75894d256f1861f6409565db599365de3d4b8 Mon Sep 17 00:00:00 2001 From: Neo Zhang <14088817+arthw@users.noreply.github.com> Date: Mon, 13 May 2024 08:04:29 +0800 Subject: [PATCH 27/56] [SYCL] Add oneapi runtime dll files to win release package (#7241) * add oneapi running time dlls to release package * fix path * fix path * fix path * fix path * fix path --------- Co-authored-by: Zhang --- .github/workflows/build.yml | 13 ++++++++++++- 1 file changed, 12 insertions(+), 1 deletion(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 3408b74ac..8c338534d 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -900,7 +900,7 @@ jobs: env: WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel - + ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI" steps: - name: Clone id: checkout @@ -932,6 +932,17 @@ jobs: id: pack_artifacts if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} run: | + echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin" + cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.4.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin + + cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_win_proxy_loader.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_level_zero.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin + echo "cp oneAPI running time dll files to ./build/bin done" 7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/* - name: Upload artifacts From e586ee42595500c53938e937b6b6ad5353ad76dc Mon Sep 17 00:00:00 2001 From: Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com> Date: Sun, 12 May 2024 19:40:08 -0700 Subject: [PATCH 28/56] change default temperature of OAI compat API from 0 to 1 (#7226) * change default temperature of OAI compat API from 0 to 1 * make tests explicitly send temperature to OAI API --- examples/server/tests/features/steps/steps.py | 7 +++++-- examples/server/utils.hpp | 2 +- 2 files changed, 6 insertions(+), 3 deletions(-) diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index f4b1ac1d7..577b87af3 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -887,6 +887,7 @@ async def oai_chat_completions(user_prompt, base_path, async_client, debug=False, + temperature=None, model=None, n_predict=None, enable_streaming=None, @@ -913,7 +914,8 @@ async def oai_chat_completions(user_prompt, "model": model, "max_tokens": n_predict, "stream": enable_streaming, - "seed": seed + "temperature": temperature if temperature is not None else 0.0, + "seed": seed, } if response_format is not None: payload['response_format'] = response_format @@ -978,7 +980,8 @@ async def oai_chat_completions(user_prompt, max_tokens=n_predict, stream=enable_streaming, response_format=payload.get('response_format'), - seed=seed + seed=seed, + temperature=payload['temperature'] ) except openai.error.AuthenticationError as e: if expect_api_error is not None and expect_api_error: diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index d872b63f5..d8a2286e4 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -371,7 +371,7 @@ static json oaicompat_completion_params_parse( llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); llama_params["stream"] = json_value(body, "stream", false); - llama_params["temperature"] = json_value(body, "temperature", 0.0); + llama_params["temperature"] = json_value(body, "temperature", 1.0); llama_params["top_p"] = json_value(body, "top_p", 1.0); // Apply chat template to the list of messages From b1f8af1886e8187db6bb2a9b87cfc1c0f175f629 Mon Sep 17 00:00:00 2001 From: Brian Date: Mon, 13 May 2024 12:56:47 +1000 Subject: [PATCH 29/56] convert.py: Outfile default name change and additional metadata support (#4858) * convert.py: Outfile default name change and additional metadata support * convert.py: don't stringify Metadata load method output * convert.py: typo fix * convert.py: fix metadata format to sync with LLM_KV_NAMES in llama.cpp --- convert.py | 178 +++++++++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 154 insertions(+), 24 deletions(-) diff --git a/convert.py b/convert.py index 148bfd66a..e2e642351 100755 --- a/convert.py +++ b/convert.py @@ -24,7 +24,7 @@ from abc import ABC, abstractmethod from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path -from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable +from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional import numpy as np from sentencepiece import SentencePieceProcessor @@ -344,10 +344,47 @@ class Params: return params +@dataclass +class Metadata: + name: Optional[str] = None + author: Optional[str] = None + version: Optional[str] = None + url: Optional[str] = None + description: Optional[str] = None + licence: Optional[str] = None + source_url: Optional[str] = None + source_hf_repo: Optional[str] = None + + @staticmethod + def load(metadata_path: Path) -> Metadata: + if metadata_path is None or not metadata_path.exists(): + return Metadata() + + with open(metadata_path, 'r') as file: + data = json.load(file) + + # Create a new Metadata instance + metadata = Metadata() + + # Assigning values to Metadata attributes if they exist in the JSON file + # This is based on LLM_KV_NAMES mapping in llama.cpp + metadata.name = data.get("general.name") + metadata.author = data.get("general.author") + metadata.version = data.get("general.version") + metadata.url = data.get("general.url") + metadata.description = data.get("general.description") + metadata.license = data.get("general.license") + metadata.source_url = data.get("general.source.url") + metadata.source_hf_repo = data.get("general.source.huggingface.repository") + + return metadata + + # # vocab # + @runtime_checkable class BaseVocab(Protocol): tokenizer_model: ClassVar[str] @@ -1066,21 +1103,42 @@ class OutputFile: def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) - def add_meta_arch(self, params: Params) -> None: + def add_meta_model(self, params: Params, metadata: Metadata) -> None: + # Metadata About The Model And Its Provenence name = "LLaMA" - - # TODO: better logic to determine model name - if params.n_ctx == 4096: - name = "LLaMA v2" + if metadata is not None and metadata.name is not None: + name = metadata.name elif params.path_model is not None: - name = str(params.path_model.parent).split('/')[-1] + name = str(params.path_model.parent).split("/")[-1] + elif params.n_ctx == 4096: + # Heuristic detection of LLaMA v2 model + name = "LLaMA v2" - self.gguf.add_name (name) - self.gguf.add_vocab_size (params.n_vocab) - self.gguf.add_context_length (params.n_ctx) - self.gguf.add_embedding_length (params.n_embd) - self.gguf.add_block_count (params.n_layer) - self.gguf.add_feed_forward_length (params.n_ff) + self.gguf.add_name(name) + + if metadata is not None: + if metadata.author is not None: + self.gguf.add_author(metadata.author) + if metadata.version is not None: + self.gguf.add_version(metadata.version) + if metadata.url is not None: + self.gguf.add_url(metadata.url) + if metadata.description is not None: + self.gguf.add_description(metadata.description) + if metadata.licence is not None: + self.gguf.add_licence(metadata.licence) + if metadata.source_url is not None: + self.gguf.add_source_url(metadata.source_url) + if metadata.source_hf_repo is not None: + self.gguf.add_source_hf_repo(metadata.source_hf_repo) + + def add_meta_arch(self, params: Params) -> None: + # Metadata About The Neural Architecture Itself + self.gguf.add_vocab_size(params.n_vocab) + self.gguf.add_context_length(params.n_ctx) + self.gguf.add_embedding_length(params.n_embd) + self.gguf.add_block_count(params.n_layer) + self.gguf.add_feed_forward_length(params.n_ff) self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) self.gguf.add_head_count (params.n_head) self.gguf.add_head_count_kv (params.n_head_kv) @@ -1183,13 +1241,14 @@ class OutputFile: @staticmethod def write_vocab_only( fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, + endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) # meta data + of.add_meta_model(params, metadata) of.add_meta_arch(params) of.add_meta_vocab(vocab) of.add_meta_special_vocab(svocab) @@ -1216,12 +1275,14 @@ class OutputFile: fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, + metadata: Metadata = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) # meta data + of.add_meta_model(params, metadata) of.add_meta_arch(params) if isinstance(vocab, Vocab): of.add_meta_vocab(vocab) @@ -1257,6 +1318,37 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT raise ValueError(f"Unexpected combination of types: {name_to_type}") +def model_parameter_count(model: LazyModel) -> int: + total_model_parameters = 0 + for i, (name, lazy_tensor) in enumerate(model.items()): + sum_weights_in_tensor = 1 + for dim in lazy_tensor.shape: + sum_weights_in_tensor *= dim + total_model_parameters += sum_weights_in_tensor + return total_model_parameters + + +def model_parameter_count_rounded_notation(model_params_count: int) -> str: + if model_params_count > 1e12 : + # Trillions Of Parameters + scaled_model_params = model_params_count * 1e-12 + scale_suffix = "T" + elif model_params_count > 1e9 : + # Billions Of Parameters + scaled_model_params = model_params_count * 1e-9 + scale_suffix = "B" + elif model_params_count > 1e6 : + # Millions Of Parameters + scaled_model_params = model_params_count * 1e-6 + scale_suffix = "M" + else: + # Thousands Of Parameters + scaled_model_params = model_params_count * 1e-3 + scale_suffix = "K" + + return f"{round(scaled_model_params)}{scale_suffix}" + + def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) for (name, tensor) in model.items()} @@ -1436,13 +1528,35 @@ class VocabFactory: return vocab, special_vocab -def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: - namestr = { - GGMLFileType.AllF32: "f32", - GGMLFileType.MostlyF16: "f16", - GGMLFileType.MostlyQ8_0:"q8_0", +def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str: + quantization = { + GGMLFileType.AllF32: "F32", + GGMLFileType.MostlyF16: "F16", + GGMLFileType.MostlyQ8_0: "Q8_0", }[file_type] - ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" + + parameters = model_parameter_count_rounded_notation(model_params_count) + + expert_count = "" + if params.n_experts is not None: + expert_count = f"{params.n_experts}x" + + version = "" + if metadata is not None and metadata.version is not None: + version = f"-{metadata.version}" + + name = "ggml-model" + if metadata is not None and metadata.name is not None: + name = metadata.name + elif params.path_model is not None: + name = params.path_model.name + + return f"{name}{version}-{expert_count}{parameters}-{quantization}" + + +def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path: + default_filename = default_convention_outfile(file_type, params, model_params_count, metadata) + ret = model_paths[0].parent / f"{default_filename}.gguf" if ret in model_paths: logger.error( f"Error: Default output path ({ret}) would overwrite the input. " @@ -1480,17 +1594,30 @@ def main(args_in: list[str] | None = None) -> None: parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file") + parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name") args = parser.parse_args(args_in) if args.verbose: logging.basicConfig(level=logging.DEBUG) - elif args.dump_single or args.dump: + elif args.dump_single or args.dump or args.get_outfile: # Avoid printing anything besides the dump output logging.basicConfig(level=logging.WARNING) else: logging.basicConfig(level=logging.INFO) + metadata = Metadata.load(args.metadata) + + if args.get_outfile: + model_plus = load_some_model(args.model) + params = Params.load(model_plus) + model = convert_model_names(model_plus.model, params, args.skip_unknown) + model_params_count = model_parameter_count(model_plus.model) + ftype = pick_output_type(model, args.outtype) + print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100 + return + if args.no_vocab and args.vocab_only: raise ValueError("--vocab-only does not make sense with --no-vocab") @@ -1504,6 +1631,9 @@ def main(args_in: list[str] | None = None) -> None: else: model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) + model_params_count = model_parameter_count(model_plus.model) + logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})") + if args.dump: do_dump_model(model_plus) return @@ -1557,7 +1687,7 @@ def main(args_in: list[str] | None = None) -> None: f_norm_eps = 1e-5, ) OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, - endianess=endianess, pad_vocab=args.pad_vocab) + endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) logger.info(f"Wrote {outfile}") return @@ -1570,13 +1700,13 @@ def main(args_in: list[str] | None = None) -> None: model = convert_model_names(model, params, args.skip_unknown) ftype = pick_output_type(model, args.outtype) model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_outfile(model_plus.paths, ftype) + outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata) params.ftype = ftype logger.info(f"Writing {outfile}, format {ftype}") OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, - concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab) + concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) logger.info(f"Wrote {outfile}") From 9aa672490c848e45eaa704a554e0f1f6df995fc8 Mon Sep 17 00:00:00 2001 From: Joan Fontanals Date: Mon, 13 May 2024 10:35:14 +0200 Subject: [PATCH 30/56] llama : rename jina tokenizers to v2 (#7249) * refactor: rename jina tokenizers to v2 * refactor: keep refactoring non-breaking --- convert-hf-to-gguf-update.py | 6 +++--- convert-hf-to-gguf.py | 6 +++--- llama.cpp | 4 +++- 3 files changed, 9 insertions(+), 7 deletions(-) diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index cd2674a0e..14aa0c45a 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -74,9 +74,9 @@ models = [ {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, - {"name": "jina-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! - {"name": "jina-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, - {"name": "jina-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, + {"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! + {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, + {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, ] # make directory "models/tokenizers" if it doesn't exist diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index ec7f4dd75..d6e5dece0 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -475,13 +475,13 @@ class Model: res = "dbrx" if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en - res = "jina-en" + res = "jina-v2-en" if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es - res = "jina-es" + res = "jina-v2-es" if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de - res = "jina-de" + res = "jina-v2-de" if res is None: logger.warning("\n") diff --git a/llama.cpp b/llama.cpp index e91ad7285..adbcc07e2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4424,7 +4424,9 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "gpt-2" || tokenizer_pre == "jina-es" || - tokenizer_pre == "jina-de") { + tokenizer_pre == "jina-de" || + tokenizer_pre == "jina-v2-es" || + tokenizer_pre == "jina-v2-de") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; } else if ( tokenizer_pre == "refact") { From 948f4ec7c5bff92b18e63303f2b2d1645bccd943 Mon Sep 17 00:00:00 2001 From: Neo Zhang <14088817+arthw@users.noreply.github.com> Date: Mon, 13 May 2024 18:11:26 +0800 Subject: [PATCH 31/56] [SYCL] rm wait() (#7233) --- ggml-sycl.cpp | 25 +------------------------ 1 file changed, 1 insertion(+), 24 deletions(-) diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index e93d2af63..724070eb9 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -15564,26 +15564,6 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; -#if 0 - // use syclGemmEx - { - for (int i13 = 0; i13 < ne13; ++i13) { - for (int i12 = 0; i12 < ne12; ++i12) { - int i03 = i13 / r3; - int i02 = i12 / r2; - - SYCL_CHECK( - syclGemmEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , SYCL_R_16F, nb01/sizeof(half), - (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F, nb11/sizeof(float), - beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01, - cu_compute_type, - CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - } - } - } -#else if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( @@ -15595,7 +15575,6 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, nb11 / nb10, nb12 / nb10, beta, (char *)dst_t, cu_data_type, ne01, nb2 / nb0, ne12 * ne13, cu_compute_type))); - g_sycl_handles[g_main_device]->wait(); } else { const int ne23 = ne12*ne13; @@ -15626,7 +15605,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, nb02, nb03, nb12_scaled, nb13_scaled, nbd2, nbd3, r2, r3, item_ct1); }); - }).wait(); + }); } SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( *g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans, @@ -15637,9 +15616,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, dpct::library_data_t::real_half, nb11 / nb10, beta, (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, cu_compute_type))); - g_sycl_handles[g_main_device]->wait(); } -#endif if (no_mixed_dtypes) { const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); From 1c570d8beeebad95872dc738ea542a4a0022f78a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Mon, 13 May 2024 13:03:27 +0200 Subject: [PATCH 32/56] perplexity: add BF16 vs. FP16 results (#7150) --- examples/perplexity/README.md | 60 ++++++++++++++++++++++++++++++++++- 1 file changed, 59 insertions(+), 1 deletion(-) diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md index c5e2bc5de..c2a3c5ce9 100644 --- a/examples/perplexity/README.md +++ b/examples/perplexity/README.md @@ -7,6 +7,8 @@ Also note that finetunes typically result in a higher perplexity value even thou Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16. The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`). +When numbers are listed all command line arguments and compilation options are left at their defaults unless noted otherwise. +llama.cpp numbers are **not** directly comparable to those of other projects because the exact values depend strongly on the implementation details. By default only the mean perplexity value and the corresponding uncertainty is calculated. The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation. @@ -32,7 +34,13 @@ In addition to the KL divergence the following statistics are calculated with `- ## LLaMA 3 8b Scoreboard -Results are sorted by Kullback-Leibler divergence relative to FP16. +| Revision | f364eb6f | +|:---------|:-------------------| +| Backend | CUDA | +| CPU | AMD Epyc 7742 | +| GPU | 1x NVIDIA RTX 4090 | + +Results were generated using the CUDA backend and are sorted by Kullback-Leibler divergence relative to FP16. The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat). | Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp | @@ -89,6 +97,12 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence ## LLaMA 2 vs. LLaMA 3 Quantization comparison +| Revision | f364eb6f | +|:---------|:-------------------| +| Backend | CUDA | +| CPU | AMD Epyc 7742 | +| GPU | 1x NVIDIA RTX 4090 | + | Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 | |-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 | @@ -107,6 +121,50 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence | RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % | | Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % | +## LLaMA 3 BF16 vs. FP16 comparison + +| Revision | 83330d8c | +|:---------|:--------------| +| Backend | CPU | +| CPU | AMD Epyc 7742 | +| GPU | N/A | + +Results were calculated with LLaMA 3 8b BF16 as `--kl-divergence-base` and LLaMA 3 8b FP16 as the `--model` for comparison. + +| Metric | Value | +|--------------------------------|--------------------------| +| Mean PPL(Q) | 6.227711 ± 0.037833 | +| Mean PPL(base) | 6.225194 ± 0.037771 | +| Cor(ln(PPL(Q)), ln(PPL(base))) | 99.990% | +| Mean ln(PPL(Q)/PPL(base)) | 0.000404 ± 0.000086 | +| Mean PPL(Q)/PPL(base) | 1.000404 ± 0.000086 | +| Mean PPL(Q)-PPL(base) | 0.002517 ± 0.000536 | +| Mean KLD | 0.00002515 ± 0.00000020 | +| Maximum KLD | 0.012206 | +| 99.9% KLD | 0.000799 | +| 99.0% KLD | 0.000222 | +| 99.0% KLD | 0.000222 | +| Median KLD | 0.000013 | +| 10.0% KLD | -0.000002 | +| 5.0% KLD | -0.000008 | +| 1.0% KLD | -0.000023 | +| Minimum KLD | -0.000059 | +| Mean Δp | -0.0000745 ± 0.0003952 % | +| Maximum Δp | 4.186% | +| 99.9% Δp | 1.049% | +| 99.0% Δp | 0.439% | +| 95.0% Δp | 0.207% | +| 90.0% Δp | 0.125% | +| 75.0% Δp | 0.029% | +| Median Δp | 0.000% | +| 25.0% Δp | -0.030% | +| 10.0% Δp | -0.126% | +| 5.0% Δp | -0.207% | +| 1.0% Δp | -0.434% | +| 0.1% Δp | -1.016% | +| Minimum Δp | -4.672% | +| RMS Δp | 0.150 ± 0.001 % | +| Same top p | 99.739 ± 0.013 % | ## Old Numbers From 30e70334f71b3bd115024affcf98cac3d79aaa95 Mon Sep 17 00:00:00 2001 From: "k.h.lai" Date: Mon, 13 May 2024 22:02:36 +0800 Subject: [PATCH 33/56] llava-cli: fix base64 prompt (#7248) --- examples/llava/llava-cli.cpp | 27 +++++++++++++++++++++------ 1 file changed, 21 insertions(+), 6 deletions(-) diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp index da60ddf2f..a6d67e5d7 100644 --- a/examples/llava/llava-cli.cpp +++ b/examples/llava/llava-cli.cpp @@ -300,14 +300,10 @@ int main(int argc, char ** argv) { return 1; } - for (auto & image : params.image) { + if (prompt_contains_image(params.prompt)) { auto ctx_llava = llava_init_context(¶ms, model); - auto image_embed = load_image(ctx_llava, ¶ms, image); - if (!image_embed) { - std::cerr << "error: failed to load image " << image << ". Terminating\n\n"; - return 1; - } + auto image_embed = load_image(ctx_llava, ¶ms, ""); // process the prompt process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); @@ -316,7 +312,26 @@ int main(int argc, char ** argv) { llava_image_embed_free(image_embed); ctx_llava->model = NULL; llava_free(ctx_llava); + } else { + for (auto & image : params.image) { + auto ctx_llava = llava_init_context(¶ms, model); + + auto image_embed = load_image(ctx_llava, ¶ms, image); + if (!image_embed) { + std::cerr << "error: failed to load image " << image << ". Terminating\n\n"; + return 1; + } + + // process the prompt + process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); + + llama_print_timings(ctx_llava->ctx_llama); + llava_image_embed_free(image_embed); + ctx_llava->model = NULL; + llava_free(ctx_llava); + } } + llama_free_model(model); return 0; From 614d3b914e1c3e02596f869649eb4f1d3b68614d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 13 May 2024 17:15:15 +0300 Subject: [PATCH 34/56] llama : less KV padding when FA is off (#7257) ggml-ci --- llama.cpp | 20 +++++++++++++------- 1 file changed, 13 insertions(+), 7 deletions(-) diff --git a/llama.cpp b/llama.cpp index adbcc07e2..202bf94c8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2805,6 +2805,11 @@ static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { cache.do_defrag = true; } +static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) { + // the FA kernels require padding to avoid extra runtime boundary checks + return cparams.flash_attn ? 256u : 32u; +} + // // model loading and saving // @@ -11510,7 +11515,8 @@ static int llama_decode_internal( // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important - kv_self.n = std::min(kv_self.size, std::max(256u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 256))); + const uint32_t pad = llama_kv_cache_get_padding(cparams); + kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad))); //kv_self.n = llama_kv_cache_cell_max(kv_self); } } @@ -15511,6 +15517,11 @@ struct llama_context * llama_new_context_with_model( return nullptr; } + if (params.flash_attn && model->arch == LLM_ARCH_GROK) { + LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); + params.flash_attn = false; + } + llama_context * ctx = new llama_context(*model); const auto & hparams = model->hparams; @@ -15534,7 +15545,7 @@ struct llama_context * llama_new_context_with_model( cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; // this is necessary due to kv_self.n being padded later during inference - cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256); + cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams)); // with causal attention, the batch size is limited by the context size cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; @@ -15579,11 +15590,6 @@ struct llama_context * llama_new_context_with_model( } } - if (cparams.flash_attn && model->arch == LLM_ARCH_GROK) { - LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); - cparams.flash_attn = false; - } - if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } From ee52225067622babc277371511b8124884e1c797 Mon Sep 17 00:00:00 2001 From: compilade Date: Mon, 13 May 2024 14:10:51 -0400 Subject: [PATCH 35/56] convert-hf : support direct Q8_0 conversion (#7234) * convert-hf : support q8_0 conversion * convert-hf : add missing ftype This was messing with the checksums otherwise. * convert-hf : add missing ftype to Baichuan and Xverse I didn't notice these on my first pass. --- convert-hf-to-gguf.py | 72 +++++++++--------------- gguf-py/gguf/__init__.py | 1 + gguf-py/gguf/gguf_writer.py | 16 ++++-- gguf-py/gguf/lazy.py | 29 +++++++--- gguf-py/gguf/quants.py | 109 ++++++++++++++++++++++++++++++++++++ 5 files changed, 169 insertions(+), 58 deletions(-) create mode 100644 gguf-py/gguf/quants.py diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index d6e5dece0..cd875fa4a 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -240,23 +240,6 @@ class Model: return False def write_tensors(self): - # same as ggml_compute_fp32_to_bf16 in ggml-impl.h - def np_fp32_to_bf16(n: np.ndarray): - # force nan to quiet - n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n) - # flush subnormals to zero - n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n) - # round to nearest even - n = (n + (0x7fff + ((n >> 16) & 1))) >> 16 - return n.astype(np.int16) - - # Doing this row-wise is much, much faster than element-wise, hence the signature - v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)") - if self.lazy: - # TODO: find a way to implicitly wrap np.vectorize functions - # NOTE: the type is changed to reflect otypes passed to np.vectorize above - v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16) - max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") for name, data_torch in self.get_tensors(): @@ -309,27 +292,31 @@ class Model: )) if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32: - if self.ftype == gguf.LlamaFileType.MOSTLY_F16: + if self.ftype == gguf.LlamaFileType.MOSTLY_BF16: + data = gguf.quantize_bf16(data) + assert data.dtype == np.int16 + data_qtype = gguf.GGMLQuantizationType.BF16 + + elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data): + data = gguf.quantize_q8_0(data) + assert data.dtype == np.uint8 + data_qtype = gguf.GGMLQuantizationType.Q8_0 + + else: # default to float16 for quantized tensors if data_dtype != np.float16: data = data.astype(np.float16) data_qtype = gguf.GGMLQuantizationType.F16 - elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16: - if data_dtype != np.float32: - data = data.astype(np.float32) - data = v_fp32_to_bf16(data.view(np.int32)) - assert data.dtype == np.int16 - data_qtype = gguf.GGMLQuantizationType.BF16 - - else: # by default, convert to float32 + if data_qtype is None: # by default, convert to float32 if data_dtype != np.float32: data = data.astype(np.float32) data_qtype = gguf.GGMLQuantizationType.F32 - assert data_qtype is not None - + block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype] # reverse shape to make it similar to the internal ggml dimension order - shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}" + shape_str = f"""{{{', '.join(str(n) for n in reversed( + (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size)) + )}}}""" # n_dims is implicit in the shape logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") @@ -859,6 +846,7 @@ class BaichuanModel(Model): self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: if self.hparams["rope_scaling"].get("type") == "linear": @@ -981,6 +969,7 @@ class XverseModel(Model): self.gguf_writer.add_head_count(head_count) self.gguf_writer.add_head_count_kv(head_count_kv) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: if self.hparams["rope_scaling"].get("type") == "linear": @@ -1215,6 +1204,7 @@ class StableLMModel(Model): self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) + self.gguf_writer.add_file_type(self.ftype) _q_norms: list[dict[str, Tensor]] | None = None _k_norms: list[dict[str, Tensor]] | None = None @@ -1591,6 +1581,7 @@ class QwenModel(Model): self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) @Model.register("Qwen2ForCausalLM") @@ -1828,6 +1819,7 @@ class PlamoModel(Model): self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) def shuffle_attn_q_weight(self, data_torch): assert data_torch.size() == (5120, 5120) @@ -2007,6 +1999,7 @@ in chat mode so that the conversation can end normally.") self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) + self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: num_heads = self.hparams["num_attention_heads"] @@ -2415,25 +2408,15 @@ class LazyTorchTensor(gguf.LazyBase): def numpy(self) -> gguf.LazyNumpyTensor: dtype = self._dtype_map[self.dtype] return gguf.LazyNumpyTensor( - meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)), + meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape), lazy=self._lazy, args=(self,), func=(lambda s: s[0].numpy()) ) @classmethod - def eager_to_meta(cls, t: Tensor) -> Tensor: - if t.is_meta: - return t - return t.detach().to("meta") - - @classmethod - def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor: - m = m.detach() - if not m.is_meta: - m = m.to("meta") - m.dtype = dtype - return m + def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor: + return torch.empty(size=shape, dtype=dtype, device="meta") @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): @@ -2464,8 +2447,8 @@ def parse_args() -> argparse.Namespace: help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", ) parser.add_argument( - "--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16", - help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", + "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16", + help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type", ) parser.add_argument( "--bigendian", action="store_true", @@ -2523,6 +2506,7 @@ def main() -> None: "f32": gguf.LlamaFileType.ALL_F32, "f16": gguf.LlamaFileType.MOSTLY_F16, "bf16": gguf.LlamaFileType.MOSTLY_BF16, + "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, "auto": gguf.LlamaFileType.GUESSED, } diff --git a/gguf-py/gguf/__init__.py b/gguf-py/gguf/__init__.py index e5d5806c8..ea5146b16 100644 --- a/gguf-py/gguf/__init__.py +++ b/gguf-py/gguf/__init__.py @@ -2,5 +2,6 @@ from .constants import * from .lazy import * from .gguf_reader import * from .gguf_writer import * +from .quants import * from .tensor_mapping import * from .vocab import * diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 96574358d..d5e323a52 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -13,6 +13,7 @@ from string import ascii_letters, digits import numpy as np from .constants import ( + GGML_QUANT_SIZES, GGUF_DEFAULT_ALIGNMENT, GGUF_MAGIC, GGUF_VERSION, @@ -195,7 +196,7 @@ class GGUFWriter: return ((x + n - 1) // n) * n def add_tensor_info( - self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], + self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None, ) -> None: if self.state is not WriterState.EMPTY: @@ -208,10 +209,6 @@ class GGUFWriter: encoded_name = name.encode("utf-8") self.ti_data += self._pack("Q", len(encoded_name)) self.ti_data += encoded_name - n_dims = len(tensor_shape) - self.ti_data += self._pack("I", n_dims) - for i in range(n_dims): - self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i]) if raw_dtype is None: if tensor_dtype == np.float16: dtype = GGMLQuantizationType.F16 @@ -231,6 +228,15 @@ class GGUFWriter: raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now") else: dtype = raw_dtype + if tensor_dtype == np.uint8: + block_size, type_size = GGML_QUANT_SIZES[raw_dtype] + if tensor_shape[-1] % type_size != 0: + raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})") + tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,) + n_dims = len(tensor_shape) + self.ti_data += self._pack("I", n_dims) + for i in range(n_dims): + self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i]) self.ti_data += self._pack("I", dtype) self.ti_data += self._pack("Q", self.offset_tensor) self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) diff --git a/gguf-py/gguf/lazy.py b/gguf-py/gguf/lazy.py index 650bea11c..1167335b8 100644 --- a/gguf-py/gguf/lazy.py +++ b/gguf-py/gguf/lazy.py @@ -6,6 +6,7 @@ from typing import Any, Callable from collections import deque import numpy as np +from numpy._typing import _Shape from numpy.typing import DTypeLike @@ -110,7 +111,7 @@ class LazyBase(ABC, metaclass=LazyMeta): return o @classmethod - def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]: + def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]: def wrapped_fn(*args, **kwargs): if kwargs is None: kwargs = {} @@ -130,9 +131,14 @@ class LazyBase(ABC, metaclass=LazyMeta): res = args[0] assert isinstance(res, cls) res = res._meta - # allow operations to override the dtype + # allow operations to override the dtype and shape if meta_noop is not True: - res = cls.meta_with_dtype(res, meta_noop) + if isinstance(meta_noop, tuple): + dtype, shape = meta_noop + assert callable(shape) + res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape)) + else: + res = cls.meta_with_dtype_and_shape(meta_noop, res.shape) if isinstance(res, cls._tensor_type): def collect_replace(t: LazyBase): @@ -168,7 +174,12 @@ class LazyBase(ABC, metaclass=LazyMeta): while _t._data is None: lt = _t._lazy.popleft() if lt._data is not None: - raise ValueError(f"{lt} did not belong in the lazy queue") + # Lazy tensor did not belong in the lazy queue. + # Weirdly only happens with Bloom models... + # likely because tensors aren't unique in the queue. + # The final output is still the same as in eager mode, + # so it's safe to ignore this. + continue assert lt._func is not None lt._args = cls._recurse_apply(lt._args, already_eager_to_eager) lt._data = lt._func(lt._args) @@ -183,12 +194,12 @@ class LazyBase(ABC, metaclass=LazyMeta): @classmethod def eager_to_meta(cls, t: Any) -> Any: - return cls.meta_with_dtype(t, t.dtype) + return cls.meta_with_dtype_and_shape(t.dtype, t.shape) # must be overridden, meta tensor init is backend-specific @classmethod @abstractmethod - def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass + def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass @classmethod def from_eager(cls, t: Any) -> Any: @@ -205,15 +216,15 @@ class LazyNumpyTensor(LazyBase): _tensor_type = np.ndarray @classmethod - def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]: + def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]: # The initial idea was to use np.nan as the fill value, # but non-float types like np.int16 can't use that. # So zero it is. cheat = np.zeros(1, dtype) - return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape)) + return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape)) def astype(self, dtype, *args, **kwargs): - meta = type(self).meta_with_dtype(self._meta, dtype) + meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape) full_args = (self, dtype,) + args # very important to pass the shared _lazy deque, or else there's an infinite loop somewhere. return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs))) diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py new file mode 100644 index 000000000..e7fc0eae3 --- /dev/null +++ b/gguf-py/gguf/quants.py @@ -0,0 +1,109 @@ +from __future__ import annotations +from typing import Callable + +from numpy.typing import DTypeLike + +from .constants import GGML_QUANT_SIZES, GGMLQuantizationType +from .lazy import LazyNumpyTensor + +import numpy as np + + +# same as ggml_compute_fp32_to_bf16 in ggml-impl.h +def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: + n = n.astype(np.float32, copy=False).view(np.int32) + # force nan to quiet + n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n) + # flush subnormals to zero + n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n) + # round to nearest even + n = (n + (0x7fff + ((n >> 16) & 1))) >> 16 + return n.astype(np.int16) + + +# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time +def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: + rows = arr.reshape((-1, arr.shape[-1])) + osize = 1 + for dim in oshape: + osize *= dim + out = np.empty(shape=osize, dtype=otype) + # compute over groups of 16 rows (arbitrary, but seems good for performance) + n_groups = rows.shape[0] // 16 + np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out) + return out.reshape(oshape) + + +def __quantize_bf16_array(n: np.ndarray) -> np.ndarray: + return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape) + + +__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16) + + +def quantize_bf16(n: np.ndarray): + if type(n) is LazyNumpyTensor: + return __quantize_bf16_lazy(n) + else: + return __quantize_bf16_array(n) + + +__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0] + + +def can_quantize_to_q8_0(n: np.ndarray) -> bool: + return n.shape[-1] % __q8_block_size == 0 + + +# round away from zero +# ref: https://stackoverflow.com/a/59143326/22827863 +def np_roundf(n: np.ndarray) -> np.ndarray: + a = abs(n) + floored = np.floor(a) + b = floored + np.floor(2 * (a - floored)) + return np.sign(n) * b + + +def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]: + return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size) + + +# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c +def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray: + shape = n.shape + assert shape[-1] % __q8_block_size == 0 + + n_blocks = n.size // __q8_block_size + + blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False) + + d = abs(blocks).max(axis=1, keepdims=True) / 127 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np_roundf(blocks * id) + + # (n_blocks, 2) + d = d.astype(np.float16).view(np.uint8) + # (n_blocks, block_size) + qs = qs.astype(np.int8).view(np.uint8) + + assert d.shape[1] + qs.shape[1] == __q8_type_size + + return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape)) + + +def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray: + return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape)) + + +__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn( + __quantize_q8_0_array, + meta_noop=(np.uint8, __quantize_q8_0_shape_change), +) + + +def quantize_q8_0(data: np.ndarray): + if type(data) is LazyNumpyTensor: + return __quantize_q8_0_lazy(data) + else: + return __quantize_q8_0_array(data) From 27f65d6267cf22a44c5ccefa7765d53a05bd1259 Mon Sep 17 00:00:00 2001 From: Ryuei Date: Tue, 14 May 2024 14:20:47 +0900 Subject: [PATCH 36/56] docs: Fix typo and update description for --embeddings flag (#7026) - Change '--embedding' to '--embeddings' in the README - Update the description to match the latest --help output - Added a caution about defining physical batch size --- examples/server/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/server/README.md b/examples/server/README.md index 650317991..f6eb6942c 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -48,7 +48,7 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/ - `--path`: Path from which to serve static files. Default: disabled - `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys. - `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s. -- `--embedding`: Enable embedding extraction. Default: disabled +- `--embeddings`: Enable embedding vector output and the OAI compatible endpoint /v1/embeddings. Physical batch size (`--ubatch-size`) must be carefully defined. Default: disabled - `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1` - `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled - `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime) From e0f556186b6e1f2b7032a1479edf5e89e2b1bd86 Mon Sep 17 00:00:00 2001 From: Haggai Nuchi Date: Mon, 13 May 2024 22:25:56 -0700 Subject: [PATCH 37/56] Add left recursion check: quit early instead of going into an infinite loop (#7083) * Add left recursion check: quit early instead of going into an infinite loop * Remove custom enum, rename left recursion check and move to "grammar internal" section, add handling for edge case where a leftmost nonterminal may be empty * Remove unnecessary declaration --- llama.cpp | 68 ++++++++++++++++++++++++++++++ tests/test-grammar-integration.cpp | 46 ++++++++++++++++++++ 2 files changed, 114 insertions(+) diff --git a/llama.cpp b/llama.cpp index 202bf94c8..01a35dfb6 100644 --- a/llama.cpp +++ b/llama.cpp @@ -13182,6 +13182,58 @@ static std::vector llama_grammar_reject_candidates( return rejects; } +static bool llama_grammar_detect_left_recursion( + const std::vector> & rules, + size_t rule_index, + std::vector * rules_visited, + std::vector * rules_in_progress, + std::vector * rules_may_be_empty) { + if ((*rules_in_progress)[rule_index]) { + return true; + } + + (*rules_in_progress)[rule_index] = true; + + const std::vector & rule = rules[rule_index]; + + // First check if the rule might produce the empty string. This could be done combined with the second + // step but it's more readable as two steps. + bool at_rule_start = true; + for (size_t i = 0; i < rule.size(); i++) { + if (llama_grammar_is_end_of_sequence(&rule[i])) { + if (at_rule_start) { + (*rules_may_be_empty)[rule_index] = true; + break; + } + at_rule_start = true; + } else { + at_rule_start = false; + } + } + + // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may + // be empty) + bool recurse_into_nonterminal = true; + for (size_t i = 0; i < rule.size(); i++) { + if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) { + if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) { + return true; + } + if (!((*rules_may_be_empty)[(size_t)rule[i].value])) { + recurse_into_nonterminal = false; + } + } else if (llama_grammar_is_end_of_sequence(&rule[i])) { + recurse_into_nonterminal = true; + } else { + recurse_into_nonterminal = false; + } + } + + (*rules_in_progress)[rule_index] = false; + (*rules_visited)[rule_index] = true; + return false; +} + // // grammar - external // @@ -13201,6 +13253,19 @@ struct llama_grammar * llama_grammar_init( vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } + // Check for left recursion + std::vector rules_visited(n_rules); + std::vector rules_in_progress(n_rules); + std::vector rules_may_be_empty(n_rules); + for (size_t i = 0; i < n_rules; i++) { + if (rules_visited[i]) { + continue; + } + if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { + throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i)); + } + } + // loop over alternates of start rule to build initial stacks std::vector> stacks; pos = vec_rules[start_rule_index].data(); @@ -13223,6 +13288,9 @@ struct llama_grammar * llama_grammar_init( } } while (true); + // Important: vec_rules has to be moved here, not copied, because stacks contains + // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar + // then the pointers would be invalidated when the local vec_rules goes out of scope. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; } diff --git a/tests/test-grammar-integration.cpp b/tests/test-grammar-integration.cpp index 1a4004e2a..01c5bb27a 100644 --- a/tests/test-grammar-integration.cpp +++ b/tests/test-grammar-integration.cpp @@ -28,6 +28,19 @@ static llama_grammar* build_grammar(const std::string & grammar_str) { return grammar; } +static bool test_build_grammar_fails(const std::string & grammar_str) { + fprintf(stderr, "⚫ Testing failure for grammar: %s\n", grammar_str.c_str()); + bool grammar_fails = false; + try { + build_grammar(grammar_str); + fprintf(stderr, " ❌ Expected build failure, but succeeded\n"); + } catch (const std::exception & err) { + grammar_fails = true; + fprintf(stdout, " ✅︎\n"); + } + return grammar_fails; +} + static bool match_string(const std::string & input, llama_grammar* grammar) { auto decoded = decode_utf8(input, {}); @@ -320,6 +333,38 @@ number ::= [0-9]+)"""; fprintf(stderr, " ✅︎ Passed\n"); } +static void test_failure_left_recursion() { + fprintf(stderr, "⚫ Testing left recursion detection:\n"); + + // Test simple left recursion detection + const std::string simple_str = R"""(root ::= "a" | root "a")"""; + assert(test_build_grammar_fails(simple_str)); + + // Test more complicated left recursion detection + const std::string medium_str = R"""( +root ::= asdf +asdf ::= "a" | asdf "a" +)"""; + assert(test_build_grammar_fails(medium_str)); + + // Test even more complicated left recursion detection + const std::string hard_str = R"""( +root ::= asdf +asdf ::= "a" | foo "b" +foo ::= "c" | asdf "d" | "e")"""; + assert(test_build_grammar_fails(hard_str)); + + // Test yet even more complicated left recursion detection + const std::string hardest_str = R"""( +root ::= asdf +asdf ::= "a" | foo "b" +foo ::= "c" | empty asdf "d" | "e" +empty ::= "blah" | )"""; + assert(test_build_grammar_fails(hardest_str)); + + fprintf(stderr, " ✅︎ Passed\n"); +} + int main() { fprintf(stdout, "Running grammar integration tests...\n"); test_simple_grammar(); @@ -327,6 +372,7 @@ int main() { test_quantifiers(); test_failure_missing_root(); test_failure_missing_reference(); + test_failure_left_recursion(); fprintf(stdout, "All tests passed.\n"); return 0; } From efc8f767c8c8c749a245dd96ad4e2f37c164b54c Mon Sep 17 00:00:00 2001 From: Elton Kola Date: Tue, 14 May 2024 03:30:30 -0400 Subject: [PATCH 38/56] move ndk code to a new library (#6951) --- examples/llama.android/app/build.gradle.kts | 25 +--------- .../java/com/example/llama/MainViewModel.kt | 13 ++--- examples/llama.android/build.gradle.kts | 1 + examples/llama.android/llama/.gitignore | 1 + .../src/main/cpp => llama}/CMakeLists.txt | 2 +- .../llama.android/llama/consumer-rules.pro | 0 .../llama.android/llama/proguard-rules.pro | 21 ++++++++ .../llama/cpp/ExampleInstrumentedTest.kt | 24 +++++++++ .../llama/src/main/AndroidManifest.xml | 4 ++ .../llama/src/main/cpp/CMakeLists.txt | 49 +++++++++++++++++++ .../src/main/cpp/llama-android.cpp | 28 +++++------ .../java/android/llama/cpp/LLamaAndroid.kt} | 8 +-- .../java/android/llama/cpp/ExampleUnitTest.kt | 17 +++++++ examples/llama.android/settings.gradle.kts | 1 + 14 files changed, 145 insertions(+), 49 deletions(-) create mode 100644 examples/llama.android/llama/.gitignore rename examples/llama.android/{app/src/main/cpp => llama}/CMakeLists.txt (98%) create mode 100644 examples/llama.android/llama/consumer-rules.pro create mode 100644 examples/llama.android/llama/proguard-rules.pro create mode 100644 examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt create mode 100644 examples/llama.android/llama/src/main/AndroidManifest.xml create mode 100644 examples/llama.android/llama/src/main/cpp/CMakeLists.txt rename examples/llama.android/{app => llama}/src/main/cpp/llama-android.cpp (92%) rename examples/llama.android/{app/src/main/java/com/example/llama/Llm.kt => llama/src/main/java/android/llama/cpp/LLamaAndroid.kt} (97%) create mode 100644 examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt diff --git a/examples/llama.android/app/build.gradle.kts b/examples/llama.android/app/build.gradle.kts index d42140efe..8d1b37195 100644 --- a/examples/llama.android/app/build.gradle.kts +++ b/examples/llama.android/app/build.gradle.kts @@ -7,8 +7,6 @@ android { namespace = "com.example.llama" compileSdk = 34 - ndkVersion = "26.1.10909125" - defaultConfig { applicationId = "com.example.llama" minSdk = 33 @@ -20,17 +18,6 @@ android { vectorDrawables { useSupportLibrary = true } - ndk { - // Add NDK properties if wanted, e.g. - // abiFilters += listOf("arm64-v8a") - } - externalNativeBuild { - cmake { - arguments += "-DCMAKE_BUILD_TYPE=Release" - cppFlags += listOf() - arguments += listOf() - } - } } buildTypes { @@ -55,17 +42,6 @@ android { composeOptions { kotlinCompilerExtensionVersion = "1.5.1" } - packaging { - resources { - excludes += "/META-INF/{AL2.0,LGPL2.1}" - } - } - externalNativeBuild { - cmake { - path = file("src/main/cpp/CMakeLists.txt") - version = "3.22.1" - } - } } dependencies { @@ -78,6 +54,7 @@ dependencies { implementation("androidx.compose.ui:ui-graphics") implementation("androidx.compose.ui:ui-tooling-preview") implementation("androidx.compose.material3:material3") + implementation(project(":llama")) testImplementation("junit:junit:4.13.2") androidTestImplementation("androidx.test.ext:junit:1.1.5") androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1") diff --git a/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt b/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt index be95e2221..45ac29938 100644 --- a/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt +++ b/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt @@ -1,5 +1,6 @@ package com.example.llama +import android.llama.cpp.LLamaAndroid import android.util.Log import androidx.compose.runtime.getValue import androidx.compose.runtime.mutableStateOf @@ -9,7 +10,7 @@ import androidx.lifecycle.viewModelScope import kotlinx.coroutines.flow.catch import kotlinx.coroutines.launch -class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { +class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instance()): ViewModel() { companion object { @JvmStatic private val NanosPerSecond = 1_000_000_000.0 @@ -28,7 +29,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { viewModelScope.launch { try { - llm.unload() + llamaAndroid.unload() } catch (exc: IllegalStateException) { messages += exc.message!! } @@ -44,7 +45,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { messages += "" viewModelScope.launch { - llm.send(text) + llamaAndroid.send(text) .catch { Log.e(tag, "send() failed", it) messages += it.message!! @@ -57,7 +58,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { viewModelScope.launch { try { val start = System.nanoTime() - val warmupResult = llm.bench(pp, tg, pl, nr) + val warmupResult = llamaAndroid.bench(pp, tg, pl, nr) val end = System.nanoTime() messages += warmupResult @@ -70,7 +71,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { return@launch } - messages += llm.bench(512, 128, 1, 3) + messages += llamaAndroid.bench(512, 128, 1, 3) } catch (exc: IllegalStateException) { Log.e(tag, "bench() failed", exc) messages += exc.message!! @@ -81,7 +82,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { fun load(pathToModel: String) { viewModelScope.launch { try { - llm.load(pathToModel) + llamaAndroid.load(pathToModel) messages += "Loaded $pathToModel" } catch (exc: IllegalStateException) { Log.e(tag, "load() failed", exc) diff --git a/examples/llama.android/build.gradle.kts b/examples/llama.android/build.gradle.kts index 50ebc8211..acd1ada7d 100644 --- a/examples/llama.android/build.gradle.kts +++ b/examples/llama.android/build.gradle.kts @@ -2,4 +2,5 @@ plugins { id("com.android.application") version "8.2.0" apply false id("org.jetbrains.kotlin.android") version "1.9.0" apply false + id("com.android.library") version "8.2.0" apply false } diff --git a/examples/llama.android/llama/.gitignore b/examples/llama.android/llama/.gitignore new file mode 100644 index 000000000..796b96d1c --- /dev/null +++ b/examples/llama.android/llama/.gitignore @@ -0,0 +1 @@ +/build diff --git a/examples/llama.android/app/src/main/cpp/CMakeLists.txt b/examples/llama.android/llama/CMakeLists.txt similarity index 98% rename from examples/llama.android/app/src/main/cpp/CMakeLists.txt rename to examples/llama.android/llama/CMakeLists.txt index 85139329a..bb5738ae3 100644 --- a/examples/llama.android/app/src/main/cpp/CMakeLists.txt +++ b/examples/llama.android/llama/CMakeLists.txt @@ -37,7 +37,7 @@ FetchContent_MakeAvailable(llama) # used in the AndroidManifest.xml file. add_library(${CMAKE_PROJECT_NAME} SHARED # List C/C++ source files with relative paths to this CMakeLists.txt. - llama-android.cpp) + llama-android.cpp) # Specifies libraries CMake should link to your target library. You # can link libraries from various origins, such as libraries defined in this diff --git a/examples/llama.android/llama/consumer-rules.pro b/examples/llama.android/llama/consumer-rules.pro new file mode 100644 index 000000000..e69de29bb diff --git a/examples/llama.android/llama/proguard-rules.pro b/examples/llama.android/llama/proguard-rules.pro new file mode 100644 index 000000000..f1b424510 --- /dev/null +++ b/examples/llama.android/llama/proguard-rules.pro @@ -0,0 +1,21 @@ +# Add project specific ProGuard rules here. +# You can control the set of applied configuration files using the +# proguardFiles setting in build.gradle. +# +# For more details, see +# http://developer.android.com/guide/developing/tools/proguard.html + +# If your project uses WebView with JS, uncomment the following +# and specify the fully qualified class name to the JavaScript interface +# class: +#-keepclassmembers class fqcn.of.javascript.interface.for.webview { +# public *; +#} + +# Uncomment this to preserve the line number information for +# debugging stack traces. +#-keepattributes SourceFile,LineNumberTable + +# If you keep the line number information, uncomment this to +# hide the original source file name. +#-renamesourcefileattribute SourceFile diff --git a/examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt b/examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt new file mode 100644 index 000000000..05d6ab5d2 --- /dev/null +++ b/examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt @@ -0,0 +1,24 @@ +package android.llama.cpp + +import androidx.test.platform.app.InstrumentationRegistry +import androidx.test.ext.junit.runners.AndroidJUnit4 + +import org.junit.Test +import org.junit.runner.RunWith + +import org.junit.Assert.* + +/** + * Instrumented test, which will execute on an Android device. + * + * See [testing documentation](http://d.android.com/tools/testing). + */ +@RunWith(AndroidJUnit4::class) +class ExampleInstrumentedTest { + @Test + fun useAppContext() { + // Context of the app under test. + val appContext = InstrumentationRegistry.getInstrumentation().targetContext + assertEquals("android.llama.cpp.test", appContext.packageName) + } +} diff --git a/examples/llama.android/llama/src/main/AndroidManifest.xml b/examples/llama.android/llama/src/main/AndroidManifest.xml new file mode 100644 index 000000000..8bdb7e14b --- /dev/null +++ b/examples/llama.android/llama/src/main/AndroidManifest.xml @@ -0,0 +1,4 @@ + + + + diff --git a/examples/llama.android/llama/src/main/cpp/CMakeLists.txt b/examples/llama.android/llama/src/main/cpp/CMakeLists.txt new file mode 100644 index 000000000..42ebaad49 --- /dev/null +++ b/examples/llama.android/llama/src/main/cpp/CMakeLists.txt @@ -0,0 +1,49 @@ +# For more information about using CMake with Android Studio, read the +# documentation: https://d.android.com/studio/projects/add-native-code.html. +# For more examples on how to use CMake, see https://github.com/android/ndk-samples. + +# Sets the minimum CMake version required for this project. +cmake_minimum_required(VERSION 3.22.1) + +# Declares the project name. The project name can be accessed via ${ PROJECT_NAME}, +# Since this is the top level CMakeLists.txt, the project name is also accessible +# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level +# build script scope). +project("llama-android") + +include(FetchContent) +FetchContent_Declare( + llama + GIT_REPOSITORY https://github.com/ggerganov/llama.cpp + GIT_TAG master +) + +# Also provides "common" +FetchContent_MakeAvailable(llama) + +# Creates and names a library, sets it as either STATIC +# or SHARED, and provides the relative paths to its source code. +# You can define multiple libraries, and CMake builds them for you. +# Gradle automatically packages shared libraries with your APK. +# +# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define +# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME} +# is preferred for the same purpose. +# +# In order to load a library into your app from Java/Kotlin, you must call +# System.loadLibrary() and pass the name of the library defined here; +# for GameActivity/NativeActivity derived applications, the same library name must be +# used in the AndroidManifest.xml file. +add_library(${CMAKE_PROJECT_NAME} SHARED + # List C/C++ source files with relative paths to this CMakeLists.txt. + llama-android.cpp) + +# Specifies libraries CMake should link to your target library. You +# can link libraries from various origins, such as libraries defined in this +# build script, prebuilt third-party libraries, or Android system libraries. +target_link_libraries(${CMAKE_PROJECT_NAME} + # List libraries link to the target library + llama + common + android + log) diff --git a/examples/llama.android/app/src/main/cpp/llama-android.cpp b/examples/llama.android/llama/src/main/cpp/llama-android.cpp similarity index 92% rename from examples/llama.android/app/src/main/cpp/llama-android.cpp rename to examples/llama.android/llama/src/main/cpp/llama-android.cpp index 4af9de303..874158ef0 100644 --- a/examples/llama.android/app/src/main/cpp/llama-android.cpp +++ b/examples/llama.android/llama/src/main/cpp/llama-android.cpp @@ -81,7 +81,7 @@ static void log_callback(ggml_log_level level, const char * fmt, void * data) { extern "C" JNIEXPORT jlong JNICALL -Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) { +Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring filename) { llama_model_params model_params = llama_model_default_params(); auto path_to_model = env->GetStringUTFChars(filename, 0); @@ -101,13 +101,13 @@ Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) { extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) { +Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) { llama_free_model(reinterpret_cast(model)); } extern "C" JNIEXPORT jlong JNICALL -Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) { +Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmodel) { auto model = reinterpret_cast(jmodel); if (!model) { @@ -139,25 +139,25 @@ Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) { extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) { +Java_android_llama_cpp_LLamaAndroid_free_1context(JNIEnv *, jobject, jlong context) { llama_free(reinterpret_cast(context)); } extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) { +Java_android_llama_cpp_LLamaAndroid_backend_1free(JNIEnv *, jobject) { llama_backend_free(); } extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) { +Java_android_llama_cpp_LLamaAndroid_log_1to_1android(JNIEnv *, jobject) { llama_log_set(log_callback, NULL); } extern "C" JNIEXPORT jstring JNICALL -Java_com_example_llama_Llm_bench_1model( +Java_android_llama_cpp_LLamaAndroid_bench_1model( JNIEnv *env, jobject, jlong context_pointer, @@ -271,13 +271,13 @@ Java_com_example_llama_Llm_bench_1model( extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) { +Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) { llama_batch_free(*reinterpret_cast(batch_pointer)); } extern "C" JNIEXPORT jlong JNICALL -Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) { +Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) { // Source: Copy of llama.cpp:llama_batch_init but heap-allocated. @@ -313,19 +313,19 @@ Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint emb extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject) { +Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) { llama_backend_init(); } extern "C" JNIEXPORT jstring JNICALL -Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) { +Java_android_llama_cpp_LLamaAndroid_system_1info(JNIEnv *env, jobject) { return env->NewStringUTF(llama_print_system_info()); } extern "C" JNIEXPORT jint JNICALL -Java_com_example_llama_Llm_completion_1init( +Java_android_llama_cpp_LLamaAndroid_completion_1init( JNIEnv *env, jobject, jlong context_pointer, @@ -376,7 +376,7 @@ Java_com_example_llama_Llm_completion_1init( extern "C" JNIEXPORT jstring JNICALL -Java_com_example_llama_Llm_completion_1loop( +Java_android_llama_cpp_LLamaAndroid_completion_1loop( JNIEnv * env, jobject, jlong context_pointer, @@ -438,6 +438,6 @@ Java_com_example_llama_Llm_completion_1loop( extern "C" JNIEXPORT void JNICALL -Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { +Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { llama_kv_cache_clear(reinterpret_cast(context)); } diff --git a/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt b/examples/llama.android/llama/src/main/java/android/llama/cpp/LLamaAndroid.kt similarity index 97% rename from examples/llama.android/app/src/main/java/com/example/llama/Llm.kt rename to examples/llama.android/llama/src/main/java/android/llama/cpp/LLamaAndroid.kt index d86afee37..6c63e54e0 100644 --- a/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt +++ b/examples/llama.android/llama/src/main/java/android/llama/cpp/LLamaAndroid.kt @@ -1,4 +1,4 @@ -package com.example.llama +package android.llama.cpp import android.util.Log import kotlinx.coroutines.CoroutineDispatcher @@ -10,7 +10,7 @@ import kotlinx.coroutines.withContext import java.util.concurrent.Executors import kotlin.concurrent.thread -class Llm { +class LLamaAndroid { private val tag: String? = this::class.simpleName private val threadLocalState: ThreadLocal = ThreadLocal.withInitial { State.Idle } @@ -165,8 +165,8 @@ class Llm { } // Enforce only one instance of Llm. - private val _instance: Llm = Llm() + private val _instance: LLamaAndroid = LLamaAndroid() - fun instance(): Llm = _instance + fun instance(): LLamaAndroid = _instance } } diff --git a/examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt b/examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt new file mode 100644 index 000000000..cbbb974d3 --- /dev/null +++ b/examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt @@ -0,0 +1,17 @@ +package android.llama.cpp + +import org.junit.Test + +import org.junit.Assert.* + +/** + * Example local unit test, which will execute on the development machine (host). + * + * See [testing documentation](http://d.android.com/tools/testing). + */ +class ExampleUnitTest { + @Test + fun addition_isCorrect() { + assertEquals(4, 2 + 2) + } +} diff --git a/examples/llama.android/settings.gradle.kts b/examples/llama.android/settings.gradle.kts index 2ba32c4fa..c7c1a034a 100644 --- a/examples/llama.android/settings.gradle.kts +++ b/examples/llama.android/settings.gradle.kts @@ -15,3 +15,4 @@ dependencyResolutionManagement { rootProject.name = "LlamaAndroid" include(":app") +include(":llama") From 541600201e6480f54ae09e58d16b154d4b4b331d Mon Sep 17 00:00:00 2001 From: slaren Date: Tue, 14 May 2024 09:33:42 +0200 Subject: [PATCH 39/56] llama : disable pipeline parallelism with nkvo (#7265) --- llama.cpp | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index 01a35dfb6..ad35e4a2e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -15849,7 +15849,11 @@ struct llama_context * llama_new_context_with_model( ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary - bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER; + bool pipeline_parallel = + llama_get_device_count() > 1 && + model->n_gpu_layers > (int)model->hparams.n_layer && + model->split_mode == LLAMA_SPLIT_MODE_LAYER && + params.offload_kqv; #ifndef GGML_USE_CUDA // pipeline parallelism requires support for async compute and events // currently this is only implemented in the CUDA backend From 5e31828d3e35c76ecfee665bc23771a4bec1d130 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Tue, 14 May 2024 14:27:19 +0300 Subject: [PATCH 40/56] ggml : add RPC backend (#6829) * ggml : add RPC backend The RPC backend proxies all operations to a remote server which runs a regular backend (CPU, CUDA, Metal, etc). * set TCP_NODELAY * add CI workflows * Address review comments * fix warning * implement llama_max_devices() for RPC * Address review comments * Address review comments * wrap sockfd into a struct * implement get_alignment and get_max_size * add get_device_memory * fix warning * win32 support * add README * readme : trim trailing whitespace * Address review comments * win32 fix * Address review comments * fix compile warnings on macos --- .github/workflows/build.yml | 32 ++ CMakeLists.txt | 13 + common/common.cpp | 10 + common/common.h | 1 + examples/CMakeLists.txt | 3 + examples/rpc/CMakeLists.txt | 2 + examples/rpc/README.md | 74 +++ examples/rpc/rpc-server.cpp | 70 +++ ggml-rpc.cpp | 1023 +++++++++++++++++++++++++++++++++++ ggml-rpc.h | 24 + llama.cpp | 238 ++++---- llama.h | 3 + 12 files changed, 1395 insertions(+), 98 deletions(-) create mode 100644 examples/rpc/CMakeLists.txt create mode 100644 examples/rpc/README.md create mode 100644 examples/rpc/rpc-server.cpp create mode 100644 ggml-rpc.cpp create mode 100644 ggml-rpc.h diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 8c338534d..7ac0e5f6e 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -340,6 +340,36 @@ jobs: cd build ctest -L main --verbose + ubuntu-latest-cmake-rpc: + runs-on: ubuntu-latest + + continue-on-error: true + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v4 + + - name: Dependencies + id: depends + run: | + sudo apt-get update + sudo apt-get install build-essential + + - name: Build + id: cmake_build + run: | + mkdir build + cd build + cmake -DLLAMA_RPC=ON .. + cmake --build . --config Release -j $(nproc) + + - name: Test + id: cmake_test + run: | + cd build + ctest -L main --verbose + ubuntu-22-cmake-vulkan: runs-on: ubuntu-22.04 @@ -663,6 +693,8 @@ jobs: strategy: matrix: include: + - build: 'rpc' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_RPC=ON -DBUILD_SHARED_LIBS=ON' - build: 'noavx' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx2' diff --git a/CMakeLists.txt b/CMakeLists.txt index 1c3b5c8e4..feb6f39d0 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -123,6 +123,7 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)") option(LLAMA_KOMPUTE "llama: use Kompute" OFF) option(LLAMA_MPI "llama: use MPI" OFF) +option(LLAMA_RPC "llama: use RPC" OFF) option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_SYCL "llama: use SYCL" OFF) option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF) @@ -494,6 +495,17 @@ if (LLAMA_MPI) endif() endif() +if (LLAMA_RPC) + add_compile_definitions(GGML_USE_RPC) + + if (WIN32) + set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ws2_32) + endif() + + set(GGML_HEADERS_RPC ggml-rpc.h) + set(GGML_SOURCES_RPC ggml-rpc.cpp) +endif() + if (LLAMA_CLBLAST) find_package(CLBlast) if (CLBlast_FOUND) @@ -1176,6 +1188,7 @@ add_library(ggml OBJECT ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI} + ${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC} ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL} ${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE} diff --git a/common/common.cpp b/common/common.cpp index ba1ecf0e5..96130ad54 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1060,6 +1060,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa #endif // GGML_USE_CUDA_SYCL_VULKAN return true; } + if (arg == "--rpc") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.rpc_servers = argv[i]; + return true; + } if (arg == "--no-mmap") { params.use_mmap = false; return true; @@ -1557,6 +1565,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu); } + printf(" --rpc SERVERS comma separated list of RPC servers\n"); printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false"); printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false"); printf(" -gan N, --grp-attn-n N\n"); @@ -1830,6 +1839,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & if (params.n_gpu_layers != -1) { mparams.n_gpu_layers = params.n_gpu_layers; } + mparams.rpc_servers = params.rpc_servers.c_str(); mparams.main_gpu = params.main_gpu; mparams.split_mode = params.split_mode; mparams.tensor_split = params.tensor_split; diff --git a/common/common.h b/common/common.h index d80344f2a..566490e2f 100644 --- a/common/common.h +++ b/common/common.h @@ -82,6 +82,7 @@ struct gpt_params { float yarn_beta_slow = 1.0f; // YaRN high correction dim int32_t yarn_orig_ctx = 0; // YaRN original context length float defrag_thold = -1.0f; // KV cache defragmentation threshold + std::string rpc_servers = ""; // comma separated list of RPC servers ggml_backend_sched_eval_callback cb_eval = nullptr; void * cb_eval_user_data = nullptr; diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index f421769cc..b40ee4ccb 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -49,4 +49,7 @@ else() add_subdirectory(server) endif() add_subdirectory(export-lora) + if (LLAMA_RPC) + add_subdirectory(rpc) + endif() endif() diff --git a/examples/rpc/CMakeLists.txt b/examples/rpc/CMakeLists.txt new file mode 100644 index 000000000..ae48fb98d --- /dev/null +++ b/examples/rpc/CMakeLists.txt @@ -0,0 +1,2 @@ +add_executable(rpc-server rpc-server.cpp) +target_link_libraries(rpc-server PRIVATE ggml llama) diff --git a/examples/rpc/README.md b/examples/rpc/README.md new file mode 100644 index 000000000..325d0abc4 --- /dev/null +++ b/examples/rpc/README.md @@ -0,0 +1,74 @@ +## Overview + +The `rpc-server` allows running `ggml` backend on a remote host. +The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them. +This can be used for distributed LLM inference with `llama.cpp` in the following way: + +```mermaid +flowchart TD + rpcb---|TCP|srva + rpcb---|TCP|srvb + rpcb-.-|TCP|srvn + subgraph hostn[Host N] + srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"] + end + subgraph hostb[Host B] + srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"] + end + subgraph hosta[Host A] + srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"] + end + subgraph host[Main Host] + ggml[llama.cpp]---rpcb[RPC backend] + end + style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5 +``` + +Each host can run a different backend, e.g. one with CUDA and another with Metal. +You can also run multiple `rpc-server` instances on the same host, each with a different backend. + +## Usage + +On each host, build the corresponding backend with `cmake` and add `-DLLAMA_RPC=ON` to the build options. +For example, to build the CUDA backend with RPC support: + +```bash +mkdir build-rpc-cuda +cd build-rpc-cuda +cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON +cmake --build . --config Release +``` + +Then, start the `rpc-server` with the backend: + +```bash +$ bin/rpc-server 0.0.0.0 50052 +create_backend: using CUDA backend +ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no +ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes +ggml_cuda_init: found 1 CUDA devices: + Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes +Starting RPC server on 0.0.0.0:50052 +``` + +When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.: +```bash +$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server 0.0.0.0 50052 +``` +This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device. + + +On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`: + +```bash +mkdir build-rpc +cd build-rpc +cmake .. -DLLAMA_RPC=ON +cmake --build . --config Release +``` + +Finally, use the `--rpc` option to specify the host and port of each `rpc-server`: + +```bash +$ bin/main -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99 +``` diff --git a/examples/rpc/rpc-server.cpp b/examples/rpc/rpc-server.cpp new file mode 100644 index 000000000..496af8496 --- /dev/null +++ b/examples/rpc/rpc-server.cpp @@ -0,0 +1,70 @@ +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif + +#ifdef GGML_USE_METAL +#include "ggml-metal.h" +#endif + +#include "ggml-rpc.h" +#include +#include + +static ggml_backend_t create_backend() { + ggml_backend_t backend = NULL; +#ifdef GGML_USE_CUDA + fprintf(stderr, "%s: using CUDA backend\n", __func__); + backend = ggml_backend_cuda_init(0); // init device 0 + if (!backend) { + fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); + } +#elif GGML_USE_METAL + fprintf(stderr, "%s: using Metal backend\n", __func__); + backend = ggml_backend_metal_init(); + if (!backend) { + fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); + } +#endif + + // if there aren't GPU Backends fallback to CPU backend + if (!backend) { + fprintf(stderr, "%s: using CPU backend\n", __func__); + backend = ggml_backend_cpu_init(); + } + return backend; +} + +static void get_backend_memory(size_t * free_mem, size_t * total_mem) { +#ifdef GGML_USE_CUDA + ggml_backend_cuda_get_device_memory(0, free_mem, total_mem); +#else + // TODO: implement for other backends + *free_mem = 1; + *total_mem = 1; +#endif +} + +int main(int argc, char * argv[]) { + if (argc < 3) { + fprintf(stderr, "Usage: %s \n", argv[0]); + return 1; + } + const char * host = argv[1]; + int port = std::stoi(argv[2]); + if (port <= 0 || port > 65535) { + fprintf(stderr, "Invalid port number: %d\n", port); + return 1; + } + ggml_backend_t backend = create_backend(); + if (!backend) { + fprintf(stderr, "Failed to create backend\n"); + return 1; + } + printf("Starting RPC server on %s:%d\n", host, port); + size_t free_mem, total_mem; + get_backend_memory(&free_mem, &total_mem); + std::string endpoint = std::string(host) + ":" + std::to_string(port); + start_rpc_server(backend, endpoint.c_str(), free_mem, total_mem); + ggml_backend_free(backend); + return 0; +} diff --git a/ggml-rpc.cpp b/ggml-rpc.cpp new file mode 100644 index 000000000..efeacb297 --- /dev/null +++ b/ggml-rpc.cpp @@ -0,0 +1,1023 @@ +#include "ggml-rpc.h" +#include "ggml.h" +#include "ggml-backend-impl.h" + +#include +#include +#include +#include +#include +#include +#ifdef _WIN32 +# define WIN32_LEAN_AND_MEAN +# ifndef NOMINMAX +# define NOMINMAX +# endif +# include +# include +#else +# include +# include +# include +# include +# include +# include +# include +#endif +#include + +#define UNUSED GGML_UNUSED + +#define GGML_DEBUG 1 +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#ifdef _WIN32 +typedef SOCKET sockfd_t; +using ssize_t = __int64; +#else +typedef int sockfd_t; +#endif + +// cross-platform socket +struct socket_t { + sockfd_t fd; + socket_t(sockfd_t fd) : fd(fd) {} + ~socket_t() { +#ifdef _WIN32 + closesocket(this->fd); +#else + close(this->fd); +#endif + } +}; + +// ggml_tensor is serialized into rpc_tensor +struct rpc_tensor { + uint64_t id; + uint32_t type; + uint64_t buffer; + uint32_t ne[GGML_MAX_DIMS]; + uint32_t nb[GGML_MAX_DIMS]; + uint32_t op; + int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)]; + int32_t flags; + uint64_t src[GGML_MAX_SRC]; + uint64_t view_src; + uint64_t view_offs; + uint64_t data; + char name[GGML_MAX_NAME]; +}; + +// RPC commands +enum rpc_cmd { + ALLOC_BUFFER = 0, + GET_ALIGNMENT, + GET_MAX_SIZE, + BUFFER_GET_BASE, + FREE_BUFFER, + BUFFER_CLEAR, + SET_TENSOR, + GET_TENSOR, + COPY_TENSOR, + GRAPH_COMPUTE, + GET_DEVICE_MEMORY, +}; + +// RPC data structures + +static ggml_guid_t ggml_backend_rpc_guid() { + static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03}; + return &guid; +} + +struct ggml_backend_rpc_buffer_type_context { + std::shared_ptr sock; + std::string name; + size_t alignment; + size_t max_size; +}; + +struct ggml_backend_rpc_context { + std::string endpoint; + std::string name; + std::shared_ptr sock; + ggml_backend_buffer_type_t buft; +}; + +struct ggml_backend_rpc_buffer_context { + std::shared_ptr sock; + std::unordered_map base_cache; + uint64_t remote_ptr; + std::string name; +}; + +// RPC helper functions + +static std::shared_ptr make_socket(sockfd_t fd) { +#ifdef _WIN32 + if (fd == INVALID_SOCKET) { + return nullptr; + } +#else + if (fd < 0) { + return nullptr; + } +#endif + return std::make_shared(fd); +} + +static bool set_no_delay(sockfd_t sockfd) { + int flag = 1; + // set TCP_NODELAY to disable Nagle's algorithm + int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int)); + return ret >= 0; +} + +static std::shared_ptr socket_connect(const char * host, int port) { + struct sockaddr_in addr; + auto sockfd = socket(AF_INET, SOCK_STREAM, 0); + auto sock_ptr = make_socket(sockfd); + if (sock_ptr == nullptr) { + return nullptr; + } + if (!set_no_delay(sockfd)) { + fprintf(stderr, "Failed to set TCP_NODELAY\n"); + return nullptr; + } + addr.sin_family = AF_INET; + addr.sin_port = htons(port); + struct hostent * server = gethostbyname(host); + if (server == NULL) { + fprintf(stderr, "Cannot resolve host '%s'\n", host); + return nullptr; + } + memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length); + if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) { + return nullptr; + } + return sock_ptr; +} + +static std::shared_ptr socket_accept(sockfd_t srv_sockfd) { + auto client_socket_fd = accept(srv_sockfd, NULL, NULL); + auto client_socket = make_socket(client_socket_fd); + if (client_socket == nullptr) { + return nullptr; + } + if (!set_no_delay(client_socket_fd)) { + fprintf(stderr, "Failed to set TCP_NODELAY\n"); + return nullptr; + } + return client_socket; +} + +static std::shared_ptr create_server_socket(const char * host, int port) { + auto sockfd = socket(AF_INET, SOCK_STREAM, 0); + auto sock = make_socket(sockfd); + if (sock == nullptr) { + return nullptr; + } + + struct sockaddr_in serv_addr; + serv_addr.sin_family = AF_INET; + serv_addr.sin_addr.s_addr = inet_addr(host); + serv_addr.sin_port = htons(port); + + if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { + return nullptr; + } + if (listen(sockfd, 1) < 0) { + return nullptr; + } + return sock; +} + +static bool send_data(sockfd_t sockfd, const void * data, size_t size) { + size_t bytes_sent = 0; + while (bytes_sent < size) { + ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0); + if (n < 0) { + return false; + } + bytes_sent += n; + } + return true; +} + +static bool recv_data(sockfd_t sockfd, void * data, size_t size) { + size_t bytes_recv = 0; + while (bytes_recv < size) { + ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0); + if (n <= 0) { + return false; + } + bytes_recv += n; + } + return true; +} + +static bool parse_endpoint(const char * endpoint, std::string & host, int & port) { + std::string str(endpoint); + size_t pos = str.find(':'); + if (pos == std::string::npos) { + return false; + } + host = str.substr(0, pos); + port = std::stoi(str.substr(pos + 1)); + return true; +} + +// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) | +// RPC response: | response_size (8 bytes) | response_data (response_size bytes) | +static bool send_rpc_cmd(const std::shared_ptr & sock, enum rpc_cmd cmd, const std::vector & input, std::vector & output) { + uint8_t cmd_byte = cmd; + if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) { + return false; + } + uint64_t input_size = input.size(); + if (!send_data(sock->fd, &input_size, sizeof(input_size))) { + return false; + } + if (!send_data(sock->fd, input.data(), input.size())) { + return false; + } + uint64_t output_size; + if (!recv_data(sock->fd, &output_size, sizeof(output_size))) { + return false; + } + if (output_size == 0) { + output.clear(); + return true; + } + output.resize(output_size); + if (!recv_data(sock->fd, output.data(), output_size)) { + return false; + } + return true; +} + +// RPC client-side implementation + +GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) { + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + return ctx->name.c_str(); +} + +GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + // input serialization format: | remote_ptr (8 bytes) | + std::vector input(sizeof(uint64_t), 0); + uint64_t remote_ptr = ctx->remote_ptr; + memcpy(input.data(), &remote_ptr, sizeof(remote_ptr)); + std::vector output; + bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.empty()); + delete ctx; +} + +GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) { + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) { + return ctx->base_cache[buffer]; + } + // input serialization format: | remote_ptr (8 bytes) | + std::vector input(sizeof(uint64_t), 0); + uint64_t remote_ptr = ctx->remote_ptr; + memcpy(input.data(), &remote_ptr, sizeof(remote_ptr)); + std::vector output; + bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == sizeof(uint64_t)); + // output serialization format: | base_ptr (8 bytes) | + uint64_t base_ptr; + memcpy(&base_ptr, output.data(), sizeof(base_ptr)); + void * base = reinterpret_cast(base_ptr); + ctx->base_cache[buffer] = base; + return base; +} + +static rpc_tensor serialize_tensor(const ggml_tensor * tensor) { + rpc_tensor result; + result.id = reinterpret_cast(tensor); + result.type = tensor->type; + if (tensor->buffer) { + ggml_backend_buffer_t buffer = tensor->buffer; + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + result.buffer = ctx->remote_ptr; + } else { + result.buffer = 0; + } + for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) { + result.ne[i] = tensor->ne[i]; + result.nb[i] = tensor->nb[i]; + } + result.op = tensor->op; + for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { + result.op_params[i] = tensor->op_params[i]; + } + result.flags = tensor->flags; + for (uint32_t i = 0; i < GGML_MAX_SRC; i++) { + result.src[i] = reinterpret_cast(tensor->src[i]); + } + result.view_src = reinterpret_cast(tensor->view_src); + result.view_offs = tensor->view_offs; + result.data = reinterpret_cast(tensor->data); + snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name); + return result; +} + +static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) { + ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type, + tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); + for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) { + result->nb[i] = tensor->nb[i]; + } + result->buffer = reinterpret_cast(tensor->buffer); + result->op = (ggml_op) tensor->op; + for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { + result->op_params[i] = tensor->op_params[i]; + } + result->flags = tensor->flags; + result->data = reinterpret_cast(tensor->data); + ggml_set_name(result, tensor->name); + return result; +} + +GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + UNUSED(buffer); + if (ggml_is_quantized(tensor->type)) { + // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized + GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor"); + } +} + +GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | + size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size; + std::vector input(input_size, 0); + rpc_tensor rpc_tensor = serialize_tensor(tensor); + memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor)); + memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset)); + memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size); + std::vector output; + bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output); + GGML_ASSERT(status); +} + +GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) | + int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t); + std::vector input(input_size, 0); + rpc_tensor rpc_tensor = serialize_tensor(tensor); + memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor)); + memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset)); + memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size)); + std::vector output; + bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == size); + // output serialization format: | data (size bytes) | + memcpy(data, output.data(), size); +} + +GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { + // check if src and dst are on the same server + ggml_backend_buffer_t src_buffer = src->buffer; + ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context; + ggml_backend_buffer_t dst_buffer = dst->buffer; + ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context; + if (src_ctx->sock != dst_ctx->sock) { + return false; + } + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + // input serialization format: | rpc_tensor src | rpc_tensor dst | + int input_size = 2*sizeof(rpc_tensor); + std::vector input(input_size, 0); + rpc_tensor rpc_src = serialize_tensor(src); + rpc_tensor rpc_dst = serialize_tensor(dst); + memcpy(input.data(), &rpc_src, sizeof(rpc_src)); + memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst)); + std::vector output; + bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output); + GGML_ASSERT(status); + // output serialization format: | result (1 byte) | + GGML_ASSERT(output.size() == 1); + return output[0]; +} + +GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + // serialization format: | bufptr (8 bytes) | value (1 byte) | + int input_size = sizeof(uint64_t) + sizeof(uint8_t); + std::vector input(input_size, 0); + memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr)); + memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value)); + std::vector output; + bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output); + GGML_ASSERT(status); +} + +static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = { + /* .get_name = */ ggml_backend_rpc_buffer_get_name, + /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer, + /* .get_base = */ ggml_backend_rpc_buffer_get_base, + /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor, + /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor, + /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor, + /* .clear = */ ggml_backend_rpc_buffer_clear, + /* .reset = */ NULL, +}; + +GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) { + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; + return buft_ctx->name.c_str(); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; + // input serialization format: | size (8 bytes) | + int input_size = sizeof(uint64_t); + std::vector input(input_size, 0); + memcpy(input.data(), &size, sizeof(size)); + std::vector output; + bool status = send_rpc_cmd(buft_ctx->sock, ALLOC_BUFFER, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); + // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | + uint64_t remote_ptr; + memcpy(&remote_ptr, output.data(), sizeof(remote_ptr)); + size_t remote_size; + memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size)); + + ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft, + ggml_backend_rpc_buffer_interface, + new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"}, + remote_size); + + return buffer; +} + +static size_t get_alignment(const std::shared_ptr & sock) { + // input serialization format: | 0 bytes | + std::vector input; + std::vector output; + bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == sizeof(uint64_t)); + // output serialization format: | alignment (8 bytes) | + uint64_t alignment; + memcpy(&alignment, output.data(), sizeof(alignment)); + return alignment; +} + +GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; + return buft_ctx->alignment; +} + +static size_t get_max_size(const std::shared_ptr & sock) { + // input serialization format: | 0 bytes | + std::vector input; + std::vector output; + bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == sizeof(uint64_t)); + // output serialization format: | max_size (8 bytes) | + uint64_t max_size; + memcpy(&max_size, output.data(), sizeof(max_size)); + return max_size; +} + +GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) { + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; + return buft_ctx->max_size; +} + +GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + UNUSED(buft); + return ggml_nbytes(tensor); +} + +GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + if (!ggml_backend_is_rpc(backend)) { + return false; + } + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; + ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; + return buft_ctx->sock == rpc_ctx->sock; +} + +static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { + /* .get_name = */ ggml_backend_rpc_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment, + /* .get_max_size = */ ggml_backend_rpc_get_max_size, + /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size, + /* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend, + /* .is_host = */ NULL, +}; + + +GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) { + ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; + + return rpc_ctx->name.c_str(); +} + +GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) { + ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context; + delete buft_ctx; + delete rpc_ctx->buft; + delete rpc_ctx; + delete backend; +} + +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) { + ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; + return ctx->buft; +} + +GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { + UNUSED(backend); + // this is no-op because we don't have any async operations +} + +static void add_tensor(ggml_tensor * tensor, std::vector & tensors, std::unordered_set & visited) { + if (tensor == nullptr) { + return; + } + if (visited.find(tensor) != visited.end()) { + return; + } + visited.insert(tensor); + for (int i = 0; i < GGML_MAX_SRC; i++) { + add_tensor(tensor->src[i], tensors, visited); + } + add_tensor(tensor->view_src, tensors, visited); + tensors.push_back(serialize_tensor(tensor)); +} + +static void serialize_graph(const ggml_cgraph * cgraph, std::vector & output) { + uint32_t n_nodes = cgraph->n_nodes; + std::vector tensors; + std::unordered_set visited; + for (uint32_t i = 0; i < n_nodes; i++) { + add_tensor(cgraph->nodes[i], tensors, visited); + } + // serialization format: + // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) | + uint32_t n_tensors = tensors.size(); + int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor); + output.resize(output_size, 0); + memcpy(output.data(), &n_nodes, sizeof(n_nodes)); + uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes)); + for (uint32_t i = 0; i < n_nodes; i++) { + out_nodes[i] = reinterpret_cast(cgraph->nodes[i]); + } + uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t)); + *out_ntensors = n_tensors; + rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t)); + memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor)); +} + +GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; + std::vector input; + serialize_graph(cgraph, input); + std::vector output; + bool status = send_rpc_cmd(rpc_ctx->sock, GRAPH_COMPUTE, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == 1); + return (enum ggml_status)output[0]; +} + +GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) { + UNUSED(backend); + UNUSED(op); + GGML_ASSERT(false && "not implemented"); + return false; +} + +static ggml_backend_i ggml_backend_rpc_interface = { + /* .get_name = */ ggml_backend_rpc_name, + /* .free = */ ggml_backend_rpc_free, + /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type, + /* .set_tensor_async = */ NULL, + /* .get_tensor_async = */ NULL, + /* .cpy_tensor_async = */ NULL, + /* .synchronize = */ ggml_backend_rpc_synchronize, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_rpc_graph_compute, + /* .supports_op = */ ggml_backend_rpc_supports_op, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_record = */ NULL, + /* .event_wait = */ NULL, + /* .event_synchronize = */ NULL, +}; + +static std::unordered_map instances; + +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) { + ggml_backend_t backend = ggml_backend_rpc_init(endpoint); + return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr; +} + +GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { + std::string endpoint_str(endpoint); + if (instances.find(endpoint_str) != instances.end()) { + return instances[endpoint_str]; + } +#ifdef _WIN32 + { + WSADATA wsaData; + int res = WSAStartup(MAKEWORD(2, 2), &wsaData); + if (res != 0) { + return nullptr; + } + } +#endif + GGML_PRINT_DEBUG("Connecting to %s\n", endpoint); + std::string host; + int port; + if (!parse_endpoint(endpoint, host, port)) { + return nullptr; + } + auto sock = socket_connect(host.c_str(), port); + if (sock == nullptr) { + return nullptr; + } + size_t alignment = get_alignment(sock); + size_t max_size = get_max_size(sock); + ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context { + /* .sock = */ sock, + /* .name = */ "RPC" + std::to_string(sock->fd), + /* .alignment = */ alignment, + /* .max_size = */ max_size + }; + + ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type { + /* .iface = */ ggml_backend_rpc_buffer_type_interface, + /* .context = */ buft_ctx + }; + + ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context { + /* .endpoint = */ endpoint, + /* .name = */ "RPC" + std::to_string(sock->fd), + /* .sock = */ sock, + /* .buft = */ buft + }; + + instances[endpoint] = new ggml_backend { + /* .guid = */ ggml_backend_rpc_guid(), + /* .interface = */ ggml_backend_rpc_interface, + /* .context = */ ctx + }; + + return instances[endpoint]; +} + +GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid()); +} + +static void get_device_memory(const std::shared_ptr & sock, size_t * free, size_t * total) { + // input serialization format: | 0 bytes | + std::vector input; + std::vector output; + bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output); + GGML_ASSERT(status); + GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); + // output serialization format: | free (8 bytes) | total (8 bytes) | + uint64_t free_mem; + memcpy(&free_mem, output.data(), sizeof(free_mem)); + uint64_t total_mem; + memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem)); + *free = free_mem; + *total = total_mem; +} + +GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) { + ggml_backend_t backend = ggml_backend_rpc_init(endpoint); + if (backend == nullptr) { + *free = 0; + *total = 0; + return; + } + ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; + get_device_memory(ctx->sock, free, total); +} + +// RPC server-side implementation + +static void rpc_alloc_buffer(ggml_backend_t backend, const std::vector & input, std::vector & output) { + // input serialization format: | size (8 bytes) | + uint64_t size; + memcpy(&size, input.data(), sizeof(size)); + ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); + ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); + uint64_t remote_ptr = reinterpret_cast(buffer); + uint64_t remote_size = buffer->size; + GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size); + // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | + output.resize(2*sizeof(uint64_t), 0); + memcpy(output.data(), &remote_ptr, sizeof(remote_ptr)); + memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size)); +} + +static void rpc_get_alignment(ggml_backend_t backend, std::vector & output) { + ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); + size_t alignment = ggml_backend_buft_get_alignment(buft); + GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment); + // output serialization format: | alignment (8 bytes) | + output.resize(sizeof(uint64_t), 0); + memcpy(output.data(), &alignment, sizeof(alignment)); +} + +static void rpc_get_max_size(ggml_backend_t backend, std::vector & output) { + ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); + size_t max_size = ggml_backend_buft_get_max_size(buft); + GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size); + // output serialization format: | max_size (8 bytes) | + output.resize(sizeof(uint64_t), 0); + memcpy(output.data(), &max_size, sizeof(max_size)); +} + +static void rpc_buffer_get_base(const std::vector & input, std::vector & output) { + // input serialization format: | remote_ptr (8 bytes) | + uint64_t remote_ptr; + memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); + GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr); + ggml_backend_buffer_t buffer = reinterpret_cast(remote_ptr); + void * base = ggml_backend_buffer_get_base(buffer); + // output serialization format: | base_ptr (8 bytes) | + uint64_t base_ptr = reinterpret_cast(base); + output.resize(sizeof(uint64_t), 0); + memcpy(output.data(), &base_ptr, sizeof(base_ptr)); +} + +static void rpc_free_buffer(const std::vector & input) { + // input serialization format: | remote_ptr (8 bytes) | + uint64_t remote_ptr; + memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); + GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr); + ggml_backend_buffer_t buffer = reinterpret_cast(remote_ptr); + ggml_backend_buffer_free(buffer); +} + +static void rpc_buffer_clear(const std::vector & input) { + // input serialization format: | remote_ptr (8 bytes) | value (1 byte) | + uint64_t remote_ptr; + memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); + uint8_t value; + memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value)); + GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value); + ggml_backend_buffer_t buffer = reinterpret_cast(remote_ptr); + ggml_backend_buffer_clear(buffer, value); +} + +static void rpc_set_tensor(const std::vector & input) { + // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | + const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); + uint64_t offset; + memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); + size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset); + + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + struct ggml_context * ctx = ggml_init(params); + ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor); + GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size); + const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset); + ggml_backend_tensor_set(tensor, data, offset, size); + ggml_free(ctx); +} + +static void rpc_get_tensor(const std::vector & input, std::vector & output) { + // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) | + const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); + uint64_t offset; + memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); + uint64_t size; + memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size)); + + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + struct ggml_context * ctx = ggml_init(params); + ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor); + GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size); + // output serialization format: | data (size bytes) | + output.resize(size, 0); + ggml_backend_tensor_get(tensor, output.data(), offset, size); + ggml_free(ctx); +} + +static void rpc_copy_tensor(const std::vector & input, std::vector & output) { + // serialization format: | rpc_tensor src | rpc_tensor dst | + const rpc_tensor * rpc_src = (const rpc_tensor *)input.data(); + const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src)); + + struct ggml_init_params params { + /*.mem_size =*/ 2*ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + struct ggml_context * ctx = ggml_init(params); + ggml_tensor * src = deserialize_tensor(ctx, rpc_src); + ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst); + GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer); + bool result = ggml_backend_buffer_copy_tensor(src, dst); + // output serialization format: | result (1 byte) | + output.resize(1, 0); + output[0] = result; + ggml_free(ctx); +} + +static struct ggml_tensor * create_node(uint64_t id, + struct ggml_context * ctx, + const std::unordered_map & tensor_ptrs, + std::unordered_map & tensor_map) { + if (id == 0) { + return nullptr; + } + if (tensor_map.find(id) != tensor_map.end()) { + return tensor_map[id]; + } + const rpc_tensor * tensor = tensor_ptrs.at(id); + struct ggml_tensor * result = deserialize_tensor(ctx, tensor); + tensor_map[id] = result; + for (int i = 0; i < GGML_MAX_SRC; i++) { + result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map); + } + result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map); + result->view_offs = tensor->view_offs; + return result; +} + +static void rpc_graph_compute(ggml_backend_t backend, const std::vector & input, std::vector & output) { + // serialization format: + // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) | + uint32_t n_nodes; + memcpy(&n_nodes, input.data(), sizeof(n_nodes)); + const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes)); + uint32_t n_tensors; + memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors)); + const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors)); + GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors); + + static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false); + struct ggml_init_params params = { + /*.mem_size =*/ buf_size, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + struct ggml_context * ctx = ggml_init(params); + struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false); + graph->n_nodes = n_nodes; + std::unordered_map tensor_ptrs; + for (uint32_t i = 0; i < n_tensors; i++) { + tensor_ptrs[tensors[i].id] = &tensors[i]; + } + std::unordered_map tensor_map; + for (uint32_t i = 0; i < n_nodes; i++) { + graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map); + } + ggml_status status = ggml_backend_graph_compute(backend, graph); + // output serialization format: | status (1 byte) | + output.resize(1, 0); + output[0] = status; + ggml_free(ctx); +} + +static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) { + while (true) { + uint8_t cmd; + if (!recv_data(sockfd, &cmd, 1)) { + break; + } + std::vector input; + std::vector output; + uint64_t input_size; + if (!recv_data(sockfd, &input_size, sizeof(input_size))) { + break; + } + input.resize(input_size); + if (!recv_data(sockfd, input.data(), input_size)) { + break; + } + switch (cmd) { + case ALLOC_BUFFER: { + rpc_alloc_buffer(backend, input, output); + break; + } + case GET_ALIGNMENT: { + rpc_get_alignment(backend, output); + break; + } + case GET_MAX_SIZE: { + rpc_get_max_size(backend, output); + break; + } + case BUFFER_GET_BASE: { + rpc_buffer_get_base(input, output); + break; + } + case FREE_BUFFER: { + rpc_free_buffer(input); + break; + } + case BUFFER_CLEAR: { + rpc_buffer_clear(input); + break; + } + case SET_TENSOR: { + rpc_set_tensor(input); + break; + } + case GET_TENSOR: { + rpc_get_tensor(input, output); + break; + } + case COPY_TENSOR: { + rpc_copy_tensor(input, output); + break; + } + case GRAPH_COMPUTE: { + rpc_graph_compute(backend, input, output); + break; + } + case GET_DEVICE_MEMORY: { + // output serialization format: | free (8 bytes) | total (8 bytes) | + output.resize(2*sizeof(uint64_t), 0); + memcpy(output.data(), &free_mem, sizeof(free_mem)); + memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem)); + break; + } + default: { + fprintf(stderr, "Unknown command: %d\n", cmd); + return; + } + } + uint64_t output_size = output.size(); + if (!send_data(sockfd, &output_size, sizeof(output_size))) { + break; + } + if (!send_data(sockfd, output.data(), output_size)) { + break; + } + } +} + +void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) { + std::string host; + int port; + if (!parse_endpoint(endpoint, host, port)) { + return; + } +#ifdef _WIN32 + { + WSADATA wsaData; + int res = WSAStartup(MAKEWORD(2, 2), &wsaData); + if (res != 0) { + fprintf(stderr, "WSAStartup failed: %d\n", res); + return; + } + } +#endif + auto server_socket = create_server_socket(host.c_str(), port); + if (server_socket == nullptr) { + fprintf(stderr, "Failed to create server socket\n"); + return; + } + while (true) { + auto client_socket = socket_accept(server_socket->fd); + if (client_socket == nullptr) { + fprintf(stderr, "Failed to accept client connection\n"); + return; + } + printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem); + rpc_serve_client(backend, client_socket->fd, free_mem, total_mem); + printf("Client connection closed\n"); + } +#ifdef _WIN32 + WSACleanup(); +#endif +} diff --git a/ggml-rpc.h b/ggml-rpc.h new file mode 100644 index 000000000..aa144832a --- /dev/null +++ b/ggml-rpc.h @@ -0,0 +1,24 @@ +#pragma once + +#include "ggml.h" +#include "ggml-backend.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define GGML_RPC_MAX_SERVERS 16 + +// backend API +GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint); +GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend); + +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint); + +GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total); + +GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem); + +#ifdef __cplusplus +} +#endif diff --git a/llama.cpp b/llama.cpp index ad35e4a2e..7d26966e4 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7,6 +7,10 @@ #include "ggml-alloc.h" #include "ggml-backend.h" +#ifdef GGML_USE_RPC +# include "ggml-rpc.h" +#endif + #ifdef GGML_USE_CUDA # include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) @@ -1685,91 +1689,6 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer GGML_UNUSED(host_buffer); } -static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) { - ggml_backend_buffer_type_t buft = nullptr; - -#ifdef GGML_USE_METAL - buft = ggml_backend_metal_buffer_type(); -#elif defined(GGML_USE_CUDA) - buft = ggml_backend_cuda_buffer_type(gpu); -#elif defined(GGML_USE_VULKAN) - buft = ggml_backend_vk_buffer_type(gpu); -#elif defined(GGML_USE_SYCL) - buft = ggml_backend_sycl_buffer_type(gpu); -#elif defined(GGML_USE_CLBLAST) - buft = ggml_backend_opencl_buffer_type(); -#elif defined(GGML_USE_KOMPUTE) - buft = ggml_backend_kompute_buffer_type(gpu); - if (buft == nullptr) { - LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); - } -#endif - - if (buft == nullptr) { - buft = llama_default_buffer_type_cpu(true); - } - return buft; - - GGML_UNUSED(gpu); -} - -static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) { - ggml_backend_buffer_type_t buft = nullptr; - -#ifdef GGML_USE_CUDA - if (ggml_backend_cuda_get_device_count() > 1) { - buft = ggml_backend_cuda_split_buffer_type(tensor_split); - } -#endif - -#ifdef GGML_USE_SYCL - if (ggml_backend_sycl_get_device_count() > 1) { - buft = ggml_backend_sycl_split_buffer_type(tensor_split); - } -#endif - - if (buft == nullptr) { - buft = llama_default_buffer_type_offload(fallback_gpu); - } - return buft; - - GGML_UNUSED(tensor_split); -} - -static size_t llama_get_device_count() { -#if defined(GGML_USE_CUDA) - return ggml_backend_cuda_get_device_count(); -#elif defined(GGML_USE_SYCL) - return ggml_backend_sycl_get_device_count(); -#elif defined(GGML_USE_VULKAN) - return ggml_backend_vk_get_device_count(); -#else - return 1; -#endif -} - -static size_t llama_get_device_memory(int device) { -#if defined(GGML_USE_CUDA) - size_t total; - size_t free; - ggml_backend_cuda_get_device_memory(device, &free, &total); - return free; -#elif defined(GGML_USE_SYCL) - size_t total; - size_t free; - ggml_backend_sycl_get_device_memory(device, &free, &total); - return free; -#elif defined(GGML_USE_VULKAN) - size_t total; - size_t free; - ggml_backend_vk_get_device_memory(device, &free, &total); - return free; -#else - return 1; - GGML_UNUSED(device); -#endif -} - // // globals // @@ -2210,6 +2129,8 @@ struct llama_model { int main_gpu; int n_gpu_layers; + std::vector rpc_servers; + // gguf metadata std::unordered_map gguf_kv; @@ -2353,6 +2274,104 @@ struct llama_context { #endif }; +static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_RPC + std::string endpoint = model.rpc_servers[gpu]; + buft = ggml_backend_rpc_buffer_type(endpoint.c_str()); +#elif defined(GGML_USE_METAL) + buft = ggml_backend_metal_buffer_type(); +#elif defined(GGML_USE_CUDA) + buft = ggml_backend_cuda_buffer_type(gpu); +#elif defined(GGML_USE_VULKAN) + buft = ggml_backend_vk_buffer_type(gpu); +#elif defined(GGML_USE_SYCL) + buft = ggml_backend_sycl_buffer_type(gpu); +#elif defined(GGML_USE_CLBLAST) + buft = ggml_backend_opencl_buffer_type(); +#elif defined(GGML_USE_KOMPUTE) + buft = ggml_backend_kompute_buffer_type(gpu); + if (buft == nullptr) { + LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); + } +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_cpu(true); + } + return buft; + GGML_UNUSED(model); + GGML_UNUSED(gpu); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_CUDA + if (ggml_backend_cuda_get_device_count() > 1) { + buft = ggml_backend_cuda_split_buffer_type(tensor_split); + } +#endif + +#ifdef GGML_USE_SYCL + if (ggml_backend_sycl_get_device_count() > 1) { + buft = ggml_backend_sycl_split_buffer_type(tensor_split); + } +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_offload(model, fallback_gpu); + } + return buft; + + GGML_UNUSED(tensor_split); +} + +static size_t llama_get_device_count(const llama_model & model) { +#if defined(GGML_USE_RPC) + return model.rpc_servers.size(); +#elif defined(GGML_USE_CUDA) + return ggml_backend_cuda_get_device_count(); +#elif defined(GGML_USE_SYCL) + return ggml_backend_sycl_get_device_count(); +#elif defined(GGML_USE_VULKAN) + return ggml_backend_vk_get_device_count(); +#else + return 1; +#endif + GGML_UNUSED(model); +} + +static size_t llama_get_device_memory(const llama_model & model, int device) { +#if defined(GGML_USE_RPC) + size_t total; + size_t free; + std::string endpoint = model.rpc_servers[device]; + ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total); + return free; +#elif defined(GGML_USE_CUDA) + size_t total; + size_t free; + ggml_backend_cuda_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_SYCL) + size_t total; + size_t free; + ggml_backend_sycl_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_VULKAN) + size_t total; + size_t free; + ggml_backend_vk_get_device_memory(device, &free, &total); + return free; +#else + return 1; +#endif + GGML_UNUSED(model); + GGML_UNUSED(device); +} + // // kv cache helpers // @@ -4791,13 +4810,13 @@ static bool llm_load_tensors( if (split_mode == LLAMA_SPLIT_MODE_LAYER) { // calculate the split points - int device_count = llama_get_device_count(); + int device_count = llama_get_device_count(model); bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); std::vector splits(device_count); if (all_zero) { // default split, by free memory for (int i = 0; i < device_count; ++i) { - splits[i] = llama_get_device_memory(i); + splits[i] = llama_get_device_memory(model, i); } } else { std::copy(tensor_split, tensor_split + device_count, splits.begin()); @@ -4817,35 +4836,35 @@ static bool llm_load_tensors( int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1); for (int64_t i = i_gpu_start; i < n_layer; ++i) { int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin(); - model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu); + model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu); } // assign the output layer if (n_gpu_layers > n_layer) { int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin(); - model.buft_output = llama_default_buffer_type_offload(layer_gpu); + model.buft_output = llama_default_buffer_type_offload(model, layer_gpu); } else { model.buft_output = llama_default_buffer_type_cpu(true); } } else { ggml_backend_buffer_type_t split_buft; if (split_mode == LLAMA_SPLIT_MODE_ROW) { - split_buft = llama_default_buffer_type_split(main_gpu, tensor_split); + split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split); } else { // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported - split_buft = llama_default_buffer_type_offload(main_gpu); + split_buft = llama_default_buffer_type_offload(model, main_gpu); } // assign the repeating layers for (int64_t i = i_gpu_start; i < n_layer; ++i) { model.buft_layer[i] = { split_buft, - llama_default_buffer_type_offload(main_gpu) + llama_default_buffer_type_offload(model, main_gpu) }; } // assign the output layer if (n_gpu_layers > n_layer) { model.buft_output = { split_buft, - llama_default_buffer_type_offload(main_gpu) + llama_default_buffer_type_offload(model, main_gpu) }; } else { model.buft_output = llama_default_buffer_type_cpu(true); @@ -15390,6 +15409,7 @@ struct llama_model_params llama_model_default_params() { /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, + /*.rpc_servers =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.kv_overrides =*/ nullptr, @@ -15460,7 +15480,9 @@ struct llama_model_quantize_params llama_model_quantize_default_params() { } size_t llama_max_devices(void) { -#if defined(GGML_USE_METAL) +#if defined(GGML_USE_RPC) + return GGML_RPC_MAX_SERVERS; +#elif defined(GGML_USE_METAL) return 1; #elif defined(GGML_USE_CUDA) return GGML_CUDA_MAX_DEVICES; @@ -15483,7 +15505,7 @@ bool llama_supports_mlock(void) { bool llama_supports_gpu_offload(void) { #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ - defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) + defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. return true; #else @@ -15546,7 +15568,17 @@ struct llama_model * llama_load_model_from_file( return true; }; } - + if (params.rpc_servers != nullptr) { + // split the servers set them into model->rpc_servers + std::string servers(params.rpc_servers); + size_t pos = 0; + while ((pos = servers.find(",")) != std::string::npos) { + std::string server = servers.substr(0, pos); + model->rpc_servers.push_back(server); + servers.erase(0, pos + 1); + } + model->rpc_servers.push_back(servers); + } int status = llama_model_load(path_model, *model, params); GGML_ASSERT(status <= 0); if (status < 0) { @@ -15693,7 +15725,17 @@ struct llama_context * llama_new_context_with_model( if (!hparams.vocab_only) { // initialize backends -#ifdef GGML_USE_METAL +#if defined(GGML_USE_RPC) + for (auto & server : model->rpc_servers) { + ggml_backend_t backend = ggml_backend_rpc_init(server.c_str()); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str()); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } +#elif defined(GGML_USE_METAL) if (model->n_gpu_layers > 0) { ctx->backend_metal = ggml_backend_metal_init(); if (ctx->backend_metal == nullptr) { @@ -15850,7 +15892,7 @@ struct llama_context * llama_new_context_with_model( // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary bool pipeline_parallel = - llama_get_device_count() > 1 && + llama_get_device_count(*model) > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER && params.offload_kqv; diff --git a/llama.h b/llama.h index 0b2e708d0..612e32c4e 100644 --- a/llama.h +++ b/llama.h @@ -242,6 +242,9 @@ extern "C" { // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices() const float * tensor_split; + // comma separated list of RPC servers to use for offloading + const char * rpc_servers; + // Called with a progress value between 0.0 and 1.0. Pass NULL to disable. // If the provided progress_callback returns true, model loading continues. // If it returns false, model loading is immediately aborted. From 1265c670fd8e41e1947352c96c5179adda97fb2c Mon Sep 17 00:00:00 2001 From: Brian Date: Tue, 14 May 2024 23:10:39 +1000 Subject: [PATCH 41/56] Revert "move ndk code to a new library (#6951)" (#7282) This reverts commit efc8f767c8c8c749a245dd96ad4e2f37c164b54c. --- examples/llama.android/app/build.gradle.kts | 25 +++++++++- .../src/main/cpp}/CMakeLists.txt | 2 +- .../src/main/cpp/llama-android.cpp | 28 +++++------ .../src/main/java/com/example/llama/Llm.kt} | 8 +-- .../java/com/example/llama/MainViewModel.kt | 13 +++-- examples/llama.android/build.gradle.kts | 1 - examples/llama.android/llama/.gitignore | 1 - .../llama.android/llama/consumer-rules.pro | 0 .../llama.android/llama/proguard-rules.pro | 21 -------- .../llama/cpp/ExampleInstrumentedTest.kt | 24 --------- .../llama/src/main/AndroidManifest.xml | 4 -- .../llama/src/main/cpp/CMakeLists.txt | 49 ------------------- .../java/android/llama/cpp/ExampleUnitTest.kt | 17 ------- examples/llama.android/settings.gradle.kts | 1 - 14 files changed, 49 insertions(+), 145 deletions(-) rename examples/llama.android/{llama => app/src/main/cpp}/CMakeLists.txt (98%) rename examples/llama.android/{llama => app}/src/main/cpp/llama-android.cpp (92%) rename examples/llama.android/{llama/src/main/java/android/llama/cpp/LLamaAndroid.kt => app/src/main/java/com/example/llama/Llm.kt} (97%) delete mode 100644 examples/llama.android/llama/.gitignore delete mode 100644 examples/llama.android/llama/consumer-rules.pro delete mode 100644 examples/llama.android/llama/proguard-rules.pro delete mode 100644 examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt delete mode 100644 examples/llama.android/llama/src/main/AndroidManifest.xml delete mode 100644 examples/llama.android/llama/src/main/cpp/CMakeLists.txt delete mode 100644 examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt diff --git a/examples/llama.android/app/build.gradle.kts b/examples/llama.android/app/build.gradle.kts index 8d1b37195..d42140efe 100644 --- a/examples/llama.android/app/build.gradle.kts +++ b/examples/llama.android/app/build.gradle.kts @@ -7,6 +7,8 @@ android { namespace = "com.example.llama" compileSdk = 34 + ndkVersion = "26.1.10909125" + defaultConfig { applicationId = "com.example.llama" minSdk = 33 @@ -18,6 +20,17 @@ android { vectorDrawables { useSupportLibrary = true } + ndk { + // Add NDK properties if wanted, e.g. + // abiFilters += listOf("arm64-v8a") + } + externalNativeBuild { + cmake { + arguments += "-DCMAKE_BUILD_TYPE=Release" + cppFlags += listOf() + arguments += listOf() + } + } } buildTypes { @@ -42,6 +55,17 @@ android { composeOptions { kotlinCompilerExtensionVersion = "1.5.1" } + packaging { + resources { + excludes += "/META-INF/{AL2.0,LGPL2.1}" + } + } + externalNativeBuild { + cmake { + path = file("src/main/cpp/CMakeLists.txt") + version = "3.22.1" + } + } } dependencies { @@ -54,7 +78,6 @@ dependencies { implementation("androidx.compose.ui:ui-graphics") implementation("androidx.compose.ui:ui-tooling-preview") implementation("androidx.compose.material3:material3") - implementation(project(":llama")) testImplementation("junit:junit:4.13.2") androidTestImplementation("androidx.test.ext:junit:1.1.5") androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1") diff --git a/examples/llama.android/llama/CMakeLists.txt b/examples/llama.android/app/src/main/cpp/CMakeLists.txt similarity index 98% rename from examples/llama.android/llama/CMakeLists.txt rename to examples/llama.android/app/src/main/cpp/CMakeLists.txt index bb5738ae3..85139329a 100644 --- a/examples/llama.android/llama/CMakeLists.txt +++ b/examples/llama.android/app/src/main/cpp/CMakeLists.txt @@ -37,7 +37,7 @@ FetchContent_MakeAvailable(llama) # used in the AndroidManifest.xml file. add_library(${CMAKE_PROJECT_NAME} SHARED # List C/C++ source files with relative paths to this CMakeLists.txt. - llama-android.cpp) + llama-android.cpp) # Specifies libraries CMake should link to your target library. You # can link libraries from various origins, such as libraries defined in this diff --git a/examples/llama.android/llama/src/main/cpp/llama-android.cpp b/examples/llama.android/app/src/main/cpp/llama-android.cpp similarity index 92% rename from examples/llama.android/llama/src/main/cpp/llama-android.cpp rename to examples/llama.android/app/src/main/cpp/llama-android.cpp index 874158ef0..4af9de303 100644 --- a/examples/llama.android/llama/src/main/cpp/llama-android.cpp +++ b/examples/llama.android/app/src/main/cpp/llama-android.cpp @@ -81,7 +81,7 @@ static void log_callback(ggml_log_level level, const char * fmt, void * data) { extern "C" JNIEXPORT jlong JNICALL -Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring filename) { +Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) { llama_model_params model_params = llama_model_default_params(); auto path_to_model = env->GetStringUTFChars(filename, 0); @@ -101,13 +101,13 @@ Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring fi extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) { +Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) { llama_free_model(reinterpret_cast(model)); } extern "C" JNIEXPORT jlong JNICALL -Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmodel) { +Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) { auto model = reinterpret_cast(jmodel); if (!model) { @@ -139,25 +139,25 @@ Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmo extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_free_1context(JNIEnv *, jobject, jlong context) { +Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) { llama_free(reinterpret_cast(context)); } extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_backend_1free(JNIEnv *, jobject) { +Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) { llama_backend_free(); } extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_log_1to_1android(JNIEnv *, jobject) { +Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) { llama_log_set(log_callback, NULL); } extern "C" JNIEXPORT jstring JNICALL -Java_android_llama_cpp_LLamaAndroid_bench_1model( +Java_com_example_llama_Llm_bench_1model( JNIEnv *env, jobject, jlong context_pointer, @@ -271,13 +271,13 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model( extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) { +Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) { llama_batch_free(*reinterpret_cast(batch_pointer)); } extern "C" JNIEXPORT jlong JNICALL -Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) { +Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) { // Source: Copy of llama.cpp:llama_batch_init but heap-allocated. @@ -313,19 +313,19 @@ Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) { +Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject) { llama_backend_init(); } extern "C" JNIEXPORT jstring JNICALL -Java_android_llama_cpp_LLamaAndroid_system_1info(JNIEnv *env, jobject) { +Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) { return env->NewStringUTF(llama_print_system_info()); } extern "C" JNIEXPORT jint JNICALL -Java_android_llama_cpp_LLamaAndroid_completion_1init( +Java_com_example_llama_Llm_completion_1init( JNIEnv *env, jobject, jlong context_pointer, @@ -376,7 +376,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init( extern "C" JNIEXPORT jstring JNICALL -Java_android_llama_cpp_LLamaAndroid_completion_1loop( +Java_com_example_llama_Llm_completion_1loop( JNIEnv * env, jobject, jlong context_pointer, @@ -438,6 +438,6 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop( extern "C" JNIEXPORT void JNICALL -Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { +Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { llama_kv_cache_clear(reinterpret_cast(context)); } diff --git a/examples/llama.android/llama/src/main/java/android/llama/cpp/LLamaAndroid.kt b/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt similarity index 97% rename from examples/llama.android/llama/src/main/java/android/llama/cpp/LLamaAndroid.kt rename to examples/llama.android/app/src/main/java/com/example/llama/Llm.kt index 6c63e54e0..d86afee37 100644 --- a/examples/llama.android/llama/src/main/java/android/llama/cpp/LLamaAndroid.kt +++ b/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt @@ -1,4 +1,4 @@ -package android.llama.cpp +package com.example.llama import android.util.Log import kotlinx.coroutines.CoroutineDispatcher @@ -10,7 +10,7 @@ import kotlinx.coroutines.withContext import java.util.concurrent.Executors import kotlin.concurrent.thread -class LLamaAndroid { +class Llm { private val tag: String? = this::class.simpleName private val threadLocalState: ThreadLocal = ThreadLocal.withInitial { State.Idle } @@ -165,8 +165,8 @@ class LLamaAndroid { } // Enforce only one instance of Llm. - private val _instance: LLamaAndroid = LLamaAndroid() + private val _instance: Llm = Llm() - fun instance(): LLamaAndroid = _instance + fun instance(): Llm = _instance } } diff --git a/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt b/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt index 45ac29938..be95e2221 100644 --- a/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt +++ b/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt @@ -1,6 +1,5 @@ package com.example.llama -import android.llama.cpp.LLamaAndroid import android.util.Log import androidx.compose.runtime.getValue import androidx.compose.runtime.mutableStateOf @@ -10,7 +9,7 @@ import androidx.lifecycle.viewModelScope import kotlinx.coroutines.flow.catch import kotlinx.coroutines.launch -class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instance()): ViewModel() { +class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { companion object { @JvmStatic private val NanosPerSecond = 1_000_000_000.0 @@ -29,7 +28,7 @@ class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instan viewModelScope.launch { try { - llamaAndroid.unload() + llm.unload() } catch (exc: IllegalStateException) { messages += exc.message!! } @@ -45,7 +44,7 @@ class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instan messages += "" viewModelScope.launch { - llamaAndroid.send(text) + llm.send(text) .catch { Log.e(tag, "send() failed", it) messages += it.message!! @@ -58,7 +57,7 @@ class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instan viewModelScope.launch { try { val start = System.nanoTime() - val warmupResult = llamaAndroid.bench(pp, tg, pl, nr) + val warmupResult = llm.bench(pp, tg, pl, nr) val end = System.nanoTime() messages += warmupResult @@ -71,7 +70,7 @@ class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instan return@launch } - messages += llamaAndroid.bench(512, 128, 1, 3) + messages += llm.bench(512, 128, 1, 3) } catch (exc: IllegalStateException) { Log.e(tag, "bench() failed", exc) messages += exc.message!! @@ -82,7 +81,7 @@ class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instan fun load(pathToModel: String) { viewModelScope.launch { try { - llamaAndroid.load(pathToModel) + llm.load(pathToModel) messages += "Loaded $pathToModel" } catch (exc: IllegalStateException) { Log.e(tag, "load() failed", exc) diff --git a/examples/llama.android/build.gradle.kts b/examples/llama.android/build.gradle.kts index acd1ada7d..50ebc8211 100644 --- a/examples/llama.android/build.gradle.kts +++ b/examples/llama.android/build.gradle.kts @@ -2,5 +2,4 @@ plugins { id("com.android.application") version "8.2.0" apply false id("org.jetbrains.kotlin.android") version "1.9.0" apply false - id("com.android.library") version "8.2.0" apply false } diff --git a/examples/llama.android/llama/.gitignore b/examples/llama.android/llama/.gitignore deleted file mode 100644 index 796b96d1c..000000000 --- a/examples/llama.android/llama/.gitignore +++ /dev/null @@ -1 +0,0 @@ -/build diff --git a/examples/llama.android/llama/consumer-rules.pro b/examples/llama.android/llama/consumer-rules.pro deleted file mode 100644 index e69de29bb..000000000 diff --git a/examples/llama.android/llama/proguard-rules.pro b/examples/llama.android/llama/proguard-rules.pro deleted file mode 100644 index f1b424510..000000000 --- a/examples/llama.android/llama/proguard-rules.pro +++ /dev/null @@ -1,21 +0,0 @@ -# Add project specific ProGuard rules here. -# You can control the set of applied configuration files using the -# proguardFiles setting in build.gradle. -# -# For more details, see -# http://developer.android.com/guide/developing/tools/proguard.html - -# If your project uses WebView with JS, uncomment the following -# and specify the fully qualified class name to the JavaScript interface -# class: -#-keepclassmembers class fqcn.of.javascript.interface.for.webview { -# public *; -#} - -# Uncomment this to preserve the line number information for -# debugging stack traces. -#-keepattributes SourceFile,LineNumberTable - -# If you keep the line number information, uncomment this to -# hide the original source file name. -#-renamesourcefileattribute SourceFile diff --git a/examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt b/examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt deleted file mode 100644 index 05d6ab5d2..000000000 --- a/examples/llama.android/llama/src/androidTest/java/android/llama/cpp/ExampleInstrumentedTest.kt +++ /dev/null @@ -1,24 +0,0 @@ -package android.llama.cpp - -import androidx.test.platform.app.InstrumentationRegistry -import androidx.test.ext.junit.runners.AndroidJUnit4 - -import org.junit.Test -import org.junit.runner.RunWith - -import org.junit.Assert.* - -/** - * Instrumented test, which will execute on an Android device. - * - * See [testing documentation](http://d.android.com/tools/testing). - */ -@RunWith(AndroidJUnit4::class) -class ExampleInstrumentedTest { - @Test - fun useAppContext() { - // Context of the app under test. - val appContext = InstrumentationRegistry.getInstrumentation().targetContext - assertEquals("android.llama.cpp.test", appContext.packageName) - } -} diff --git a/examples/llama.android/llama/src/main/AndroidManifest.xml b/examples/llama.android/llama/src/main/AndroidManifest.xml deleted file mode 100644 index 8bdb7e14b..000000000 --- a/examples/llama.android/llama/src/main/AndroidManifest.xml +++ /dev/null @@ -1,4 +0,0 @@ - - - - diff --git a/examples/llama.android/llama/src/main/cpp/CMakeLists.txt b/examples/llama.android/llama/src/main/cpp/CMakeLists.txt deleted file mode 100644 index 42ebaad49..000000000 --- a/examples/llama.android/llama/src/main/cpp/CMakeLists.txt +++ /dev/null @@ -1,49 +0,0 @@ -# For more information about using CMake with Android Studio, read the -# documentation: https://d.android.com/studio/projects/add-native-code.html. -# For more examples on how to use CMake, see https://github.com/android/ndk-samples. - -# Sets the minimum CMake version required for this project. -cmake_minimum_required(VERSION 3.22.1) - -# Declares the project name. The project name can be accessed via ${ PROJECT_NAME}, -# Since this is the top level CMakeLists.txt, the project name is also accessible -# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level -# build script scope). -project("llama-android") - -include(FetchContent) -FetchContent_Declare( - llama - GIT_REPOSITORY https://github.com/ggerganov/llama.cpp - GIT_TAG master -) - -# Also provides "common" -FetchContent_MakeAvailable(llama) - -# Creates and names a library, sets it as either STATIC -# or SHARED, and provides the relative paths to its source code. -# You can define multiple libraries, and CMake builds them for you. -# Gradle automatically packages shared libraries with your APK. -# -# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define -# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME} -# is preferred for the same purpose. -# -# In order to load a library into your app from Java/Kotlin, you must call -# System.loadLibrary() and pass the name of the library defined here; -# for GameActivity/NativeActivity derived applications, the same library name must be -# used in the AndroidManifest.xml file. -add_library(${CMAKE_PROJECT_NAME} SHARED - # List C/C++ source files with relative paths to this CMakeLists.txt. - llama-android.cpp) - -# Specifies libraries CMake should link to your target library. You -# can link libraries from various origins, such as libraries defined in this -# build script, prebuilt third-party libraries, or Android system libraries. -target_link_libraries(${CMAKE_PROJECT_NAME} - # List libraries link to the target library - llama - common - android - log) diff --git a/examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt b/examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt deleted file mode 100644 index cbbb974d3..000000000 --- a/examples/llama.android/llama/src/test/java/android/llama/cpp/ExampleUnitTest.kt +++ /dev/null @@ -1,17 +0,0 @@ -package android.llama.cpp - -import org.junit.Test - -import org.junit.Assert.* - -/** - * Example local unit test, which will execute on the development machine (host). - * - * See [testing documentation](http://d.android.com/tools/testing). - */ -class ExampleUnitTest { - @Test - fun addition_isCorrect() { - assertEquals(4, 2 + 2) - } -} diff --git a/examples/llama.android/settings.gradle.kts b/examples/llama.android/settings.gradle.kts index c7c1a034a..2ba32c4fa 100644 --- a/examples/llama.android/settings.gradle.kts +++ b/examples/llama.android/settings.gradle.kts @@ -15,4 +15,3 @@ dependencyResolutionManagement { rootProject.name = "LlamaAndroid" include(":app") -include(":llama") From 4f0263633b40e94e8b69fd6e7e4395cfedfd5c12 Mon Sep 17 00:00:00 2001 From: Steve Grubb Date: Tue, 14 May 2024 10:11:24 -0400 Subject: [PATCH 42/56] server: free sampling contexts on exit (#7264) * server: free sampling contexts on exit This cleans up last leak found by the address sanitizer. * fix whitespace * fix whitespace --- examples/server/server.cpp | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index ceaeb1f76..7e0d068f8 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -671,6 +671,13 @@ struct server_context { model = nullptr; } + // Clear any sampling context + for (server_slot & slot : slots) { + if (slot.ctx_sampling != nullptr) { + llama_sampling_free(slot.ctx_sampling); + } + } + llama_batch_free(batch); } From 0d26d8ccd8caebab75af697c0275f599075fdacf Mon Sep 17 00:00:00 2001 From: Hong Bo PENG Date: Sun, 12 May 2024 17:17:18 +0800 Subject: [PATCH 43/56] ggml : optimize for ppc64le using VSX intrinsics (ggml/784) * optimize for ppc64le using VSX intrinsics * 1. code clean up by removing comments about overflow concern. 2. fix typo in suffix of scaling. * Continue to fix typo in suffix of scaling for QK_K <> 256 --------- Co-authored-by: Georgi Gerganov --- ggml-quants.c | 2169 ++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 2167 insertions(+), 2 deletions(-) diff --git a/ggml-quants.c b/ggml-quants.c index 00334c5fe..f711bd013 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -241,7 +241,7 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 #endif // __AVX__ || __AVX2__ || __AVX512F__ #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) -#if defined(__ARM_NEON) || defined(__wasm_simd128__) +#if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__) #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s) @@ -643,6 +643,38 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) // store result __riscv_vse8_v_i8m1(y[i].qs , vs, vl); } +#elif defined(__POWER9_VECTOR__) + for (int i = 0; i < nb; i++) { + vector float srcv [8]; + vector float asrcv[8]; + vector float amaxv[8]; + vector signed int vi[8]; + + for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]); + + const float amax = MAX(MAX(vec_extract(amaxv[0], 0), + vec_extract(amaxv[0], 1)), + MAX(vec_extract(amaxv[0], 2), + vec_extract(amaxv[0], 3))); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + const vector float vid = vec_splats(id); + + y[i].d = GGML_FP32_TO_FP16(d); + + for (int j = 0; j < 8; j++) { + const vector float v = vec_round(vec_mul(srcv[j], vid)); + vi[j] = vec_cts(v, 0); + } + vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]); + vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]); + } #else GGML_UNUSED(nb); // scalar @@ -898,6 +930,46 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) int sum = __riscv_vmv_x_s_i16m1_i16(vwrs); y[i].s = GGML_FP32_TO_FP16(sum*d); } +#elif defined(__POWER9_VECTOR__) + for (int i = 0; i < nb; i++) { + vector float srcv [8]; + vector float asrcv[8]; + vector float amaxv[8]; + vector signed int vi[8]; + + for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]); + + const float amax = MAX(MAX(vec_extract(amaxv[0], 0), + vec_extract(amaxv[0], 1)), + MAX(vec_extract(amaxv[0], 2), + vec_extract(amaxv[0], 3))); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + const vector float vid = vec_splats(id); + + y[i].d = GGML_FP32_TO_FP16(d); + + vector int accv = vec_splats(0); + + for (int j = 0; j < 8; j++) { + const vector float v = vec_round(vec_mul(srcv[j], vid)); + vi[j] = vec_cts(v, 0); + + accv = vec_add(accv, vi[j]); + } + vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]); + vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]); + + accv = vec_add(accv, vec_sld(accv, accv, 4)); + accv = vec_add(accv, vec_sld(accv, accv, 8)); + y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0)); + } #else GGML_UNUSED(nb); // scalar @@ -3740,6 +3812,46 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r } *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + const vector signed char v8 = vec_splats((signed char)0x8); + + vector float vsumf0 = vec_splats(0.0f); + +#pragma GCC unroll 4 + for (int i = 0; i < nb; i++) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d)); + vector float vd = vec_mul(vxd, vyd); + + vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs); + vector signed char q8y0 = vec_xl( 0, y[i].qs); + vector signed char q8y1 = vec_xl(16, y[i].qs); + + vector signed char q4x0 = vec_and(qxs, lowMask); + vector signed char q4x1 = vec_sr(qxs, v4); + + q4x0 = vec_sub(q4x0, v8); + q4x1 = vec_sub(q4x1, v8); + + vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1)); + + qv0 = vec_add(qv0, qv1); + + vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + } + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else // scalar float sumf = 0.0; @@ -3958,6 +4070,46 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r } *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + +#pragma GCC unroll 4 + for (int i = 0; i < nb; i++) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d)); + vector float vd = vec_mul(vxd, vyd); + + vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m)); + vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.0f, 0.0f, 0.0f}; + vsumf0 = vec_madd(vxmin, vys, vsumf0); + + vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs); + vector signed char q8y0 = vec_xl( 0, y[i].qs); + vector signed char q8y1 = vec_xl(16, y[i].qs); + + vector signed char q4x0 = vec_and(qxs, lowMask); + vector signed char q4x1 = vec_sr(qxs, v4); + + vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1)); + + qv0 = vec_add(qv0, qv1); + + vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + } + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else // scalar float sumf = 0.0; @@ -4243,6 +4395,49 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * r } *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)4); + + vector float vsumf0 = vec_splats(0.0f); + +#pragma GCC unroll 4 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d)); + vector float vd = vec_mul(vxd, vyd); + + vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[i].qh[0]]), (uint64_t)(table_b2b_1[x[i].qh[1]])}; + vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[i].qh[2]]), (uint64_t)(table_b2b_1[x[i].qh[3]])}; + + vector signed char qh0 = (vector signed char)aux64x2_0; + vector signed char qh1 = (vector signed char)aux64x2_1; + + vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs); + + vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0); + vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1); + + vector signed char q8y0 = vec_xl( 0, y[i].qs); + vector signed char q8y1 = vec_xl( 16, y[i].qs); + + vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1)); + + qv0 = vec_add(qv0, qv1); + + vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + } + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else // scalar float sumf = 0.0; @@ -4547,6 +4742,53 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * r } *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + +#pragma GCC unroll 4 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d)); + vector float vd = vec_mul(vxd, vyd); + + vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m)); + vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.f, 0.f, 0.f}; + vsumf0 = vec_madd(vxmin, vys, vsumf0); + + vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[i].qh[0]]), (uint64_t)(table_b2b_0[x[i].qh[1]])}; + vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[i].qh[2]]), (uint64_t)(table_b2b_0[x[i].qh[3]])}; + + vector signed char qh0 = (vector signed char)aux64x2_0; + vector signed char qh1 = (vector signed char)aux64x2_1; + + vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs); + + vector signed char q5x0 = vec_or(vec_and(qxs, lowMask), qh0); + vector signed char q5x1 = vec_or(vec_sr(qxs, v4), qh1); + + vector signed char q8y0 = vec_xl( 0, y[i].qs); + vector signed char q8y1 = vec_xl( 16, y[i].qs); + + vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1)); + + qv0 = vec_add(qv0, qv1); + + vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + } + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else // scalar float sumf = 0.0; @@ -4722,6 +4964,45 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r } *s = sumf; +#elif defined(__POWER9_VECTOR__) + vector float vsumf0 = vec_splats(0.0f); + +#pragma GCC unroll 4 + for (int i = 0; i < nb; i++) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d)); + vector float vd = vec_mul(vxd, vyd); + + vector signed char q8x0 = vec_xl( 0, x[i].qs); + vector signed char q8x1 = vec_xl(16, x[i].qs); + vector signed char q8y0 = vec_xl( 0, y[i].qs); + vector signed char q8y1 = vec_xl(16, y[i].qs); + + vector signed short qv0 = vec_mule(q8x0, q8y0); + vector signed short qv1 = vec_mulo(q8x0, q8y0); + vector signed short qv2 = vec_mule(q8x1, q8y1); + vector signed short qv3 = vec_mulo(q8x1, q8y1); + + vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackh(qv1)); + vector signed int vsumi1 = vec_add(vec_unpackl(qv0), vec_unpackl(qv1)); + vector signed int vsumi2 = vec_add(vec_unpackh(qv2), vec_unpackh(qv3)); + vector signed int vsumi3 = vec_add(vec_unpackl(qv2), vec_unpackl(qv3)); + + vsumi0 = vec_add(vsumi0, vsumi2); + vsumi1 = vec_add(vsumi1, vsumi3); + + vsumi0 = vec_add(vsumi0, vsumi1); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + } + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else // scalar float sumf = 0.0; @@ -5077,6 +5358,147 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0x3); + const vector signed char lowScaleMask = vec_splats((signed char)0xF); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v6 = vec_splats((unsigned char)0x6); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin)); + vector float vdmin = vec_mul(vxmin, vyd); + + vector signed short q8ysums0 = vec_xl( 0, y[i].bsums); + vector signed short q8ysums1 = vec_xl(16, y[i].bsums); + + vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales); + vector signed char vscales = vec_and(q2xmins, lowScaleMask); + + q2xmins = vec_sr(q2xmins, v4); + vector signed short q2xmins0 = vec_unpackh(q2xmins); + vector signed short q2xmins1 = vec_unpackl(q2xmins); + + vector signed int prod0 = vec_mule(q2xmins0, q8ysums0); + vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0); + vector signed int prod2 = vec_mule(q2xmins1, q8ysums1); + vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1); + + vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0); + vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1); + vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2); + vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/128; ++j) { + __builtin_prefetch(q2, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, q2); + vector signed char qxs1 = (vector signed char)vec_xl(16, q2); + q2 += 32; + + vector signed char q2x00 = vec_and(qxs0, lowMask); + vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask); + vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask); + vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask); + vector signed char q2x10 = vec_and(qxs1, lowMask); + vector signed char q2x11 = vec_and(vec_sr(qxs1, v2), lowMask); + vector signed char q2x12 = vec_and(vec_sr(qxs1, v4), lowMask); + vector signed char q2x13 = vec_and(vec_sr(qxs1, v6), lowMask); + + vector signed char q8y00 = vec_xl( 0, q8); + vector signed char q8y10 = vec_xl( 16, q8); + vector signed char q8y01 = vec_xl( 32, q8); + vector signed char q8y11 = vec_xl( 48, q8); + vector signed char q8y02 = vec_xl( 64, q8); + vector signed char q8y12 = vec_xl( 80, q8); + vector signed char q8y03 = vec_xl( 96, q8); + vector signed char q8y13 = vec_xl(112, q8); + q8 += 128; + + vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00)); + vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01)); + vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02)); + vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03)); + vector signed short qv4 = vec_add(vec_mule(q2x10, q8y10), vec_mulo(q2x10, q8y10)); + vector signed short qv5 = vec_add(vec_mule(q2x11, q8y11), vec_mulo(q2x11, q8y11)); + vector signed short qv6 = vec_add(vec_mule(q2x12, q8y12), vec_mulo(q2x12, q8y12)); + vector signed short qv7 = vec_add(vec_mule(q2x13, q8y13), vec_mulo(q2x13, q8y13)); + + vector signed short vscales_h = vec_unpackh(vscales); + vector signed short vs0 = vec_splat(vscales_h, 0); + vector signed short vs1 = vec_splat(vscales_h, 1); + vector signed short vs2 = vec_splat(vscales_h, 2); + vector signed short vs3 = vec_splat(vscales_h, 3); + vector signed short vs4 = vec_splat(vscales_h, 4); + vector signed short vs5 = vec_splat(vscales_h, 5); + vector signed short vs6 = vec_splat(vscales_h, 6); + vector signed short vs7 = vec_splat(vscales_h, 7); + vscales = vec_sld(vscales, vscales, 8); + + qv0 = vec_mul(qv0, vs0); + qv1 = vec_mul(qv1, vs2); + qv2 = vec_mul(qv2, vs4); + qv3 = vec_mul(qv3, vs6); + + qv0 = vec_madd(qv4, vs1, qv0); + qv1 = vec_madd(qv5, vs3, qv1); + qv2 = vec_madd(qv6, vs5, qv2); + qv3 = vec_madd(qv7, vs7, qv3); + + vsumi0 = vec_add(vec_unpackh(qv0), vsumi0); + vsumi1 = vec_add(vec_unpackh(qv1), vsumi1); + vsumi2 = vec_add(vec_unpackh(qv2), vsumi2); + vsumi3 = vec_add(vec_unpackh(qv3), vsumi3); + + vsumi4 = vec_add(vec_unpackl(qv0), vsumi4); + vsumi5 = vec_add(vec_unpackl(qv1), vsumi5); + vsumi6 = vec_add(vec_unpackl(qv2), vsumi6); + vsumi7 = vec_add(vec_unpackl(qv3), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else float sumf = 0; @@ -5347,6 +5769,87 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0x3); + const vector signed char lowScaleMask = vec_splats((signed char)0xF); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + const vector unsigned char v6 = vec_splats((unsigned char)0x6); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + +#pragma GCC unroll 2 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin)); + vector float vdmin = vec_mul(vxmin, vyd); + + vector signed short q8ysums0 = vec_xl_len(y[i].bsums, 8); + + vector signed char q2xmins = (vector signed char)vec_xl_len(x[i].scales, 4); + vector signed char vscales = vec_and(q2xmins, lowScaleMask); + + q2xmins = vec_sr(q2xmins, v4); + vector signed short q2xmins0 = vec_unpackh((vector signed char)q2xmins); + + vector signed int prod0 = vec_mule(q2xmins0, q8ysums0); + vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0); + + vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0); + vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); + vector signed char q2x00 = vec_and(qxs0, lowMask); + vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask); + vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask); + vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask); + + vector signed char q8y00 = vec_xl( 0, y[i].qs); + vector signed char q8y01 = vec_xl( 16, y[i].qs); + vector signed char q8y02 = vec_xl( 32, y[i].qs); + vector signed char q8y03 = vec_xl( 48, y[i].qs); + + vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00)); + vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01)); + vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02)); + vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03)); + + vector signed short vscales_h = vec_unpackh(vscales); + vector signed short vs0 = vec_splat(vscales_h, 0); + vector signed short vs1 = vec_splat(vscales_h, 1); + vector signed short vs2 = vec_splat(vscales_h, 2); + vector signed short vs3 = vec_splat(vscales_h, 3); + + vector signed int vsumi0 = vec_add(vec_mule(qv0, vs0), vec_mulo(qv0, vs0)); + vector signed int vsumi1 = vec_add(vec_mule(qv1, vs1), vec_mulo(qv1, vs1)); + vector signed int vsumi2 = vec_add(vec_mule(qv2, vs2), vec_mulo(qv2, vs2)); + vector signed int vsumi3 = vec_add(vec_mule(qv3, vs3), vec_mulo(qv3, vs3)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else float sumf = 0; @@ -5841,6 +6344,160 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0x3); + const vector signed char v1 = vec_splats((signed char)0x1); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v3 = vec_splats((unsigned char)0x3); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + const vector unsigned char v6 = vec_splats((unsigned char)0x6); + const vector signed char off = vec_splats((signed char)0x20); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + uint32_t aux[3]; + uint32_t utmp[4]; + + memcpy(aux, x[i].scales, 12); + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + vector signed char vscales = (vector signed char)vec_xl( 0, utmp); + vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask); + vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask); + + vscales = vec_sub(vscales, off); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/128; ++j) { + __builtin_prefetch(q3, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, q3); + vector signed char qxs1 = (vector signed char)vec_xl(16, q3); + q3 += 32; + + //the low 2 bits + vector signed char qxs00 = vec_and(qxs0, lowMask); + vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask); + vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask); + vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask); + vector signed char qxs10 = vec_and(qxs1, lowMask); + vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask); + vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask); + vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask); + + //the 3rd bit + vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2); + vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2); + vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2); + vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2); + vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2); + vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2); + vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2); + vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2); + qxhs0 = vec_sr(qxhs0, v4); + qxhs1 = vec_sr(qxhs1, v4); + + vector signed char q3x00 = vec_sub(qxs00, qxh00); + vector signed char q3x01 = vec_sub(qxs01, qxh01); + vector signed char q3x02 = vec_sub(qxs02, qxh02); + vector signed char q3x03 = vec_sub(qxs03, qxh03); + vector signed char q3x10 = vec_sub(qxs10, qxh10); + vector signed char q3x11 = vec_sub(qxs11, qxh11); + vector signed char q3x12 = vec_sub(qxs12, qxh12); + vector signed char q3x13 = vec_sub(qxs13, qxh13); + + vector signed char q8y00 = vec_xl( 0, q8); + vector signed char q8y10 = vec_xl( 16, q8); + vector signed char q8y01 = vec_xl( 32, q8); + vector signed char q8y11 = vec_xl( 48, q8); + vector signed char q8y02 = vec_xl( 64, q8); + vector signed char q8y12 = vec_xl( 80, q8); + vector signed char q8y03 = vec_xl( 96, q8); + vector signed char q8y13 = vec_xl(112, q8); + q8 += 128; + + vector signed short vscales_h = vec_unpackh(vscales); + vector signed short vs0 = vec_splat(vscales_h, 0); + vector signed short vs1 = vec_splat(vscales_h, 1); + vector signed short vs2 = vec_splat(vscales_h, 2); + vector signed short vs3 = vec_splat(vscales_h, 3); + vector signed short vs4 = vec_splat(vscales_h, 4); + vector signed short vs5 = vec_splat(vscales_h, 5); + vector signed short vs6 = vec_splat(vscales_h, 6); + vector signed short vs7 = vec_splat(vscales_h, 7); + vscales = vec_sld(vscales, vscales, 8); + + vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00)); + vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01)); + vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02)); + vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03)); + vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10)); + vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11)); + vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12)); + vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13)); + + vector signed int vsum0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); + vector signed int vsum1 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); + vector signed int vsum2 = vec_add(vec_mule(qv02, vs4), vec_mulo(qv02, vs4)); + vector signed int vsum3 = vec_add(vec_mule(qv03, vs6), vec_mulo(qv03, vs6)); + vector signed int vsum4 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); + vector signed int vsum5 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); + vector signed int vsum6 = vec_add(vec_mule(qv12, vs5), vec_mulo(qv12, vs5)); + vector signed int vsum7 = vec_add(vec_mule(qv13, vs7), vec_mulo(qv13, vs7)); + + vsumi0 = vec_add(vsum0, vsumi0); + vsumi1 = vec_add(vsum1, vsumi1); + vsumi2 = vec_add(vsum2, vsumi2); + vsumi3 = vec_add(vsum3, vsumi3); + vsumi4 = vec_add(vsum4, vsumi4); + vsumi5 = vec_add(vsum5, vsumi5); + vsumi6 = vec_add(vsum6, vsumi6); + vsumi7 = vec_add(vsum7, vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else // scalar version // This function is written like this so the compiler can manage to vectorize most of it @@ -6207,6 +6864,95 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0x3); + const vector signed char v1 = vec_splats((signed char)0x1); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + const vector unsigned char v6 = vec_splats((unsigned char)0x6); + const vector signed char off = vec_splats((signed char)0x8); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + +#pragma GCC unroll 2 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + uint16_t aux16[2]; + int8_t * scales = (int8_t *)aux16; + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + vector signed char vscales = (vector signed char)vec_xl_len(scales, 8); + vector signed char qxhs0 = (vector signed char)vec_xl_len(x[i].hmask, 8); + qxhs0 = vec_or(qxhs0, vec_sr(vec_sld(qxhs0, qxhs0, 8), (vector unsigned char)v1)); + + vscales = vec_sub(vscales, off); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); + vector signed char qxs00 = vec_and(qxs0, lowMask); + vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask); + vector signed char qxs10 = vec_and(vec_sr(qxs0, v4), lowMask); + vector signed char qxs11 = vec_and(vec_sr(qxs0, v6), lowMask); + + //the 3rd bit + vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2); + vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2); + vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v4)), v2); + vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v6)), v2); + qxhs0 = vec_sr(qxhs0, v4); + + vector signed char q3x00 = vec_sub(qxs00, qxh00); + vector signed char q3x01 = vec_sub(qxs01, qxh01); + vector signed char q3x10 = vec_sub(qxs10, qxh02); + vector signed char q3x11 = vec_sub(qxs11, qxh03); + + vector signed char q8y00 = vec_xl( 0, y[i].qs); + vector signed char q8y01 = vec_xl( 16, y[i].qs); + vector signed char q8y10 = vec_xl( 32, y[i].qs); + vector signed char q8y11 = vec_xl( 48, y[i].qs); + + vector signed short vscales_h = vec_unpackh(vscales); + vector signed short vs0 = vec_splat(vscales_h, 0); + vector signed short vs1 = vec_splat(vscales_h, 1); + vector signed short vs2 = vec_splat(vscales_h, 2); + vector signed short vs3 = vec_splat(vscales_h, 3); + + vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00)); + vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10)); + vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01)); + vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11)); + + vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); + vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); + vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); + vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else int8_t aux8[QK_K]; @@ -6559,6 +7305,142 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin)); + vector float vdmin = vec_mul(vxmin, vyd); + + vector signed short q8ysums0 = vec_xl( 0, y[i].bsums); + vector signed short q8ysums1 = vec_xl(16, y[i].bsums); + + memcpy(utmp, x[i].scales, 12); + + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + vector signed char utmps = (vector signed char)vec_xl( 0, utmp); + vector signed short vscales = vec_unpackh(utmps); + vector signed short q4xmins = vec_unpackl(utmps); + vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins); + vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins); + + vector signed int prod0 = vec_mule(q4xmins0, q8ysums0); + vector signed int prod1 = vec_mule(q4xmins1, q8ysums1); + vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0); + vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1); + + vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0); + vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1); + vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2); + vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/64; j+=2) { + __builtin_prefetch(q4, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, q4); + vector signed char qxs1 = (vector signed char)vec_xl(16, q4); + vector signed char qxs2 = (vector signed char)vec_xl(32, q4); + vector signed char qxs3 = (vector signed char)vec_xl(48, q4); + q4 += 64; + + vector signed char q4x00 = vec_and(qxs0, lowMask); + vector signed char q4x01 = vec_sr(qxs0, v4); + vector signed char q4x10 = vec_and(qxs1, lowMask); + vector signed char q4x11 = vec_sr(qxs1, v4); + vector signed char q4x20 = vec_and(qxs2, lowMask); + vector signed char q4x21 = vec_sr(qxs2, v4); + vector signed char q4x30 = vec_and(qxs3, lowMask); + vector signed char q4x31 = vec_sr(qxs3, v4); + + vector signed char q8y00 = vec_xl( 0, q8); + vector signed char q8y10 = vec_xl( 16, q8); + vector signed char q8y01 = vec_xl( 32, q8); + vector signed char q8y11 = vec_xl( 48, q8); + vector signed char q8y20 = vec_xl( 64, q8); + vector signed char q8y30 = vec_xl( 80, q8); + vector signed char q8y21 = vec_xl( 96, q8); + vector signed char q8y31 = vec_xl(112, q8); + q8 += 128; + + vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00)); + vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01)); + vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10)); + vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11)); + vector signed short qv20 = vec_add(vec_mule(q4x20, q8y20), vec_mulo(q4x20, q8y20)); + vector signed short qv21 = vec_add(vec_mule(q4x21, q8y21), vec_mulo(q4x21, q8y21)); + vector signed short qv30 = vec_add(vec_mule(q4x30, q8y30), vec_mulo(q4x30, q8y30)); + vector signed short qv31 = vec_add(vec_mule(q4x31, q8y31), vec_mulo(q4x31, q8y31)); + + vector signed short vs0 = vec_splat(vscales, 0); + vector signed short vs1 = vec_splat(vscales, 1); + vector signed short vs2 = vec_splat(vscales, 2); + vector signed short vs3 = vec_splat(vscales, 3); + vscales = vec_sld(vscales, vscales, 8); + + qv00 = vec_add(qv00, qv10); + qv10 = vec_add(qv01, qv11); + qv20 = vec_add(qv20, qv30); + qv30 = vec_add(qv21, qv31); + + vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0); + vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1); + vsumi2 = vec_add(vec_mule(qv10, vs1), vsumi2); + vsumi3 = vec_add(vec_mulo(qv10, vs1), vsumi3); + vsumi4 = vec_add(vec_mule(qv20, vs2), vsumi4); + vsumi5 = vec_add(vec_mulo(qv20, vs2), vsumi5); + vsumi6 = vec_add(vec_mule(qv30, vs3), vsumi6); + vsumi7 = vec_add(vec_mulo(qv30, vs3), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else @@ -6825,6 +7707,87 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + +#pragma GCC unroll 2 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d[1])); + vector float vyd = vec_splats(y[i].d); + vector float vd= vec_mul(vxd, vyd); + + uint16_t s16[2]; + const uint8_t * scales = (const uint8_t *)s16; + + const uint16_t * restrict b = (const uint16_t *)x[i].scales; + s16[0] = b[0] & 0x0f0f; + s16[1] = (b[0] >> 4) & 0x0f0f; + + vector signed char utmps = (vector signed char)vec_xl_len(scales, 4); + vector signed short vscales = (vector signed short)vec_unpackh(utmps); + vector signed short q4xmins0 = vec_mergeh(vscales, vscales); + q4xmins0 = vec_sld(q4xmins0, q4xmins0, 8); + + vector signed short q8ysums0 = vec_xl_len((const int16_t *)(y[i].bsums), 8); + + vector signed int prod0 = vec_mule(q4xmins0, q8ysums0); + vector signed int prod1 = vec_mulo(q4xmins0, q8ysums0); + + vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vd, vsumf0); + vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vd, vsumf1); + + vd = vec_mul(vyd, vec_splats(GGML_FP16_TO_FP32(x[i].d[0]))); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); + vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs); + vector signed char q4x00 = vec_and(qxs0, lowMask); + vector signed char q4x01 = vec_sr(qxs0, v4); + vector signed char q4x10 = vec_and(qxs1, lowMask); + vector signed char q4x11 = vec_sr(qxs1, v4); + + vector signed char q8y00 = vec_xl( 0, y[i].qs); + vector signed char q8y10 = vec_xl(16, y[i].qs); + vector signed char q8y01 = vec_xl(32, y[i].qs); + vector signed char q8y11 = vec_xl(48, y[i].qs); + + vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00)); + vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01)); + vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10)); + vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11)); + + vector signed short vs0 = vec_splat(vscales, 0); + vector signed short vs1 = vec_splat(vscales, 1); + + vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); + vector signed int vsumi1 = vec_add(vec_mule(qv10, vs0), vec_mulo(qv10, vs0)); + vector signed int vsumi2 = vec_add(vec_mule(qv01, vs1), vec_mulo(qv01, vs1)); + vector signed int vsumi3 = vec_add(vec_mule(qv11, vs1), vec_mulo(qv11, vs1)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else uint8_t aux8[QK_K]; @@ -7226,6 +8189,130 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf+sums; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v1 = vec_splats((unsigned char)0x1); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v3 = vec_splats((unsigned char)0x3); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin)); + vector float vdmin = vec_mul(vxmin, vyd); + + memcpy(utmp, x[i].scales, 12); + + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + vector signed short q8ysums0 = vec_xl( 0, y[i].bsums); + vector signed short q8ysums1 = vec_xl(16, y[i].bsums); + + vector signed char utmps = (vector signed char)vec_xl( 0, utmp); + vector signed short vscales = vec_unpackh(utmps); + + vector signed short q5xmins = vec_unpackl(utmps); + vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins); + vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins); + + vector signed int prod0 = vec_mule(q5xmins0, q8ysums0); + vector signed int prod1 = vec_mule(q5xmins1, q8ysums1); + vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0); + vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1); + + vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0); + vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1); + vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2); + vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3); + + vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh); + vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/64; ++j) { + __builtin_prefetch(q5, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, q5); + vector signed char qxs1 = (vector signed char)vec_xl(16, q5); + q5 += 32; + + vector signed char qxs00 = vec_and(qxs0, lowMask); + vector signed char qxs01 = vec_sr(qxs0, v4); + vector signed char qxs10 = vec_and(qxs1, lowMask); + vector signed char qxs11 = vec_sr(qxs1, v4); + + vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4); + vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3); + vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4); + vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3); + qxhs0 = vec_sr(qxhs0, v2); + qxhs1 = vec_sr(qxhs1, v2); + + vector signed char q5x00 = vec_or(q5h00, qxs00); + vector signed char q5x01 = vec_or(q5h01, qxs01); + vector signed char q5x10 = vec_or(q5h10, qxs10); + vector signed char q5x11 = vec_or(q5h11, qxs11); + + vector signed char q8y00 = vec_xl( 0, q8); + vector signed char q8y10 = vec_xl(16, q8); + vector signed char q8y01 = vec_xl(32, q8); + vector signed char q8y11 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00)); + vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01)); + vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10)); + vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11)); + + vector signed short vs0 = vec_splat(vscales, 0); + vector signed short vs1 = vec_splat(vscales, 1); + vscales = vec_sld(vscales, vscales, 12); + + qv00 = vec_add(qv00, qv10); + qv01 = vec_add(qv01, qv11); + + vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0); + vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1); + vsumi2 = vec_add(vec_mule(qv01, vs1), vsumi2); + vsumi3 = vec_add(vec_mulo(qv01, vs1), vsumi3); + } + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else const uint8_t * scales = (const uint8_t*)&utmp[0]; @@ -7523,6 +8610,83 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v1 = vec_splats((unsigned char)0x1); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + +#pragma GCC unroll 2 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].qs, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd= vec_mul(vxd, vyd); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs); + vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs); + vector signed char qxs00 = (vector signed char)vec_and(qxs0, lowMask); + vector signed char qxs01 = (vector signed char)vec_sr(qxs0, v4); + vector signed char qxs10 = (vector signed char)vec_and(qxs1, lowMask); + vector signed char qxs11 = (vector signed char)vec_sr(qxs1, v4); + + vector signed char qxhs = (vector signed char)vec_xl_len(x[i].qh, 8); + vector signed char qxhs0 = vec_or(qxhs, vec_sr(vec_sld(qxhs, qxhs, 8), v1)); + vector signed char qxhs1 = vec_sr(qxhs0, v2); + vector signed char qxh00 = vec_sl(vec_andc((vector signed char)v1, qxhs0), v4); + vector signed char qxh10 = vec_sl(vec_andc((vector signed char)v1, qxhs1), v4); + vector signed char qxh01 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs0, v4)), v4); + vector signed char qxh11 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs1, v4)), v4); + + vector signed char q5x00 = vec_sub(qxs00, qxh00); + vector signed char q5x10 = vec_sub(qxs10, qxh10); + vector signed char q5x01 = vec_sub(qxs01, qxh01); + vector signed char q5x11 = vec_sub(qxs11, qxh11); + + vector signed char q8y00 = vec_xl( 0, y[i].qs); + vector signed char q8y10 = vec_xl(16, y[i].qs); + vector signed char q8y01 = vec_xl(32, y[i].qs); + vector signed char q8y11 = vec_xl(48, y[i].qs); + + vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00)); + vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01)); + vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10)); + vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11)); + + vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4)); + vector signed short vs0 = vec_splat(vs, 0); + vector signed short vs1 = vec_splat(vs, 1); + vector signed short vs2 = vec_splat(vs, 2); + vector signed short vs3 = vec_splat(vs, 3); + + vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); + vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); + vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); + vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else int8_t aux8[QK_K]; @@ -7953,6 +9117,151 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v3 = vec_splats((unsigned char)0x3); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + const vector unsigned char v6 = vec_splats((unsigned char)0x6); + const vector signed char off = vec_splats((signed char)0x20); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict qs = x[i].scales; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/128; ++j) { + __builtin_prefetch(q6, 0, 0); + __builtin_prefetch(qh, 0, 0); + __builtin_prefetch(q8, 0, 0); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, q6); + vector signed char qxs1 = (vector signed char)vec_xl(16, q6); + vector signed char qxs2 = (vector signed char)vec_xl(32, q6); + vector signed char qxs3 = (vector signed char)vec_xl(48, q6); + q6 += 64; + + vector signed char qxs00 = vec_and(qxs0, lowMask); + vector signed char qxs01 = vec_sr(qxs0, v4); + vector signed char qxs10 = vec_and(qxs1, lowMask); + vector signed char qxs11 = vec_sr(qxs1, v4); + vector signed char qxs20 = vec_and(qxs2, lowMask); + vector signed char qxs21 = vec_sr(qxs2, v4); + vector signed char qxs30 = vec_and(qxs3, lowMask); + vector signed char qxs31 = vec_sr(qxs3, v4); + + vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh); + vector signed char qxhs1 = (vector signed char)vec_xl(16, qh); + qh += 32; + + vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4); + vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4); + vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4); + vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4); + vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4); + vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4); + vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4); + vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4); + + vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off); + vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off); + vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off); + vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off); + vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off); + vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off); + vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off); + vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off); + + vector signed char q8y00 = vec_xl( 0, q8); + vector signed char q8y10 = vec_xl( 16, q8); + vector signed char q8y20 = vec_xl( 32, q8); + vector signed char q8y30 = vec_xl( 48, q8); + vector signed char q8y01 = vec_xl( 64, q8); + vector signed char q8y11 = vec_xl( 80, q8); + vector signed char q8y21 = vec_xl( 96, q8); + vector signed char q8y31 = vec_xl(112, q8); + q8 += 128; + + vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00)); + vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10)); + vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20)); + vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30)); + vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01)); + vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11)); + vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21)); + vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31)); + + vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8)); + qs += 8; + + vector signed short vs0 = vec_splat(vscales, 0); + vector signed short vs1 = vec_splat(vscales, 1); + vector signed short vs2 = vec_splat(vscales, 2); + vector signed short vs3 = vec_splat(vscales, 3); + vector signed short vs4 = vec_splat(vscales, 4); + vector signed short vs5 = vec_splat(vscales, 5); + vector signed short vs6 = vec_splat(vscales, 6); + vector signed short vs7 = vec_splat(vscales, 7); + + vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0); + vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1); + vsumi2 = vec_add(vec_mule(qv01, vs4), vsumi2); + vsumi3 = vec_add(vec_mulo(qv01, vs4), vsumi3); + vsumi4 = vec_add(vec_mule(qv10, vs1), vsumi4); + vsumi5 = vec_add(vec_mulo(qv10, vs1), vsumi5); + vsumi6 = vec_add(vec_mule(qv11, vs5), vsumi6); + vsumi7 = vec_add(vec_mulo(qv11, vs5), vsumi7); + + vsumi0 = vec_add(vec_mule(qv20, vs2), vsumi0); + vsumi1 = vec_add(vec_mulo(qv20, vs2), vsumi1); + vsumi2 = vec_add(vec_mule(qv21, vs6), vsumi2); + vsumi3 = vec_add(vec_mulo(qv21, vs6), vsumi3); + vsumi4 = vec_add(vec_mule(qv30, vs3), vsumi4); + vsumi5 = vec_add(vec_mulo(qv30, vs3), vsumi5); + vsumi6 = vec_add(vec_mule(qv31, vs7), vsumi6); + vsumi7 = vec_add(vec_mulo(qv31, vs7), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else int8_t aux8[QK_K]; @@ -8259,6 +9568,85 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v2 = vec_splats((unsigned char)0x2); + const vector unsigned char v3 = vec_splats((unsigned char)0x3); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + const vector unsigned char v6 = vec_splats((unsigned char)0x6); + const vector signed char off = vec_splats((signed char)0x20); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + +#pragma GCC unroll 2 + for (int i = 0; i < nb; ++i) { + __builtin_prefetch(x[i].ql, 0, 1); + __builtin_prefetch(x[i].qh, 0, 1); + __builtin_prefetch(y[i].qs, 0, 1); + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd= vec_mul(vxd, vyd); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].ql); + vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].ql); + vector signed char qxs00 = vec_and(qxs0, lowMask); + vector signed char qxs01 = vec_sr(qxs0, v4); + vector signed char qxs10 = vec_and(qxs1, lowMask); + vector signed char qxs11 = vec_sr(qxs1, v4); + + vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh); + + vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4); + vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4); + vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4); + vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4); + + vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off); + vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off); + vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off); + vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off); + + vector signed char q8y00 = vec_xl( 0, y[i].qs); + vector signed char q8y10 = vec_xl(16, y[i].qs); + vector signed char q8y01 = vec_xl(32, y[i].qs); + vector signed char q8y11 = vec_xl(48, y[i].qs); + + vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00)); + vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10)); + vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01)); + vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11)); + + vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4)); + vector signed short vs0 = vec_splat(vs, 0); + vector signed short vs1 = vec_splat(vs, 1); + vector signed short vs2 = vec_splat(vs, 2); + vector signed short vs3 = vec_splat(vs, 3); + + vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0)); + vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1)); + vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2)); + vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); + #else int8_t aux8[QK_K]; @@ -8300,7 +9688,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r #endif -#if defined (__AVX2__) || defined (__ARM_NEON) +#if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) static const int8_t keven_signs_q2xs[1024] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, @@ -8433,6 +9821,103 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void *s = 0.125f * hsum_float_8(accumf); +#elif defined(__POWER9_VECTOR__) + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/32; j += 2) { + __builtin_prefetch(q2, 0, 1); + __builtin_prefetch(q8, 0, 1); + + uint32_t aux32[4]; + const uint8_t * aux8 = (const uint8_t *)aux32; + + memcpy(aux32, q2, 4*sizeof(uint32_t)); + q2 += 8; + + vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])}; + vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])}; + vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])}; + vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])}; + + vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))}; + vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))}; + vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))}; + vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))}; + + vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0); + vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1); + vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2); + vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3); + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3)); + + const uint16_t ls0 = aux32[1] >> 28; + const uint16_t ls1 = aux32[3] >> 28; + + vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1)); + vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1)); + + vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = 0.125f * vec_extract(vsumf0, 0); #else uint32_t aux32[2]; @@ -8708,6 +10193,104 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * *s = 0.125f * hsum_float_8(accumf); #endif +#elif defined(__POWER9_VECTOR__) + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint16_t * restrict q2 = x[i].qs; + const uint8_t * restrict sc = x[i].scales; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/64; ++j) { + __builtin_prefetch(q2, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))}; + vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))}; + vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))}; + vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))}; + + vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))}; + vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))}; + vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))}; + vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))}; + q2 += 8; + + vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0); + vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1); + vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2); + vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3); + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3)); + + const uint16_t ls0 = (uint16_t)(sc[0] & 0xf); + const uint16_t ls1 = (uint16_t)(sc[0] >> 4); + const uint16_t ls2 = (uint16_t)(sc[1] & 0xf); + const uint16_t ls3 = (uint16_t)(sc[1] >> 4); + sc += 2; + + vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1)); + vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1)); + vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1)); + vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1)); + + vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = 0.125f * vec_extract(vsumf0, 0); #else float sumf = 0.f; @@ -8908,6 +10491,124 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * *s = 0.125f * hsum_float_8(accumf); +#elif defined(__POWER9_VECTOR__) + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,}; + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + const vector unsigned char mask0 = vec_xl( 0, k_mask1); + const vector unsigned char mask1 = vec_xl(16, k_mask1); + const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint8_t * restrict q2 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8); + const uint8_t * restrict sc = x[i].scales; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/32; j += 2) { + __builtin_prefetch(q2, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))}; + vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))}; + vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))}; + vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))}; + q2 += 8; + qh += 2; + + vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]); + vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]); + signs += 4; + + vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0); + vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1); + vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0); + vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1); + + vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2); + vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2); + vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2); + vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2); + + vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0); + vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1); + vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2); + vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3); + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3)); + + const uint16_t ls0 = (uint16_t)(sc[0] & 0xf); + const uint16_t ls1 = (uint16_t)(sc[0] >> 4); + const uint16_t ls2 = (uint16_t)(sc[1] & 0xf); + const uint16_t ls3 = (uint16_t)(sc[1] >> 4); + sc += 2; + + vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1)); + vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1)); + vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1)); + vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1)); + + vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = 0.125f * vec_extract(vsumf0, 0); #else float sumf = 0; @@ -9052,6 +10753,101 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void *s = 0.25f * hsum_float_8(accumf); +#elif defined(__POWER9_VECTOR__) + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + const uint8_t * restrict q3 = x[i].qs; + const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4); + const int8_t * restrict q8 = y[i].qs; + +#pragma GCC unroll 1 + for (int j = 0; j < QK_K/32; j += 2) { + __builtin_prefetch(q3, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]}; + vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]}; + vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]}; + vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]}; + q3 += 16; + + vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])}; + vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])}; + vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])}; + vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])}; + + vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0); + vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1); + vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2); + vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3); + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3)); + + const uint16_t ls0 = (uint16_t)(signs[0] >> 28); + const uint16_t ls1 = (uint16_t)(signs[1] >> 28); + signs += 2; + + vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1)); + vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1)); + + vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = 0.25f * vec_extract(vsumf0, 0); #else uint32_t aux32; @@ -9279,6 +11075,124 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * *s = hsum_float_8(accumf); +#elif defined(__POWER9_VECTOR__) + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,}; + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + const vector unsigned char mask0 = vec_xl( 0, k_mask1); + const vector unsigned char mask1 = vec_xl(16, k_mask1); + const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].signs); + const uint8_t * restrict sc = x[i].scales; + const int8_t * restrict q8 = y[i].qs; + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + for (int j = 0; j < QK_K/32; j += 2) { + __builtin_prefetch(q3, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)], + iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]}; + vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)], + iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]}; + vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)], + iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]}; + vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)], + iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]}; + q3 += 16; + qh += 2; + + vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]); + vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]); + signs += 4; + + vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0); + vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1); + vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0); + vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1); + + vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2); + vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2); + vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2); + vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2); + + vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0); + vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1); + vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2); + vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3); + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3)); + + const uint16_t ls0 = (uint16_t)(sc[0] & 0xf); + const uint16_t ls1 = (uint16_t)(sc[0] >> 4); + sc ++; + + vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1)); + vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1)); + + vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else float sumf = 0.f; @@ -9433,6 +11347,113 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void *s = hsum_float_8(accum) + IQ1S_DELTA * accum1; +#elif defined(__POWER9_VECTOR__) + const vector unsigned char v0 = vec_splats((unsigned char)0x0); + const vector unsigned short vsign = vec_splats((unsigned short)0x8000); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + for (int i = 0; i < nb; ++i) { + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d)); + vector float vyd = vec_splats(y[i].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + vector signed int vsumi8 = vec_splats((int32_t)0); + + const uint8_t * restrict q1 = x[i].qs; + const uint16_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + const int16_t * restrict qs = y[i].bsums; + + for (int j = 0; j < QK_K/32; j += 2) { + __builtin_prefetch(q1, 0, 1); + __builtin_prefetch(qh, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))}; + vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))}; + vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))}; + vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))}; + q1 += 8; + + vector signed char q1x0 = (vector signed char)aux64x2_0; + vector signed char q1x1 = (vector signed char)aux64x2_1; + vector signed char q1x2 = (vector signed char)aux64x2_2; + vector signed char q1x3 = (vector signed char)aux64x2_3; + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3)); + + const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7); + const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7); + + vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1)); + vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1)); + vector signed short vscales = vec_sld(vscales23, vscales01, 8); + + vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7); + + vector signed short q8ysums = vec_xl_len(qs, 8); + qs += 4; + q8ysums = vec_mergeh(q8ysums, (vector signed short)v0); + + vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8); + qh += 2; + vector bool short vsel = vec_cmpge(qxh, (vector signed short)v0); + + vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel); + + vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + + vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else float sumf = 0; @@ -9789,6 +11810,51 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * *s = hsum_float_8(_mm256_add_ps(accum1, accum2)); +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + + const vector signed char values = vec_xl( 0, kvalues_iq4nl); + +#pragma GCC unroll 4 + for (int ib = 0; ib < nb; ++ib) { + __builtin_prefetch(x[ib].qs, 0, 1); + __builtin_prefetch(y[ib].qs, 0, 1); + + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d)); + vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d)); + vector float vd = vec_mul(vxd, vyd); + + vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs); + vector signed char q4x0 = vec_and(qxs, lowMask); + vector signed char q4x1 = vec_sr(qxs, v4); + + q4x0 = vec_perm(values, values, (vector unsigned char)q4x0); + q4x1 = vec_perm(values, values, (vector unsigned char)q4x1); + + vector signed char q8y0 = vec_xl( 0, y[ib].qs); + vector signed char q8y1 = vec_xl(16, y[ib].qs); + + vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1)); + + vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0)); + vector signed int vsumi1 = vec_add(vec_unpackh(qv1), vec_unpackl(qv1)); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + } + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else float sumf = 0; for (int ib = 0; ib < nb; ++ib) { @@ -9900,6 +11966,105 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * *s = hsum_float_8(accum); +#elif defined(__POWER9_VECTOR__) + const vector signed char lowMask = vec_splats((signed char)0xF); + const vector unsigned char v4 = vec_splats((unsigned char)0x4); + + vector float vsumf0 = vec_splats(0.0f); + vector float vsumf1 = vec_splats(0.0f); + vector float vsumf2 = vec_splats(0.0f); + vector float vsumf3 = vec_splats(0.0f); + + const vector signed char values = vec_xl( 0, kvalues_iq4nl); + + for (int ibl = 0; ibl < nb; ++ibl) { + + vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d)); + vector float vyd = vec_splats(y[ibl].d); + vector float vd = vec_mul(vxd, vyd); + + vector signed int vsumi0 = vec_splats((int32_t)0); + vector signed int vsumi1 = vec_splats((int32_t)0); + vector signed int vsumi2 = vec_splats((int32_t)0); + vector signed int vsumi3 = vec_splats((int32_t)0); + vector signed int vsumi4 = vec_splats((int32_t)0); + vector signed int vsumi5 = vec_splats((int32_t)0); + vector signed int vsumi6 = vec_splats((int32_t)0); + vector signed int vsumi7 = vec_splats((int32_t)0); + + uint16_t h = x[ibl].scales_h; + + const uint8_t * restrict q4 = x[ibl].qs; + const uint8_t * restrict sc = x[ibl].scales_l; + const int8_t * restrict q8 = y[ibl].qs; + + for (int ib = 0; ib < QK_K/64; ib ++ ) { + __builtin_prefetch(q4, 0, 1); + __builtin_prefetch(q8, 0, 1); + + vector signed char qxs0 = (vector signed char)vec_xl( 0, q4); + vector signed char qxs1 = (vector signed char)vec_xl(16, q4); + q4 += 32; + + vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask); + vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4); + vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask); + vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4); + + q4x00 = vec_perm(values, values, (vector unsigned char)q4x00); + q4x01 = vec_perm(values, values, (vector unsigned char)q4x01); + q4x10 = vec_perm(values, values, (vector unsigned char)q4x10); + q4x11 = vec_perm(values, values, (vector unsigned char)q4x11); + + vector signed char q8y0 = vec_xl( 0, q8); + vector signed char q8y1 = vec_xl(16, q8); + vector signed char q8y2 = vec_xl(32, q8); + vector signed char q8y3 = vec_xl(48, q8); + q8 += 64; + + vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0)); + vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1)); + vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2)); + vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3)); + + const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32); + const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32); + h >>= 4; + sc ++; + + vector signed short vscales01 = vec_splats((int16_t)ls0); + vector signed short vscales23 = vec_splats((int16_t)ls1); + + vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0); + vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1); + vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2); + vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3); + vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4); + vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5); + vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6); + vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7); + } + + vsumi0 = vec_add(vsumi0, vsumi4); + vsumi1 = vec_add(vsumi1, vsumi5); + vsumi2 = vec_add(vsumi2, vsumi6); + vsumi3 = vec_add(vsumi3, vsumi7); + + vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0); + vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1); + vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2); + vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3); + } + + vsumf0 = vec_add(vsumf0, vsumf2); + vsumf1 = vec_add(vsumf1, vsumf3); + + vsumf0 = vec_add(vsumf0, vsumf1); + + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4)); + vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); + + *s = vec_extract(vsumf0, 0); #else float sumf = 0; for (int ibl = 0; ibl < nb; ++ibl) { From 182adefcf36fc5f4263082ff032c0796fda65578 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Przemys=C5=82aw=20Pawe=C5=82czyk?= Date: Wed, 8 May 2024 17:33:43 +0200 Subject: [PATCH 44/56] ggml : expose SSE3 and SSSE3 for MSVC when AVX is available (whisper/2128) --- ggml-impl.h | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/ggml-impl.h b/ggml-impl.h index d85b152bf..59684fa81 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -120,9 +120,16 @@ extern "C" { #ifndef __F16C__ #define __F16C__ #endif +#endif + +// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available +#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)) #ifndef __SSE3__ #define __SSE3__ #endif +#ifndef __SSSE3__ +#define __SSSE3__ +#endif #endif // 16-bit float From c3c88f296a72432edb697ac8026dbf2ec18f2b21 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 12 May 2024 20:36:31 +0300 Subject: [PATCH 45/56] ggml : try fix ppc64 (whisper/0) --- ggml-quants.c | 2 +- ggml.c | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/ggml-quants.c b/ggml-quants.c index f711bd013..9e62a3f32 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -11425,7 +11425,7 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8); qh += 2; - vector bool short vsel = vec_cmpge(qxh, (vector signed short)v0); + vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0); vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel); diff --git a/ggml.c b/ggml.c index b96a82a41..d443a9b42 100644 --- a/ggml.c +++ b/ggml.c @@ -1306,6 +1306,8 @@ static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) { #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO #define GGML_F16_VEC_SET1 GGML_F32x4_SET1 #define GGML_F16_VEC_FMA GGML_F32x4_FMA +#define GGML_F16_VEC_ADD GGML_F32x4_ADD +#define GGML_F16_VEC_MUL GGML_F32x4_MUL #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE // Use vec_xl, not vec_ld, in case the load address is not aligned. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \ From f308ea705974dff62a1fe5367d776ad9d5109239 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 13 May 2024 11:01:07 +0300 Subject: [PATCH 46/56] metal : tune soft_max number of threads (whisper/0) --- ggml-metal.m | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index 28dec762a..bfa352c3a 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1378,7 +1378,7 @@ static enum ggml_status ggml_metal_graph_compute( const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); if (ne00%4 == 0) { - while (nth < ne00/4 && nth < 256) { + while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) { nth *= 2; } if (use_f16) { @@ -1387,7 +1387,7 @@ static enum ggml_status ggml_metal_graph_compute( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline; } } else { - while (nth < ne00 && nth < 1024) { + while (nth < ne00 && nth*ne01*ne02*ne03 < 256) { nth *= 2; } if (use_f16) { From a5e3fde8578d54b98d941344a4da150669af200d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 14 May 2024 15:33:16 +0300 Subject: [PATCH 47/56] sync : ggml ggml-ci --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 1ea320429..b2b5f8fc1 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -30f54cbb3ada3e4c5bc6924de3e5918e5be4ff11 +fafd5e7f89382b8cfb51e3dac8d4f1500ca44918 From e8a7fd4fb06d82f663850c21fcf86c0fb98ad9b4 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 14 May 2024 19:09:30 +0300 Subject: [PATCH 48/56] metal : support FA without mask + add asserts (#7278) * ggml : fa without mask + add asserts ggml-ci * metal : support non-contiguous KV ggml-ci --- ggml-metal.m | 69 +++++++++++++++++++++----------------- ggml-metal.metal | 53 +++++++++++------------------ ggml.c | 10 ++++++ ggml.h | 3 +- tests/test-backend-ops.cpp | 25 ++++++++------ 5 files changed, 85 insertions(+), 75 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index bfa352c3a..390a1cd78 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -2512,13 +2512,14 @@ static enum ggml_status ggml_metal_graph_compute( } break; case GGML_OP_FLASH_ATTN_EXT: { - GGML_ASSERT(ne00 % 4 == 0); + GGML_ASSERT(ne00 % 4 == 0); + GGML_ASSERT(ne11 % 32 == 0); + GGML_ASSERT(src0->type == GGML_TYPE_F32); - struct ggml_tensor * src3 = gf->nodes[i]->src[3]; + GGML_ASSERT(ggml_are_same_shape (src1, src2)); - GGML_ASSERT(ggml_are_same_shape(src1, src2)); - GGML_ASSERT(src3); + struct ggml_tensor * src3 = gf->nodes[i]->src[3]; size_t offs_src3 = 0; @@ -2528,6 +2529,11 @@ static enum ggml_status ggml_metal_graph_compute( GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) && "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big"); + const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); + const uint64_t nb21 = src2 ? src2->nb[1] : 0; + const uint64_t nb22 = src2 ? src2->nb[2] : 0; + const uint64_t nb23 = src2 ? src2->nb[3] : 0; + const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30); //const int64_t ne31 = src3 ? src3->ne[1] : 0; const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32); @@ -2590,34 +2596,35 @@ static enum ggml_status ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; - [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; + if (id_src3) { + [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; + } else { + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:3]; + } [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12]; - [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14]; - [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15]; - [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16]; - [encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18]; - [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19]; - [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20]; - [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:21]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:22]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:23]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:24]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:25]; - [encoder setBytes:&scale length:sizeof( float) atIndex:26]; - [encoder setBytes:&max_bias length:sizeof( float) atIndex:27]; - [encoder setBytes:&m0 length:sizeof(m0) atIndex:28]; - [encoder setBytes:&m1 length:sizeof(m1) atIndex:29]; - [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:30]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19]; + [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22]; + [encoder setBytes:&scale length:sizeof( float) atIndex:23]; + [encoder setBytes:&max_bias length:sizeof( float) atIndex:24]; + [encoder setBytes:&m0 length:sizeof(m0) atIndex:25]; + [encoder setBytes:&m1 length:sizeof(m1) atIndex:26]; + [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27]; if (!use_vec_kernel) { // half8x8 kernel diff --git a/ggml-metal.metal b/ggml-metal.metal index 7af4e8f93..57fdf564e 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -2049,27 +2049,24 @@ typedef void (flash_attn_ext_f16_t)( device const char * v, device const char * mask, device float * dst, - constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, - constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, - constant int64_t & ne10, constant int64_t & ne11, constant int64_t & ne12, constant int64_t & ne13, - constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, + constant uint64_t & nb21, + constant uint64_t & nb22, + constant uint64_t & nb23, constant uint64_t & nb31, - constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, - constant int64_t & ne3, constant float & scale, constant float & max_bias, constant float & m0, @@ -2090,27 +2087,24 @@ kernel void kernel_flash_attn_ext_f16( device const char * v, device const char * mask, device float * dst, - constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, - constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, - constant int64_t & ne10, constant int64_t & ne11, constant int64_t & ne12, constant int64_t & ne13, - constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, + constant uint64_t & nb21, + constant uint64_t & nb22, + constant uint64_t & nb23, constant uint64_t & nb31, - constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, - constant int64_t & ne3, constant float & scale, constant float & max_bias, constant float & m0, @@ -2180,10 +2174,6 @@ kernel void kernel_flash_attn_ext_f16( const short ne22 = ne12; const short ne23 = ne13; - const uint nb21 = nb11; - const uint nb22 = nb12; - const uint nb23 = nb13; - // broadcast const short rk2 = ne02/ne12; const short rk3 = ne03/ne13; @@ -2247,11 +2237,16 @@ kernel void kernel_flash_attn_ext_f16( simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); } - // mqk = mqk*scale + mask*slope - simdgroup_half8x8 mm; - simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false); - simdgroup_multiply(mm, mslope, mm); - simdgroup_multiply_accumulate(mqk, mqk, mscale, mm); + if (mask != q) { + // mqk = mqk*scale + mask*slope + simdgroup_half8x8 mm; + simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false); + simdgroup_multiply(mm, mslope, mm); + simdgroup_multiply_accumulate(mqk, mqk, mscale, mm); + } else { + // mqk = mqk*scale + simdgroup_multiply(mqk, mscale, mqk); + } simdgroup_store(mqk, ss + 8*cc, TF, 0, false); } @@ -2425,27 +2420,24 @@ kernel void kernel_flash_attn_ext_vec_f16( device const char * v, device const char * mask, device float * dst, - constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, - constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, - constant int64_t & ne10, constant int64_t & ne11, constant int64_t & ne12, constant int64_t & ne13, - constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, + constant uint64_t & nb21, + constant uint64_t & nb22, + constant uint64_t & nb23, constant uint64_t & nb31, - constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, - constant int64_t & ne3, constant float & scale, constant float & max_bias, constant float & m0, @@ -2521,10 +2513,6 @@ kernel void kernel_flash_attn_ext_vec_f16( const short ne22 = ne12; const short ne23 = ne13; - const uint nb21 = nb11; - const uint nb22 = nb12; - const uint nb23 = nb13; - // broadcast const short rk2 = ne02/ne12; const short rk3 = ne03/ne13; @@ -2589,8 +2577,7 @@ kernel void kernel_flash_attn_ext_vec_f16( // mqk = mqk*scale + mask*slope if (tiisg == 0) { - float4 mm = (float4) mp4[ic/4 + cc]; - mqk = mqk*scale + mm*slope; + mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f); ss4[cc] = mqk; } diff --git a/ggml.c b/ggml.c index d443a9b42..03b609ddd 100644 --- a/ggml.c +++ b/ggml.c @@ -2824,6 +2824,16 @@ bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor (t0->ne[3] == t1->ne[3] ); } +bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->nb[0] == t1->nb[0] ) && + (t0->nb[1] == t1->nb[1] ) && + (t0->nb[2] == t1->nb[2] ) && + (t0->nb[3] == t1->nb[3] ); +} + // check if t1 can be represented as a repeatition of t0 static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); diff --git a/ggml.h b/ggml.h index 3fe95ed57..25f4f73a8 100644 --- a/ggml.h +++ b/ggml.h @@ -766,7 +766,8 @@ extern "C" { GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars - GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1); + GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1); + GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1); // use this to compute the memory overhead of a tensor GGML_API size_t ggml_tensor_overhead(void); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 45a2cb85a..f080f7e22 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1487,25 +1487,27 @@ struct test_flash_attn_ext : public test_case { const int64_t kv; // kv size const int64_t nb; // batch size + const bool mask; // use mask + const float max_bias; // ALiBi std::string vars() override { - return VARS_TO_STR5(hs, nh, kv, nb, max_bias); + return VARS_TO_STR6(hs, nh, kv, nb, mask, max_bias); } double max_nmse_err() override { return 5e-4; } - test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, float max_bias = 0.0f) - : hs(hs), nh(nh), kv(kv), nb(nb), max_bias(max_bias) {} + test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f) + : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1); ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); - ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1); - ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs), max_bias); + ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr; + ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias); return out; } }; @@ -2175,11 +2177,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_leaky_relu()); for (int hs : { 64, 80, 128, 256, }) { - for (float max_bias : {0.0f, 8.0f}) { - for (int nh : { 32, }) { - for (int kv : { 512, 1024, }) { - for (int nb : { 1, 2, 4, 8, }) { - test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, max_bias)); + for (bool mask : { true, false } ) { + for (float max_bias : { 0.0f, 8.0f }) { + if (!mask && max_bias > 0.0f) continue; + for (int nh : { 32, }) { + for (int kv : { 512, 1024, }) { + for (int nb : { 1, 2, 4, 8, }) { + test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias)); + } } } } From 9f773486ab78d65f5cca3f7e31c862b7043bf721 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 14 May 2024 19:14:38 +0300 Subject: [PATCH 49/56] script : sync ggml-rpc --- scripts/sync-ggml-am.sh | 4 ++++ scripts/sync-ggml.sh | 2 ++ 2 files changed, 6 insertions(+) diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index 7c157eb4c..cf22afc41 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -112,6 +112,8 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then # src/ggml-opencl.h -> ggml-opencl.h # src/ggml-quants.c -> ggml-quants.c # src/ggml-quants.h -> ggml-quants.h + # src/ggml-rpc.cpp -> ggml-rpc.cpp + # src/ggml-rpc.h -> ggml-rpc.h # src/ggml-sycl.cpp -> ggml-sycl.cpp # src/ggml-sycl.h -> ggml-sycl.h # src/ggml-vulkan.cpp -> ggml-vulkan.cpp @@ -149,6 +151,8 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then -e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \ -e 's/src\/ggml-quants\.c/ggml-quants.c/g' \ -e 's/src\/ggml-quants\.h/ggml-quants.h/g' \ + -e 's/src\/ggml-rpc\.cpp/ggml-rpc.cpp/g' \ + -e 's/src\/ggml-rpc\.h/ggml-rpc.h/g' \ -e 's/src\/ggml-sycl\.cpp/ggml-sycl.cpp/g' \ -e 's/src\/ggml-sycl\.h/ggml-sycl.h/g' \ -e 's/src\/ggml-vulkan\.cpp/ggml-vulkan.cpp/g' \ diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index 80c43976f..ec47fb27c 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -20,6 +20,8 @@ cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h +cp -rpv ../ggml/src/ggml-rpc.cpp ./ggml-rpc.cpp +cp -rpv ../ggml/src/ggml-rpc.h ./ggml-rpc.h cp -rpv ../ggml/src/ggml-sycl.cpp ./ggml-sycl.cpp cp -rpv ../ggml/src/ggml-sycl.h ./ggml-sycl.h cp -rpv ../ggml/src/ggml-vulkan.cpp ./ggml-vulkan.cpp From 583fd6b000ec9ad1b465b5c98524f4a0ae388077 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Wed, 15 May 2024 08:44:16 +0200 Subject: [PATCH 50/56] server bench: fix bench not waiting for model load (#7284) --- examples/server/bench/bench.py | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/examples/server/bench/bench.py b/examples/server/bench/bench.py index 86c5de101..25ac29c4c 100644 --- a/examples/server/bench/bench.py +++ b/examples/server/bench/bench.py @@ -293,13 +293,14 @@ def start_server_background(args): def is_server_listening(server_fqdn, server_port): - with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: - result = sock.connect_ex((server_fqdn, server_port)) - _is_server_listening = result == 0 - if _is_server_listening: - print(f"server is listening on {server_fqdn}:{server_port}...") - return _is_server_listening - + try: + url = f"{server_fqdn}:{server_port}/health" + if not url.startswith("http://"): + url = f"http://{url}" + result = requests.get(url) + return result.status_code == 200 + except Exception: + return False def escape_metric_name(metric_name): return re.sub('[^A-Z0-9]', '_', metric_name.upper()) From 48aa8fd1f213a69b41569f809cc954f24dbc4366 Mon Sep 17 00:00:00 2001 From: John Balis Date: Wed, 15 May 2024 03:52:33 -0500 Subject: [PATCH 51/56] ggml : add `ggml_upscale_ext` (ggml/814) * initial commit with CPU implementation of upscale to shape and test, cuda implementation next * experimental commit to see if dst shape is correct * test version * test * removed unnecessary params * refactor * fixed tests * ggml : metal impl + cleanup + sycl dev warnings * patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior * metal : fix upsacle op to support nb00 + style --------- Co-authored-by: Georgi Gerganov --- ggml-cuda/upscale.cu | 63 +++++++++++++++++++------------------ ggml-metal.m | 10 ++++-- ggml-metal.metal | 21 ++++++++----- ggml-sycl.cpp | 4 +++ ggml.c | 64 ++++++++++++++++++++++++++++---------- ggml.h | 12 +++++++ tests/test-backend-ops.cpp | 32 +++++++++++++++++-- 7 files changed, 146 insertions(+), 60 deletions(-) diff --git a/ggml-cuda/upscale.cu b/ggml-cuda/upscale.cu index 2f62fed48..cf513c3ad 100644 --- a/ggml-cuda/upscale.cu +++ b/ggml-cuda/upscale.cu @@ -1,35 +1,36 @@ #include "upscale.cuh" -static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) { - // blockIdx.z: idx of ne02*ne03 - // blockIdx.y: idx of ne01*scale_factor, aka ne1 - // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE - // ne00xne01: ne00 * ne01 - int ne0 = ne00 * scale_factor; - int nidx = threadIdx.x + blockIdx.x * blockDim.x; - if (nidx >= ne0) { +static __global__ void upscale_f32(const float * x, float * dst, + const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int ne13, + const float sf0, const float sf1, const float sf2, const float sf3) { + int index = threadIdx.x + blockIdx.x * blockDim.x; + if (index >= ne10 * ne11 * ne12 * ne13) { return; } - // operation - int i00 = nidx / scale_factor; - int i01 = blockIdx.y / scale_factor; - int offset_src = - i00 + - i01 * ne00 + - blockIdx.z * ne00xne01; - int offset_dst = - nidx + - blockIdx.y * ne0 + - blockIdx.z * ne0 * gridDim.y; - dst[offset_dst] = x[offset_src]; + + int i10 = index % ne10; + int i11 = (index / ne10) % ne11; + int i12 = (index / (ne10 * ne11)) % ne12; + int i13 = (index / (ne10 * ne11 * ne12)) % ne13; + + int i00 = i10 / sf0; + int i01 = i11 / sf1; + int i02 = i12 / sf2; + int i03 = i13 / sf3; + + dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00); } -static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03, - const int scale_factor, cudaStream_t stream) { - int ne0 = (ne00 * scale_factor); - int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE; - dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03); - upscale_f32<<>>(x, dst, ne00, ne00 * ne01, scale_factor); +static void upscale_f32_cuda(const float * x, float * dst, + const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int ne13, + const float sf0, const float sf1, const float sf2, const float sf3, + cudaStream_t stream) { + int dst_size = ne10 * ne11 * ne12 * ne13; + int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE; + + upscale_f32<<>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3); } void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { @@ -39,10 +40,12 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors + GGML_ASSERT( dst->type == GGML_TYPE_F32); - const int scale_factor = dst->op_params[0]; + const float sf0 = (float)dst->ne[0]/src0->ne[0]; + const float sf1 = (float)dst->ne[1]/src0->ne[1]; + const float sf2 = (float)dst->ne[2]/src0->ne[2]; + const float sf3 = (float)dst->ne[3]/src0->ne[3]; - upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream); + upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream); } diff --git a/ggml-metal.m b/ggml-metal.m index 390a1cd78..b0b16dbf7 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -2353,7 +2353,10 @@ static enum ggml_status ggml_metal_graph_compute( { GGML_ASSERT(src0->type == GGML_TYPE_F32); - const int sf = dst->op_params[0]; + const float sf0 = (float)ne0/src0->ne[0]; + const float sf1 = (float)ne1/src0->ne[1]; + const float sf2 = (float)ne2/src0->ne[2]; + const float sf3 = (float)ne3/src0->ne[3]; const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline; @@ -2376,7 +2379,10 @@ static enum ggml_status ggml_metal_graph_compute( [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; - [encoder setBytes:&sf length:sizeof(sf) atIndex:18]; + [encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18]; + [encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19]; + [encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20]; + [encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21]; const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); diff --git a/ggml-metal.metal b/ggml-metal.metal index 57fdf564e..386e9195f 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -1852,7 +1852,10 @@ kernel void kernel_upscale_f32( constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, - constant int32_t & sf, + constant float & sf0, + constant float & sf1, + constant float & sf2, + constant float & sf3, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { @@ -1861,15 +1864,17 @@ kernel void kernel_upscale_f32( const int64_t i2 = tgpig.y; const int64_t i1 = tgpig.x; - const int64_t i03 = i3; - const int64_t i02 = i2; - const int64_t i01 = i1/sf; - - device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01); - device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1); + const int64_t i03 = i3/sf3; + const int64_t i02 = i2/sf2; + const int64_t i01 = i1/sf1; for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { - dst_ptr[i0] = src0_ptr[i0/sf]; + const int64_t i00 = i0/sf0; + + device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_ptr[0] = src0_ptr[0]; } } diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index 724070eb9..b15efb704 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -13987,6 +13987,10 @@ inline void ggml_sycl_op_upscale(const ggml_tensor *src0, GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors +#pragma message("TODO: generalize upscale operator") +#pragma message(" https://github.com/ggerganov/ggml/pull/814") + GGML_ASSERT(false && "TODO: generalize upscale operator); + const int scale_factor = dst->op_params[0]; upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream); diff --git a/ggml.c b/ggml.c index 03b609ddd..f09cc3060 100644 --- a/ggml.c +++ b/ggml.c @@ -6293,7 +6293,10 @@ struct ggml_tensor * ggml_pool_2d( static struct ggml_tensor * ggml_upscale_impl( struct ggml_context * ctx, struct ggml_tensor * a, - int scale_factor) { + int ne0, + int ne1, + int ne2, + int ne3) { bool is_node = false; if (a->grad) { @@ -6301,19 +6304,45 @@ static struct ggml_tensor * ggml_upscale_impl( is_node = true; } + GGML_ASSERT(a->ne[0] <= ne0); + GGML_ASSERT(a->ne[1] <= ne1); + GGML_ASSERT(a->ne[2] <= ne2); + GGML_ASSERT(a->ne[3] <= ne3); + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, - a->ne[0] * scale_factor, - a->ne[1] * scale_factor, - a->ne[2], a->ne[3]); + ne0, + ne1, + ne2, + ne3 + ); result->op = GGML_OP_UPSCALE; - result->op_params[0] = scale_factor; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; return result; } +struct ggml_tensor * ggml_upscale( + struct ggml_context * ctx, + struct ggml_tensor * a, + int scale_factor) { + return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]); +} + +struct ggml_tensor * ggml_upscale_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1, + int ne2, + int ne3) { + return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3); +} + +// ggml_pad + struct ggml_tensor * ggml_pad( struct ggml_context * ctx, struct ggml_tensor * a, @@ -6338,12 +6367,7 @@ struct ggml_tensor * ggml_pad( return result; } -struct ggml_tensor * ggml_upscale( - struct ggml_context * ctx, - struct ggml_tensor * a, - int scale_factor) { - return ggml_upscale_impl(ctx, a, scale_factor); -} +// ggml_arange struct ggml_tensor * ggml_arange( struct ggml_context * ctx, @@ -6365,6 +6389,8 @@ struct ggml_tensor * ggml_arange( return result; } +// ggml_timestep_embedding + struct ggml_tensor * ggml_timestep_embedding( struct ggml_context * ctx, struct ggml_tensor * timesteps, @@ -14820,25 +14846,28 @@ static void ggml_compute_forward_upscale_f32( return; } - GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(src0->type == GGML_TYPE_F32); const int ith = params->ith; const int nth = params->nth; GGML_TENSOR_UNARY_OP_LOCALS - const int scale_factor = dst->op_params[0]; + const float sf0 = (float)ne0/src0->ne[0]; + const float sf1 = (float)ne1/src0->ne[1]; + const float sf2 = (float)ne2/src0->ne[2]; + const float sf3 = (float)ne3/src0->ne[3]; // TODO: optimize for (int64_t i3 = 0; i3 < ne3; i3++) { - const int64_t i03 = i3; + const int64_t i03 = i3 / sf3; for (int64_t i2 = ith; i2 < ne2; i2 += nth) { - const int64_t i02 = i2; + const int64_t i02 = i2 / sf2; for (int64_t i1 = 0; i1 < ne1; i1++) { - const int64_t i01 = i1 / scale_factor; + const int64_t i01 = i1 / sf1; for (int64_t i0 = 0; i0 < ne0; i0++) { - const int64_t i00 = i0 / scale_factor; + const int64_t i00 = i0 / sf0; const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); @@ -14868,6 +14897,7 @@ static void ggml_compute_forward_upscale( } } + // ggml_compute_forward_pad static void ggml_compute_forward_pad_f32( diff --git a/ggml.h b/ggml.h index 25f4f73a8..5e121604a 100644 --- a/ggml.h +++ b/ggml.h @@ -1674,12 +1674,24 @@ extern "C" { float p1); // nearest interpolate + // multiplies ne0 and ne1 by scale factor // used in stable-diffusion GGML_API struct ggml_tensor * ggml_upscale( struct ggml_context * ctx, struct ggml_tensor * a, int scale_factor); + // nearest interpolate + // nearest interpolate to specified dimensions + // used in tortoise.cpp + GGML_API struct ggml_tensor * ggml_upscale_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + int ne0, + int ne1, + int ne2, + int ne3); + // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0] GGML_API struct ggml_tensor * ggml_pad( struct ggml_context * ctx, diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index f080f7e22..85ef21c2a 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1329,23 +1329,47 @@ struct test_upscale : public test_case { const ggml_type type; const std::array ne; const int32_t scale_factor; + const bool transpose; std::string vars() override { - return VARS_TO_STR3(type, ne, scale_factor); + return VARS_TO_STR4(type, ne, scale_factor, transpose); } test_upscale(ggml_type type = GGML_TYPE_F32, std::array ne = {512, 512, 3, 1}, - int32_t scale_factor = 2) - : type(type), ne(ne), scale_factor(scale_factor) {} + int32_t scale_factor = 2, bool transpose = false) + : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + if (transpose) a = ggml_transpose(ctx, a); ggml_tensor * out = ggml_upscale(ctx, a, scale_factor); return out; } }; +// GGML_OP_UPSCALE (ext) +struct test_upscale_ext : public test_case { + const ggml_type type; + const std::array ne; + const std::array ne_tgt; + + std::string vars() override { + return VARS_TO_STR3(type, ne, ne_tgt); + } + + test_upscale_ext(ggml_type type = GGML_TYPE_F32, + std::array ne = {2, 5, 7, 11}, + std::array ne_tgt = {5, 7, 11, 13}) + : type(type), ne(ne), ne_tgt(ne_tgt) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]); + return out; + } +}; + // GGML_OP_GROUP_NORM struct test_group_norm : public test_case { const ggml_type type; @@ -2169,6 +2193,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_sum_rows()); test_cases.emplace_back(new test_upscale()); + test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true)); + test_cases.emplace_back(new test_upscale_ext()); test_cases.emplace_back(new test_group_norm()); test_cases.emplace_back(new test_acc()); test_cases.emplace_back(new test_pad()); From 29499bb59383c2a8c5d557a90abb08b696cef7f6 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 15 May 2024 13:23:41 +0300 Subject: [PATCH 52/56] sync : ggml --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index b2b5f8fc1..57bede67b 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -fafd5e7f89382b8cfb51e3dac8d4f1500ca44918 +126d34985705a5a2222723c145cb4e125ac689f3 From ea3b0590ee33d3573eb8ef76f88cc60f36d2a38d Mon Sep 17 00:00:00 2001 From: dm4 Date: Wed, 15 May 2024 20:01:12 +0800 Subject: [PATCH 53/56] embedding : free the batch after execution (#7297) --- examples/embedding/embedding.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index c85a2da53..0c921ed69 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -211,6 +211,7 @@ int main(int argc, char ** argv) { // clean up llama_print_timings(ctx); + llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); From 9a17ab914b0aa7353389c656a3f2a0f086726868 Mon Sep 17 00:00:00 2001 From: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com> Date: Wed, 15 May 2024 13:26:30 +0100 Subject: [PATCH 54/56] Add missing " (#7303) --- ggml-sycl.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index b15efb704..19d22d637 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -13989,7 +13989,7 @@ inline void ggml_sycl_op_upscale(const ggml_tensor *src0, #pragma message("TODO: generalize upscale operator") #pragma message(" https://github.com/ggerganov/ggml/pull/814") - GGML_ASSERT(false && "TODO: generalize upscale operator); + GGML_ASSERT(false && "TODO: generalize upscale operator"); const int scale_factor = dst->op_params[0]; From 344f9126cc0d15891fde9472fe40b8572628ad7d Mon Sep 17 00:00:00 2001 From: slaren Date: Wed, 15 May 2024 15:08:48 +0200 Subject: [PATCH 55/56] ggml : tag ggml_tensor::backend as deprecated (#7290) --- examples/llava/llava.cpp | 15 --------------- ggml-backend.c | 1 - ggml.c | 10 ++++++++++ ggml.h | 3 ++- 4 files changed, 12 insertions(+), 17 deletions(-) diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 9a990bb18..63878d176 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -88,7 +88,6 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair< // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out) static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) { struct { - struct ggml_tensor * newline; struct ggml_context * ctx; } model; @@ -150,20 +149,6 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector model.ctx = ggml_init(params); - ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip); - model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]); - if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) { - if (newline_tmp->buffer == NULL) { - LOG_TEE("newline_tmp tensor buffer is NULL\n"); - } - ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp)); - } else { - model.newline->data = newline_tmp->data; - if (model.newline->data == NULL) { - LOG_TEE("newline_tmp tensor data is NULL\n"); - } - } - struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4 // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false); // fill it with the image embeddings, ignoring the base diff --git a/ggml-backend.c b/ggml-backend.c index dd090a583..9e35ce98d 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -1895,7 +1895,6 @@ void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * t tensor->buffer = buffer; tensor->data = (char *)tensor->view_src->data + tensor->view_offs; - tensor->backend = tensor->view_src->backend; ggml_backend_buffer_init_tensor(buffer, tensor); } diff --git a/ggml.c b/ggml.c index f09cc3060..67e17a210 100644 --- a/ggml.c +++ b/ggml.c @@ -3178,6 +3178,12 @@ static struct ggml_tensor * ggml_new_tensor_impl( struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs); +#ifdef __clang__ + // temporary until ggml_tensor::backend is removed + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wdeprecated-declarations" +#endif + *result = (struct ggml_tensor) { /*.type =*/ type, /*.backend =*/ GGML_BACKEND_TYPE_CPU, @@ -3200,6 +3206,10 @@ static struct ggml_tensor * ggml_new_tensor_impl( /*.padding =*/ { 0 }, }; +#ifdef __clang__ + #pragma clang diagnostic pop +#endif + // TODO: this should not be needed as long as we don't rely on aligned SIMD loads //ggml_assert_aligned(result->data); diff --git a/ggml.h b/ggml.h index 5e121604a..8c13f4ba8 100644 --- a/ggml.h +++ b/ggml.h @@ -565,7 +565,8 @@ extern "C" { // n-dimensional tensor struct ggml_tensor { enum ggml_type type; - enum ggml_backend_type backend; + + GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor"); struct ggml_backend_buffer * buffer; From dc020985b8755dd6aa93a2f002f43c3ede808cce Mon Sep 17 00:00:00 2001 From: agray3 Date: Wed, 15 May 2024 14:44:49 +0100 Subject: [PATCH 56/56] Avoid unnecessarily disabling CUDA graphs (#7302) As discussed in PR #6766, CUDA graphs were being disabled in the presence of long prompts. This fixes the issue by avoiding the consective update counter from incrementing unnecessarily for tokens in which cuda graphs are disabled due to batch size > 1. --- ggml-cuda.cu | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 75a2ad480..04b6e5285 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2558,7 +2558,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t } // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. - if (cuda_graph_update_required) { + if (use_cuda_graph && cuda_graph_update_required) { cuda_ctx->cuda_graph->number_consecutive_updates++; } else { cuda_ctx->cuda_graph->number_consecutive_updates = 0;