Merge branch 'master' of https://github.com/JoanFM/llama.cpp into feat-jina-v2-base-code

This commit is contained in:
Joan Martinez 2024-06-05 16:26:19 +02:00
commit 7ab6023bc3
73 changed files with 1428 additions and 5358 deletions

View file

@ -688,8 +688,6 @@ jobs:
env:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.3.261.1
@ -706,8 +704,6 @@ jobs:
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
- build: 'avx512-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
- build: 'clblast-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
- build: 'openblas-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'kompute-x64'
@ -732,27 +728,6 @@ jobs:
run: |
git submodule update --init kompute
- name: Download OpenCL SDK
id: get_opencl
if: ${{ matrix.build == 'clblast-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
mkdir $env:RUNNER_TEMP/opencl
tar.exe -xvf $env:RUNNER_TEMP/opencl.zip --strip-components=1 -C $env:RUNNER_TEMP/opencl
- name: Download CLBlast
id: get_clblast
if: ${{ matrix.build == 'clblast-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z
rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast
foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) {
$txt = Get-Content -Path $f -Raw
$txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8
}
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas-x64' }}
@ -786,13 +761,6 @@ jobs:
cmake -S . -B build ${{ matrix.defines }}
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add clblast.dll
id: add_clblast_dll
if: ${{ matrix.build == 'clblast-x64' }}
run: |
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
- name: Add libopenblas.dll
id: add_libopenblas_dll
if: ${{ matrix.build == 'openblas-x64' }}
@ -816,7 +784,7 @@ jobs:
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'clblast-x64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
@ -1071,7 +1039,7 @@ jobs:
# hypervisor: 'qemu'
# run: |
# sudo pkg update
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 openblas
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
release:

View file

@ -111,7 +111,6 @@ option(LLAMA_CUDA_FA_ALL_QUANTS "llama: compile all quants for Flas
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_VULKAN "llama: use Vulkan" OFF)
option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF)
option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF)
@ -502,22 +501,6 @@ if (LLAMA_RPC)
set(GGML_SOURCES_RPC ggml-rpc.cpp)
endif()
if (LLAMA_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_HEADERS_OPENCL ggml-opencl.h)
set(GGML_SOURCES_OPENCL ggml-opencl.cpp)
add_compile_definitions(GGML_USE_CLBLAST)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
endif()
endif()
if (LLAMA_VULKAN)
find_package(Vulkan)
if (Vulkan_FOUND)
@ -1265,7 +1248,6 @@ add_library(ggml OBJECT
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
@ -1353,8 +1335,9 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_EXTRA}")
"${GGML_HEADERS_CUDA}"
"${GGML_HEADERS_METAL}"
"${GGML_HEADERS_EXTRA}")
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
install(TARGETS ggml PUBLIC_HEADER)

View file

@ -1,7 +1,7 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama beam-search \
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
# Binaries only useful for tests
@ -547,23 +547,6 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h
$(NVCC_COMPILE)
endif # LLAMA_CUDA
ifdef LLAMA_CLBLAST
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
# Mac provides OpenCL as a framework
ifeq ($(UNAME_S),Darwin)
MK_LDFLAGS += -lclblast -framework OpenCL
else
MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
endif
OBJS += ggml-opencl.o
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # LLAMA_CLBLAST
ifdef LLAMA_VULKAN
MK_CPPFLAGS += -DGGML_USE_VULKAN
MK_LDFLAGS += -lvulkan
@ -914,10 +897,6 @@ baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) tra
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

View file

@ -29,7 +29,7 @@ The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based o
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## News

127
README.md
View file

@ -77,7 +77,7 @@ variety of hardware - locally and in the cloud.
- AVX, AVX2 and AVX512 support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
- Vulkan, SYCL, and (partial) OpenCL backend support
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
@ -364,17 +364,6 @@ In order to build llama.cpp you have four different options.
cmake --build build --config Debug
```
- Using `Zig` (version 0.11 or later):
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
it's also possible to cross compile for other operating systems and architectures:
```bash
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
```
The `zig targets` command will give you valid options to use.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
@ -382,16 +371,11 @@ In order to build llama.cpp you have four different options.
3. Install compilation dependencies.
```bash
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
opencl clblast openblas
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
```
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
the instructions for use and activate this options in this document below.
### Homebrew
On Mac and Linux, the homebrew package manager can be used via
@ -410,7 +394,7 @@ argument.
### BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
- #### Accelerate Framework:
@ -564,111 +548,6 @@ Building the program with BLAS support may lead to some performance improvements
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### CLBlast
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
- For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
- <details>
<summary>Installing the OpenCL SDK from source</summary>
```sh
git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
cd OpenCL-SDK
cmake -B build -DBUILD_DOCS=OFF \
-DBUILD_EXAMPLES=OFF \
-DBUILD_TESTING=OFF \
-DOPENCL_SDK_BUILD_SAMPLES=OFF \
-DOPENCL_SDK_TEST_SAMPLES=OFF
cmake --build build
cmake --install build --prefix /some/path
```
</details>
##### Installing CLBlast
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
Linux packaging:
Fedora Linux:
```bash
sudo dnf install clblast
```
Alternatively, they may be built from source.
- <details>
<summary>Windows:</summary>
```cmd
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
git clone https://github.com/CNugteren/CLBlast.git
cd CLBlast
cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/CLBlast
```
(note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds)
- <details>
<summary>Unix:</summary>
```sh
git clone https://github.com/CNugteren/CLBlast.git
cd CLBlast
cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
cmake --build build --config Release
cmake --install build --prefix /some/path
```
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
</details>
##### Building Llama with CLBlast
- Build with make:
```sh
make LLAMA_CLBLAST=1
```
- CMake (Unix):
```sh
cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
cmake --build build --config Release
```
- CMake (Windows):
```cmd
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/LlamaCPP
```
##### Running Llama with CLBlast
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.
To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`.
The selection can be a number (starting from 0) or a text string to search:
```sh
GGML_OPENCL_PLATFORM=1 ./main ...
GGML_OPENCL_DEVICE=2 ./main ...
GGML_OPENCL_PLATFORM=Intel ./main ...
GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
```
The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful.
Using the variables it is possible to select a CPU-based driver as well, if so desired.
You can get a list of platforms and devices from the `clinfo -l` command, etc.
- #### Vulkan
**With docker**:

File diff suppressed because it is too large Load diff

View file

@ -60,7 +60,7 @@ struct gpt_params {
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
@ -99,23 +99,23 @@ struct gpt_params {
// // sampling parameters
struct llama_sampling_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string model_url = ""; // model url to download
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::string logits_file = ""; // file for saving *all* logits
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
// TODO: avoid tuple, use struct
@ -127,8 +127,8 @@ struct gpt_params {
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
@ -142,19 +142,17 @@ struct gpt_params {
bool kl_divergence = false; // compute KL divergence
bool random_prompt = false; // do not randomize prompt if none provided
bool usage = false; // print usage
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
bool embedding = false; // get only sentence embedding
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool interactive_first = false; // wait for user input immediately
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
@ -162,10 +160,10 @@ struct gpt_params {
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose = false;
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode
@ -180,6 +178,47 @@ struct gpt_params {
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
// server params
int32_t port = 8080;
int32_t timeout_read = 600;
int32_t timeout_write = timeout_read;
int32_t n_threads_http = -1;
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
std::vector<std::string> api_keys;
std::string ssl_file_key = "";
std::string ssl_file_cert = "";
bool endpoint_slots = true;
bool endpoint_metrics = false;
bool log_json = false;
std::string slot_save_path;
// batched-bench params
bool is_pp_shared = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
std::vector<int32_t> n_pl;
// retrieval params
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
// passkey params
int32_t n_junk = 250; // number of times to repeat the junk text
int32_t i_pos = -1; // position of the passkey in the junk text
};
void gpt_params_handle_model_default(gpt_params & params);
@ -199,7 +238,20 @@ std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_random_prompt(std::mt19937 & rng);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
@ -282,6 +334,13 @@ std::string llama_detokenize_bpe(
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// Chat template utils
//
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool llama_chat_verify_template(const std::string & tmpl);
//
// KV cache utils
//

View file

@ -15,7 +15,6 @@ else()
add_subdirectory(baby-llama)
add_subdirectory(batched)
add_subdirectory(batched-bench)
add_subdirectory(beam-search)
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)

View file

@ -522,8 +522,8 @@ static struct ggml_tensor * forward(
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Kcur shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
// store key and value to memory
{
@ -759,8 +759,8 @@ static struct ggml_tensor * forward_batch(
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, n_batch]
// Kcur shape [n_embd/n_head, n_head, N, n_batch]
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
@ -1056,7 +1056,7 @@ static struct ggml_tensor * forward_lora(
model->layers[il].wqb,
cur)),
n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0, 0);
KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0,
ggml_reshape_3d(ctx0,
ggml_mul_mat(ctx0,
@ -1065,7 +1065,7 @@ static struct ggml_tensor * forward_lora(
model->layers[il].wkb,
cur)),
n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0, 0);
KQ_pos, n_rot, 0);
// store key and value to memory
{

View file

@ -10,16 +10,16 @@ There are 2 modes of operation:
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
```bash
./batched-bench MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
./batched-bench -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 2048 512 0 99
./batched-bench -m ./models/llama-7b/ggml-model-f16.gguf -c 16384 -b 2048 -ub 512 -ngl 99
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 2048 512 1 99
./batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 16384 -b 2048 -ub 512 -ngl 99 -pps
# custom set of batches
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 512 512 0 999 0 128,256,512 128,256 1,2,4,8,16,32
./batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 2048 -b 512 -ub 512 -ngl 999 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32
```
## Sample results

View file

@ -28,67 +28,27 @@ static std::vector<int> parse_list(char * p) {
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
int n_kv_max = 2048;
int n_batch = 2048;
int n_ubatch = 512;
bool flash_attn = false;
int is_pp_shared = 0;
int n_gpu_layers = 0;
int is_pp_shared = params.is_pp_shared;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
std::vector<int> n_tg = { 128, 256, };
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_kv_max = std::atoi(argv[2]);
}
if (argc >= 4) {
n_batch = std::atoi(argv[3]);
}
if (argc >= 5) {
n_ubatch = std::atoi(argv[4]);
}
if (argc >= 6) {
flash_attn = std::atoi(argv[5]);
}
if (argc >= 7) {
is_pp_shared = std::atoi(argv[6]);
}
if (argc >= 8) {
n_gpu_layers = std::atoi(argv[7]);
}
if (argc >= 9) {
n_pp = parse_list(argv[8]);
}
if (argc >= 10) {
n_tg = parse_list(argv[9]);
}
if (argc >= 11) {
n_pl = parse_list(argv[10]);
}
std::vector<int> n_pp = params.n_pp;
std::vector<int> n_tg = params.n_tg;
std::vector<int> n_pl = params.n_pl;
// init LLM
@ -97,12 +57,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -111,16 +66,7 @@ int main(int argc, char ** argv) {
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = n_batch;
ctx_params.n_ubatch = n_ubatch;
ctx_params.flash_attn = flash_attn;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
// ensure enough sequences are available
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
@ -132,6 +78,8 @@ int main(int argc, char ** argv) {
return 1;
}
const int32_t n_kv_max = llama_n_ctx(ctx);
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
// decode in batches of ctx_params.n_batch tokens
@ -175,7 +123,7 @@ int main(int argc, char ** argv) {
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View file

@ -3,7 +3,7 @@
The example demonstrates batched generation from a given prompt
```bash
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
./batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
...

View file

@ -7,48 +7,31 @@
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
return 1 ;
params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
// number of parallel batches
int n_parallel = 1;
int n_parallel = params.n_parallel;
// total length of the sequences including the prompt
int n_len = 32;
// number of layers to offload to the GPU
int n_gpu_layers = 0;
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (argc >= 4) {
n_parallel = std::atoi(argv[3]);
}
if (argc >= 5) {
n_len = std::atoi(argv[4]);
}
if (argc >= 6) {
n_gpu_layers = std::atoi(argv[5]);
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
string_process_escapes(params.prompt);
int n_predict = 32;
// init LLM
@ -57,9 +40,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = n_gpu_layers;
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -73,18 +54,14 @@ int main(int argc, char ** argv) {
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(model, params.prompt, true);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@ -93,9 +70,9 @@ int main(int argc, char ** argv) {
return 1;
}
const int n_ctx = llama_n_ctx(ctx);
const int n_ctx = llama_n_ctx(ctx);
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
@ -156,7 +133,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
while (n_cur <= n_predict) {
// prepare the next batch
llama_batch_clear(batch);
@ -192,7 +169,7 @@ int main(int argc, char ** argv) {
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
i_batch[i] = -1;
LOG_TEE("\n");
if (n_parallel > 1) {

View file

@ -1,5 +0,0 @@
set(TARGET beam-search)
add_executable(${TARGET} beam-search.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -1,188 +0,0 @@
#include "common.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
// Used for debugging to print out beam tokens.
struct ostream_beam_view {
llama_context * ctx;
llama_beam_view beam_view;
};
static std::ostream & operator<<(std::ostream & os, const ostream_beam_view & obv) {
os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
}
return os << ')';
}
// Put here anything you want back in beam_search_callback().
struct beam_search_callback_data {
llama_context * ctx;
std::vector<llama_token> response;
};
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc.
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]);
}
// Function matching type llama_beam_search_callback_fn_t.
// Custom callback example is called each time the beams lengths increase:
// * Show progress by printing ',' following by number of convergent beam tokens if any.
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
// This is also called when the stop condition is met.
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
static void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
// Mark beams as EOS as needed.
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
llama_beam_view& beam_view = beams_state.beam_views[i];
if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
beam_view.eob = true;
}
}
printf(","); // Show progress
if (const size_t n = beams_state.common_prefix_length) {
callback_data.response.resize(callback_data.response.size() + n);
assert(0u < beams_state.n_beams);
const llama_token * tokens = beams_state.beam_views[0].tokens;
std::copy(tokens, tokens + n, callback_data.response.end() - n);
printf("%zu", n);
}
fflush(stdout);
#if 1 // DEBUG: print current beams for this iteration
std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
}
#endif
}
int main(int argc, char ** argv)
{
gpt_params params;
//params.n_gpu_layers = 200;
//---------------------------------
// Print help :
//---------------------------------
if ( argc < 2 || argv[1][0] == '-' )
{
printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
return 1 ;
}
//---------------------------------
// Load parameters :
//---------------------------------
params.model = argv[1];
params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
if ( argc > 3 )
{
params.prompt = argv[3];
}
if ( params.prompt.empty() )
{
params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
}
//---------------------------------
// Init LLM :
//---------------------------------
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params( params );
if ( model == NULL )
{
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
return 1;
}
//---------------------------------
// Tokenize the prompt :
//---------------------------------
std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
const size_t max_context_size = llama_n_ctx( ctx );
const size_t max_tokens_list_size = max_context_size - 4 ;
if (tokens_list.size() > max_tokens_list_size)
{
fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
__func__ , tokens_list.size() , max_tokens_list_size );
return 1;
}
fprintf( stderr, "\n\n" );
// Print the tokens from the prompt :
for( auto id : tokens_list )
{
std::cout << llama_token_to_piece(ctx, id);
}
std::cout << std::flush;
int n_past = 0;
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0)))
{
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
return 1;
}
n_past += tokens_list.size();
beam_search_callback_data callback_data{ctx, {}};
size_t const beam_width = static_cast<size_t>(params.n_beams);
int const n_predict = 256;
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict);
std::cout << "\n\n";
for (llama_token const token_id : callback_data.response) {
std::cout << llama_token_to_piece(ctx,token_id);
}
std::cout << std::endl;
llama_free( ctx );
llama_free_model( model );
llama_backend_free();
return 0;
}

View file

@ -176,7 +176,7 @@ class Params:
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_orig_ctx: int | None = None
n_ctx_orig: int | None = None
rope_finetuned: bool | None = None
ftype: GGMLFileType | None = None
@ -226,7 +226,7 @@ class Params:
with open(config_path) as f:
config = json.load(f)
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None
rope_scaling = config.get("rope_scaling")
if rope_scaling is not None and (typ := rope_scaling.get("type")):
@ -236,7 +236,7 @@ class Params:
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_orig_ctx = rope_scaling['original_max_position_embeddings']
n_ctx_orig = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
@ -272,7 +272,7 @@ class Params:
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_orig_ctx = n_orig_ctx,
n_ctx_orig = n_ctx_orig,
rope_finetuned = rope_finetuned,
)
@ -864,8 +864,8 @@ class OutputFile:
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
if params.n_orig_ctx is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
if params.n_ctx_orig is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig)
if params.rope_finetuned is not None:
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)

View file

@ -63,6 +63,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
@ -79,9 +80,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -140,20 +140,18 @@ static bool run(llama_context * ctx, const gpt_params & params) {
}
int main(int argc, char ** argv) {
callback_data cb_data;
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
print_build_info();
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -564,7 +564,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int rope_mode = 0;
return ggml_rope_ext(ctx,
t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0,
t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx,
rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
);
};

View file

@ -41,7 +41,7 @@ echo PASS
echo
# 2b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --random-prompt --n-predict 32
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
echo PASS
echo
@ -51,7 +51,7 @@ echo PASS
echo
# 3b. Test the merged model is loading properly
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
echo PASS
echo
@ -61,7 +61,7 @@ echo PASS
echo
# 4b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --random-prompt --n-predict 32
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
echo PASS
echo
@ -71,7 +71,7 @@ echo
#echo
# 5b. Test the merged model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --random-prompt --n-predict 32
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#echo PASS
#echo
@ -81,7 +81,7 @@ echo PASS
echo
# 6b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --random-prompt --n-predict 32
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
echo PASS
echo

View file

@ -153,7 +153,9 @@ static std::string gritlm_instruction(const std::string & instruction) {
int main(int argc, char * argv[]) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -533,7 +533,6 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
}
int main(int argc, char ** argv) {
StatParams sparams;
std::string prev_result_file;
std::string combine_files;
@ -581,7 +580,9 @@ int main(int argc, char ** argv) {
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
@ -597,9 +598,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
sparams.dataset = params.prompt_file;
g_collector.set_parameters(std::move(sparams));

View file

@ -107,6 +107,7 @@ int main(int argc, char ** argv) {
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
@ -139,27 +140,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (params.instruct) {
printf("\n************\n");
printf("%s: please use the 'main' tool for instruct mode\n", __func__);
printf("************\n\n");
return 0;
}
if (params.chatml) {
printf("\n************\n");
printf("%s: please use the 'main' tool for chatml mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.antiprompt.empty()) {
printf("\n************\n");
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
printf("\n************\n");
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
@ -167,20 +147,6 @@ int main(int argc, char ** argv) {
return 0;
}
if (params.random_prompt) {
printf("\n************\n");
printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.path_prompt_cache.empty()) {
printf("\n************\n");
printf("%s: infill does not support prompt caching\n", __func__);
printf("************\n\n");
return 0;
}
if (params.rope_freq_base != 0.0) {
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
@ -207,17 +173,13 @@ int main(int argc, char ** argv) {
llama_model * model;
llama_context * ctx;
llama_context * ctx_guidance = NULL;
g_model = &model;
g_ctx = &ctx;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams);
}
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n", __func__);
@ -273,25 +235,6 @@ int main(int argc, char ** argv) {
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
}
// Tokenize negative prompt
std::vector<llama_token> guidance_inp;
int guidance_offset = 0;
int original_prompt_len = 0;
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
LOG("guidance_offset: %s", log_tostr(guidance_offset));
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
@ -319,15 +262,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (ctx_guidance) {
LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
}
}
if (params.n_keep > 0) {
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
@ -395,12 +329,11 @@ int main(int argc, char ** argv) {
is_interacting = params.interactive_first;
}
bool input_echo = true;
bool input_echo = true;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_past_guidance = 0;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
@ -410,7 +343,6 @@ int main(int argc, char ** argv) {
console::set_display(console::prompt);
std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
@ -436,7 +368,7 @@ int main(int argc, char ** argv) {
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
if (n_past + (int) embd.size() > n_ctx) {
if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
@ -453,11 +385,7 @@ int main(int argc, char ** argv) {
n_past -= n_discard;
if (ctx_guidance) {
n_past_guidance -= n_discard;
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("after swap: n_past = %d\n", n_past);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
@ -465,45 +393,6 @@ int main(int argc, char ** argv) {
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
if (ctx_guidance) {
int input_size = 0;
llama_token * input_buf = NULL;
if (n_past_guidance < (int) guidance_inp.size()) {
// Guidance context should have the same data with these modifications:
//
// * Replace the initial prompt
// * Shift everything by guidance_offset
embd_guidance = guidance_inp;
if (embd.begin() + original_prompt_len < embd.end()) {
embd_guidance.insert(
embd_guidance.end(),
embd.begin() + original_prompt_len,
embd.end()
);
}
input_buf = embd_guidance.data();
input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
} else {
input_buf = embd.data();
input_size = embd.size();
}
for (int i = 0; i < input_size; i += params.n_batch) {
int n_eval = std::min(input_size - i, params.n_batch);
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past_guidance += n_eval;
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
@ -525,11 +414,9 @@ int main(int argc, char ** argv) {
}
embd.clear();
embd_guidance.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, nullptr);
llama_sampling_accept(ctx_sampling, ctx, id, true);
@ -583,7 +470,6 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
@ -644,7 +530,6 @@ int main(int argc, char ** argv) {
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
embd_inp.push_back(llama_token_middle(model));
embd.clear();
embd_guidance.clear();
n_remain = params.n_predict;
n_past = 0;
n_consumed = 0;
@ -751,7 +636,6 @@ int main(int argc, char ** argv) {
llama_print_timings(ctx);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
if (ctx_guidance) { llama_free(ctx_guidance); }
llama_free(ctx);
llama_free_model(model);

View file

@ -162,7 +162,7 @@ $ ./llama-bench -o csv
```
```csv
build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
build_commit,build_number,cuda,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961"
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342"
```
@ -179,7 +179,6 @@ $ ./llama-bench -o json
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"opencl": false,
"metal": false,
"gpu_blas": true,
"blas": true,
@ -210,7 +209,6 @@ $ ./llama-bench -o json
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"opencl": false,
"metal": false,
"gpu_blas": true,
"blas": true,
@ -253,7 +251,6 @@ CREATE TABLE IF NOT EXISTS test (
build_commit TEXT,
build_number INTEGER,
cuda INTEGER,
opencl INTEGER,
metal INTEGER,
gpu_blas INTEGER,
blas INTEGER,
@ -279,6 +276,6 @@ CREATE TABLE IF NOT EXISTS test (
stddev_ts REAL
);
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634');
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692');
INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634');
INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692');
```

View file

@ -41,20 +41,6 @@ static std::string join(const std::vector<T> & values, const std::string & delim
return str.str();
}
template<class T>
static std::vector<T> split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
template<typename T, typename F>
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
std::vector<std::string> str_values;
@ -322,28 +308,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
auto p = string_split<std::string>(argv[i], split_delim);
params.model.insert(params.model.end(), p.begin(), p.end());
} else if (arg == "-p" || arg == "--n-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
auto p = string_split<int>(argv[i], split_delim);
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
} else if (arg == "-n" || arg == "--n-gen") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
auto p = string_split<int>(argv[i], split_delim);
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
} else if (arg == "-pg") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], ',');
auto p = string_split<std::string>(argv[i], ',');
if (p.size() != 2) {
invalid_param = true;
break;
@ -354,21 +340,21 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
auto p = string_split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
auto p = string_split<int>(argv[i], split_delim);
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
} else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
@ -384,7 +370,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
@ -400,14 +386,14 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
auto p = string_split<int>(argv[i], split_delim);
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
auto p = string_split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-rpc" || arg == "--rpc") {
if (++i >= argc) {
@ -420,7 +406,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<llama_split_mode> modes;
for (const auto & m : p) {
llama_split_mode mode;
@ -442,13 +428,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
params.main_gpu = split<int>(argv[i], split_delim);
params.main_gpu = string_split<int>(argv[i], split_delim);
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
auto p = string_split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "--numa") {
if (++i >= argc) {
@ -466,28 +452,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
auto p = string_split<bool>(argv[i], split_delim);
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
auto p = string_split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-embd" || arg == "--embeddings") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
auto p = string_split<bool>(argv[i], split_delim);
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
break;
}
for (auto ts : split<std::string>(argv[i], split_delim)) {
for (auto ts : string_split<std::string>(argv[i], split_delim)) {
// split string by ; and /
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
@ -723,7 +709,6 @@ struct test {
static const std::string build_commit;
static const int build_number;
static const bool cuda;
static const bool opencl;
static const bool vulkan;
static const bool kompute;
static const bool metal;
@ -812,9 +797,6 @@ struct test {
if (cuda) {
return GGML_CUDA_NAME;
}
if (opencl) {
return "OpenCL";
}
if (vulkan) {
return "Vulkan";
}
@ -843,7 +825,7 @@ struct test {
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
"cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_ubatch",
@ -869,7 +851,7 @@ struct test {
field == "avg_ns" || field == "stddev_ns") {
return INT;
}
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
return BOOL;
@ -898,7 +880,7 @@ struct test {
}
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
@ -927,7 +909,6 @@ struct test {
const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cuda();
const bool test::opencl = !!ggml_cpu_has_clblast();
const bool test::vulkan = !!ggml_cpu_has_vulkan();
const bool test::kompute = !!ggml_cpu_has_kompute();
const bool test::metal = !!ggml_cpu_has_metal();

View file

@ -112,9 +112,12 @@ struct llava_context {
struct llama_model * model = NULL;
};
static void show_additional_info(int /*argc*/, char ** argv) {
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\n example usage:\n");
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
@ -278,7 +281,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
print_usage(argc, argv, params);
return 1;
}
@ -290,8 +293,7 @@ int main(int argc, char ** argv) {
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_params_print_usage(argc, argv, params);
show_additional_info(argc, argv);
print_usage(argc, argv, {});
return 1;
}
auto model = llava_init(&params);

View file

@ -37,7 +37,8 @@ struct ngram_container {
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -14,8 +14,10 @@ int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -16,6 +16,7 @@ int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -15,6 +15,7 @@ int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -8,16 +8,14 @@ Because this example is "outside of the source tree", it is important to first b
### Considerations
When hardware acceleration libraries are used (e.g. CUDA, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_.
When hardware acceleration libraries are used (e.g. CUDA, Metal, etc.), CMake must be able to locate the associated CMake package.
### Build llama.cpp and install to C:\LlamaCPP directory
In this case, CLBlast was already installed so the CMake package is referenced in `CMAKE_PREFIX_PATH`.
```cmd
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64
cmake -B build -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/LlamaCPP
```
@ -27,7 +25,7 @@ cmake --install build --prefix C:/LlamaCPP
```cmd
cd ..\examples\main-cmake-pkg
cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64
cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/MyLlamaApp
```

View file

@ -53,13 +53,13 @@ The following command generates "infinite" text from a starting prompt (you can
#### Unix-based systems (Linux, macOS, etc.):
```bash
./main -m models/7B/ggml-model.bin --ignore-eos -n -1 --random-prompt
./main -m models/7B/ggml-model.bin --ignore-eos -n -1
```
#### Windows:
```powershell
main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt
main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1
```
## Common Options
@ -69,7 +69,6 @@ In this section, we cover the most commonly used options for running the `main`
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`; inferred from `--model-url` if set).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
@ -80,11 +79,10 @@ The `main` program provides several ways to interact with the LLaMA models using
- `--prompt PROMPT`: Provide a prompt directly as a command-line option.
- `--file FNAME`: Provide a file containing a prompt or multiple prompts.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
- `--random-prompt`: Start with a randomized prompt.
## Interaction
The `main` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive`, `--interactive-first`, and `--instruct`.
The `main` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive` and `--interactive-first`.
In interactive mode, users can participate in text generation by injecting their input during the process. Users can press `Ctrl+C` at any time to interject and type their input, followed by pressing `Return` to submit it to the LLaMA model. To submit additional lines without finalizing input, users can end the current line with a backslash (`\`) and continue typing.
@ -92,7 +90,6 @@ In interactive mode, users can participate in text generation by injecting their
- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `-ins, --instruct`: Run the program in instruction mode, which is specifically designed to work with Alpaca models that excel in completing tasks based on user instructions.
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
@ -121,16 +118,6 @@ The `--in-suffix` flag is used to add a suffix after your input. This is useful
./main -r "User:" --in-prefix " " --in-suffix "Assistant:"
```
### Instruction Mode
Instruction mode is particularly useful when working with Alpaca models, which are designed to follow user instructions for specific tasks:
- `-ins, --instruct`: Enable instruction mode to leverage the capabilities of Alpaca models in completing tasks based on user-provided instructions.
Technical detail: the user's input is internally prefixed with the reverse prompt (or `### Instruction:` as the default), and followed by `### Response:` (except if you just press Return without any input, to keep generating a longer response).
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
## Context Management
During text generation, LLaMA models have a limited context size, which means they can only consider a certain number of tokens from the input and generated text. When the context fills up, the model resets internally, potentially losing some information from the beginning of the conversation or instructions. Context management options help maintain continuity and coherence in these situations.

View file

@ -122,8 +122,10 @@ int main(int argc, char ** argv) {
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
llama_sampling_params & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS
@ -180,9 +182,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
@ -250,11 +249,8 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n");
if (params.chatml) {
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
}
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true);
} else {
LOG("use session tokens\n");
@ -332,37 +328,13 @@ int main(int argc, char ** argv) {
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
} else {
params.n_keep += add_bos; // always keep the BOS token
}
// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true, true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// chatml prefix & suffix
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", true, true);
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_first = true;
params.antiprompt.emplace_back("### Instruction:\n\n");
}
// similar for chatml mode
else if (params.chatml) {
params.interactive_first = true;
params.antiprompt.emplace_back("<|im_start|>user\n");
}
else if (params.conversation) {
if (params.conversation) {
params.interactive_first = true;
}
@ -823,15 +795,13 @@ int main(int argc, char ** argv) {
is_interacting = true;
printf("\n");
} else if (params.instruct || params.chatml) {
is_interacting = true;
}
}
if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n");
if (params.conversation || params.instruct || params.chatml) {
if (params.conversation) {
printf("\n> ");
}
@ -874,24 +844,12 @@ int main(int argc, char ** argv) {
const size_t original_size = embd_inp.size();
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {
LOG("inserting instruction prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
// chatml mode: insert user chat prefix
if (params.chatml && !is_antiprompt) {
LOG("inserting chatml prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
}
if (params.escape) {
string_process_escapes(buffer);
}
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials);
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
@ -900,17 +858,6 @@ int main(int argc, char ** argv) {
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
// instruct mode: insert response suffix
if (params.instruct) {
LOG("inserting instruction suffix\n");
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
// chatml mode: insert assistant chat suffix
if (params.chatml) {
LOG("inserting chatml suffix\n");
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
}
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
@ -935,7 +882,7 @@ int main(int argc, char ** argv) {
}
// end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) {
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
LOG_TEE(" [end of text]\n");
break;
}

View file

@ -100,7 +100,8 @@ int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -8,5 +8,5 @@ See the following PRs for more info:
### Usage
```bash
make -j && ./passkey ./models/llama-7b-v2/ggml-model-f16.gguf 250
make -j && ./passkey -m ./models/llama-7b-v2/ggml-model-f16.gguf --junk 250
```

View file

@ -6,46 +6,32 @@
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]);
return 1 ;
params.n_junk = 250;
params.n_keep = 32;
params.i_pos = -1;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
int seed = -1;
srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
int n_junk = 250; // number of times to repeat the junk text
int n_keep = 32; // number of tokens in the prompt prefix
int n_grp = 1; // if more than 1 - perform LongLM SelfExtend
int i_pos = -1; // position of the passkey in the junk text
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_junk = std::stoi(argv[2]);
}
if (argc >= 4) {
n_grp = std::stoi(argv[3]);
}
if (argc >= 5) {
i_pos = std::stoi(argv[4]);
}
if (argc >= 6) {
seed = std::stoi(argv[5]);
}
if (seed == -1) {
seed = time(NULL);
}
srand(seed);
int n_junk = params.n_junk;
int n_keep = params.n_keep;
int n_grp = params.grp_attn_n;
int i_pos = params.i_pos;
if (i_pos == -1) {
i_pos = rand() % n_junk;
@ -76,9 +62,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -89,13 +73,9 @@ int main(int argc, char ** argv) {
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = seed;
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
ctx_params.n_batch = 512;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
@ -135,7 +115,7 @@ int main(int argc, char ** argv) {
LOG_TEE("prompt tokens: %d\n", n_tokens_all);
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init(512, 0, 1);
llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
int n_past = 0;

View file

@ -1032,7 +1032,7 @@ struct winogrande_entry {
std::vector<llama_token> seq_tokens[2];
};
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
std::vector<winogrande_entry> result;
std::istringstream in(prompt);
std::string line;
@ -1964,12 +1964,14 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
int main(int argc, char ** argv) {
gpt_params params;
params.n_ctx = 512;
params.logits_all = true;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
params.logits_all = true;
const int32_t n_ctx = params.n_ctx;
if (n_ctx <= 0) {
@ -2006,9 +2008,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);
@ -2027,6 +2026,7 @@ int main(int argc, char ** argv) {
}
const int n_ctx_train = llama_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);

View file

@ -47,7 +47,7 @@ echo PASS
echo
# 3a. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32
echo PASS
echo
@ -57,7 +57,7 @@ echo PASS
echo
# 4b. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32
echo PASS
echo

View file

@ -4,72 +4,12 @@
#include <algorithm>
#include <fstream>
struct retrieval_params {
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
};
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
gpt_params_print_usage(argc, argv, gpt_params);
printf("retrieval options:\n");
printf(" --context-file FNAME file containing context to embed.\n");
printf(" specify multiple files by providing --context-file option multiple times.\n");
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
printf(" --chunk-separator STRING\n");
printf(" string to separate chunks (default: \"\\n\")\n");
printf("\n");
}
static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
int i = 1;
std::string arg;
while (i < argc) {
arg = argv[i];
bool invalid_gpt_param = false;
if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
if (invalid_gpt_param) {
fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
// option was parsed by gpt_params_find_arg
} else if (arg == "--context-file") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --context-file\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
// store the external file name in params
retrieval_params.context_files.push_back(argv[i]);
} else if (arg == "--chunk-size") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --chunk-size\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
retrieval_params.chunk_size = std::stoi(argv[i]);
} else if (arg == "--chunk-separator") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --chunk-separator\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
retrieval_params.chunk_separator = argv[i];
} else {
// unknown argument
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
i++;
}
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
LOG_TEE("\n");
}
struct chunk {
@ -171,33 +111,35 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
int main(int argc, char ** argv) {
gpt_params params;
retrieval_params retrieval_params;
retrieval_params_parse(argc, argv, params, retrieval_params);
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
// For BERT models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
params.embedding = true;
if (retrieval_params.chunk_size <= 0) {
if (params.chunk_size <= 0) {
fprintf(stderr, "chunk_size must be positive\n");
return 1;
}
if (retrieval_params.context_files.empty()) {
if (params.context_files.empty()) {
fprintf(stderr, "context_files must be specified\n");
return 1;
}
params.embedding = true;
print_build_info();
printf("processing files:\n");
for (auto & context_file : retrieval_params.context_files) {
for (auto & context_file : params.context_files) {
printf("%s\n", context_file.c_str());
}
std::vector<chunk> chunks;
for (auto & context_file : retrieval_params.context_files) {
std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator);
for (auto & context_file : params.context_files) {
std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
}
printf("Number of chunks: %ld\n", chunks.size());
@ -242,7 +184,7 @@ int main(int argc, char ** argv) {
return 1;
}
// add eos if not present
if (inp.empty() || inp.back() != llama_token_eos(model)) {
if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
inp.push_back(llama_token_eos(model));
}
chunk.tokens = inp;

View file

@ -11,6 +11,7 @@ int main(int argc, char ** argv) {
params.prompt = "The quick brown fox";
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -123,29 +123,6 @@ struct slot_params {
json input_suffix;
};
struct server_params {
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
int32_t n_threads_http = -1;
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
std::vector<std::string> api_keys;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
std::string ssl_key_file = "";
std::string ssl_cert_file = "";
#endif
bool slots_endpoint = true;
bool metrics_endpoint = false;
std::string slot_save_path;
};
struct server_slot {
int id;
int id_task = -1;
@ -1261,7 +1238,7 @@ struct server_context {
}
json get_formated_generation(const server_slot & slot) const {
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
@ -2334,561 +2311,6 @@ struct server_context {
}
};
static void server_print_usage(const char * argv0, const gpt_params & params, const server_params & sparams) {
printf("usage: %s [options]\n", argv0);
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
printf(" -ub N, --ubatch-size N physical maximum batch size (default: %d)\n", params.n_ubatch);
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
printf(" - distribute: spread execution evenly over all nodes\n");
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
printf(" - numactl: use the CPU map provided my numactl\n");
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row)\n");
printf(" -nkvo, --no-kv-offload\n");
printf(" disable KV offload\n");
}
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH);
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: unused)\n");
printf(" -hfr REPO, --hf-repo REPO\n");
printf(" Hugging Face model repository (default: unused)\n");
printf(" -hff FILE, --hf-file FILE\n");
printf(" Hugging Face model file (default: unused)\n");
printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --rpc SERVERS comma separated list of RPC servers\n");
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
printf(" --ssl-key-file FNAME path to file a PEM-encoded SSL private key\n");
printf(" --ssl-cert-file FNAME path to file a PEM-encoded SSL certificate\n");
#endif
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n");
printf(" KV cache data type for K (default: f16)\n");
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: f16)\n");
printf(" --log-format log output format: json or text (default: json)\n");
printf(" --log-disable disables logging to a file.\n");
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
printf(" --slot-save-path PATH path to save slot kv cache (default: disabled)\n");
printf("\n");
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
printf(" --chat-template JINJA_TEMPLATE\n");
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
printf(" only commonly used templates are accepted:\n");
printf(" https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template\n");
printf("\n");
}
static void server_params_parse(int argc, char ** argv, server_params & sparams, gpt_params & params) {
gpt_params default_params;
server_params default_sparams;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "--port") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
} else if (arg == "--rpc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rpc_servers = argv[i];
} else if (arg == "--host") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.hostname = argv[i];
} else if (arg == "--path") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.public_path = argv[i];
} else if (arg == "--api-key") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.api_keys.push_back(argv[i]);
} else if (arg == "--api-key-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream key_file(argv[i]);
if (!key_file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::string key;
while (std::getline(key_file, key)) {
if (key.size() > 0) {
sparams.api_keys.push_back(key);
}
}
key_file.close();
}
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
else if (arg == "--ssl-key-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.ssl_key_file = argv[i];
} else if (arg == "--ssl-cert-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.ssl_cert_file = argv[i];
}
#endif
else if (arg == "--timeout" || arg == "-to") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.read_timeout = std::stoi(argv[i]);
sparams.write_timeout = std::stoi(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-mu" || arg == "--model-url") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_url = argv[i];
} else if (arg == "-hfr" || arg == "--hf-repo") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hf_repo = argv[i];
} else if (arg == "-hff" || arg == "--hf-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hf_file = argv[i];
} else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_alias = argv[i];
} else if (arg == "-h" || arg == "--help") {
server_print_usage(argv[0], default_params, default_sparams);
exit(0);
} else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "--rope-scaling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_base = std::stof(argv[i]);
} else if (arg == "--rope-freq-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = std::stof(argv[i]);
} else if (arg == "--yarn-ext-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-attn-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
} else if (arg == "--yarn-beta-fast") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
} else if (arg == "--yarn-beta-slow") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--pooling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else { invalid_param = true; break; }
} else if (arg == "--defrag-thold" || arg == "-dt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.defrag_thold = std::stof(argv[i]);
} else if (arg == "--threads" || arg == "-t") {
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
} else if (arg == "--grp-attn-n" || arg == "-gan") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_n = std::stoi(argv[i]);
} else if (arg == "--grp-attn-w" || arg == "-gaw") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_w = std::stoi(argv[i]);
} else if (arg == "--threads-batch" || arg == "-tb") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads_batch = std::stoi(argv[i]);
} else if (arg == "--threads-http") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.n_threads_http = std::stoi(argv[i]);
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ubatch = std::stoi(argv[i]);
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (llama_supports_gpu_offload()) {
params.n_gpu_layers = std::stoi(argv[i]);
} else {
LOG_WARNING(
"Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}});
}
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
params.no_kv_offload = true;
} else if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUDA
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUDA
} else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
break;
}
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= llama_max_devices());
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) {
if (i_device < split_arg.size()) {
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
} else {
params.tensor_split[i_device] = 0.0f;
}
}
#else
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
#endif // GGML_USE_CUDA
} else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
break;
}
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
params.main_gpu = std::stoi(argv[i]);
#else
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a main GPU.", {});
#endif
} else if (arg == "--lora") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
} else if (arg == "--lora-scaled") {
if (++i >= argc) {
invalid_param = true;
break;
}
const char * lora_adapter = argv[i];
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_base = argv[i];
} else if (arg == "-v" || arg == "--verbose") {
#if SERVER_VERBOSE != 1
LOG_WARNING("server.cpp is not built with verbose logging.", {});
#else
server_verbose = true;
#endif
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
}
} else if (arg == "--embedding" || arg == "--embeddings") {
params.embedding = true;
} else if (arg == "-cb" || arg == "--cont-batching") {
params.cont_batching = true;
} else if (arg == "-fa" || arg == "--flash-attn") {
params.flash_attn = true;
} else if (arg == "-np" || arg == "--parallel") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_parallel = std::stoi(argv[i]);
} else if (arg == "-n" || arg == "--n-predict") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
} else if (arg == "-spf" || arg == "--system-prompt-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::string system_prompt;
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(system_prompt)
);
sparams.system_prompt = system_prompt;
} else if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
} else if (arg == "-ctv" || arg == "--cache-type-v") {
params.cache_type_v = argv[++i];
} else if (arg == "--log-format") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (std::strcmp(argv[i], "json") == 0) {
server_log_json = true;
} else if (std::strcmp(argv[i], "text") == 0) {
server_log_json = false;
} else {
invalid_param = true;
break;
}
} else if (arg == "--log-disable") {
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
} else if (arg == "--slots-endpoint-disable") {
sparams.slots_endpoint = false;
} else if (arg == "--metrics") {
sparams.metrics_endpoint = true;
} else if (arg == "--slot-save-path") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.slot_save_path = argv[i];
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!sparams.slot_save_path.empty() && sparams.slot_save_path[sparams.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
sparams.slot_save_path += DIRECTORY_SEPARATOR;
}
} else if (arg == "--chat-template") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (!verify_custom_template(argv[i])) {
fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
invalid_param = true;
break;
}
sparams.chat_template = argv[i];
} else if (arg == "--override-kv") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
gpt_params_handle_model_default(params);
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
// skip GH copilot requests when using default port
if (req.path == "/v1/health" || req.path == "/v1/completions") {
@ -2929,16 +2351,22 @@ int main(int argc, char ** argv) {
log_disable();
#endif
// own arguments required by this example
gpt_params params;
server_params sparams;
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
// TODO: not great to use extern vars
server_log_json = params.log_json;
server_verbose = params.verbose;
// struct that contains llama context and inference
server_context ctx_server;
server_params_parse(argc, argv, sparams, params);
if (!sparams.system_prompt.empty()) {
ctx_server.system_prompt_set(sparams.system_prompt);
if (!params.system_prompt.empty()) {
ctx_server.system_prompt_set(params.system_prompt);
}
if (params.model_alias == "unknown") {
@ -2962,10 +2390,10 @@ int main(int argc, char ** argv) {
std::unique_ptr<httplib::Server> svr;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (sparams.ssl_key_file != "" && sparams.ssl_cert_file != "") {
LOG_INFO("Running with SSL", {{"key", sparams.ssl_key_file}, {"cert", sparams.ssl_cert_file}});
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
LOG_INFO("Running with SSL", {{"key", params.ssl_file_key}, {"cert", params.ssl_file_cert}});
svr.reset(
new httplib::SSLServer(sparams.ssl_cert_file.c_str(), sparams.ssl_key_file.c_str())
new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
);
} else {
LOG_INFO("Running without SSL", {});
@ -3019,24 +2447,24 @@ int main(int argc, char ** argv) {
});
// set timeouts and change hostname and port
svr->set_read_timeout (sparams.read_timeout);
svr->set_write_timeout(sparams.write_timeout);
svr->set_read_timeout (params.timeout_read);
svr->set_write_timeout(params.timeout_write);
if (!svr->bind_to_port(sparams.hostname, sparams.port)) {
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
if (!svr->bind_to_port(params.hostname, params.port)) {
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port);
return 1;
}
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = sparams.hostname;
log_data["port"] = std::to_string(sparams.port);
log_data["hostname"] = params.hostname;
log_data["port"] = std::to_string(params.port);
if (sparams.api_keys.size() == 1) {
auto key = sparams.api_keys[0];
if (params.api_keys.size() == 1) {
auto key = params.api_keys[0];
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
} else if (sparams.api_keys.size() > 1) {
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
} else if (params.api_keys.size() > 1) {
log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
}
// load the model
@ -3053,10 +2481,10 @@ int main(int argc, char ** argv) {
const auto model_meta = ctx_server.model_meta();
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
if (sparams.chat_template.empty()) {
if (params.chat_template.empty()) {
if (!ctx_server.validate_model_chat_template()) {
LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "chatml";
params.chat_template = "chatml";
}
}
@ -3068,11 +2496,11 @@ int main(int argc, char ** argv) {
chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
chat.push_back({{"role", "user"}, {"content", "How are you?"}});
const std::string chat_example = format_chat(ctx_server.model, sparams.chat_template, chat);
const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat);
LOG_INFO("chat template", {
{"chat_example", chat_example},
{"built_in", sparams.chat_template.empty()},
{"built_in", params.chat_template.empty()},
});
}
@ -3080,7 +2508,7 @@ int main(int argc, char ** argv) {
// Middlewares
//
auto middleware_validate_api_key = [&sparams, &res_error](const httplib::Request & req, httplib::Response & res) {
auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
// TODO: should we apply API key to all endpoints, including "/health" and "/models"?
static const std::set<std::string> protected_endpoints = {
"/props",
@ -3098,7 +2526,7 @@ int main(int argc, char ** argv) {
};
// If API key is not set, skip validation
if (sparams.api_keys.empty()) {
if (params.api_keys.empty()) {
return true;
}
@ -3113,7 +2541,7 @@ int main(int argc, char ** argv) {
std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size());
if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
return true; // API key is valid
}
}
@ -3168,7 +2596,7 @@ int main(int argc, char ** argv) {
};
res.status = 200; // HTTP OK
if (sparams.slots_endpoint && req.has_param("include_slots")) {
if (params.endpoint_slots && req.has_param("include_slots")) {
health["slots"] = result.data.at("slots");
}
@ -3194,7 +2622,7 @@ int main(int argc, char ** argv) {
};
const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
if (!sparams.slots_endpoint) {
if (!params.endpoint_slots) {
res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
return;
}
@ -3218,7 +2646,7 @@ int main(int argc, char ** argv) {
};
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
if (!sparams.metrics_endpoint) {
if (!params.endpoint_metrics) {
res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
return;
}
@ -3318,14 +2746,14 @@ int main(int argc, char ** argv) {
res.status = 200; // HTTP OK
};
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
const auto handle_slots_save = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string filepath = sparams.slot_save_path + filename;
std::string filepath = params.slot_save_path + filename;
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_SAVE;
@ -3348,14 +2776,14 @@ int main(int argc, char ** argv) {
}
};
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
const auto handle_slots_restore = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string filepath = sparams.slot_save_path + filename;
std::string filepath = params.slot_save_path + filename;
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
@ -3530,9 +2958,9 @@ int main(int argc, char ** argv) {
res.set_content(models.dump(), "application/json; charset=utf-8");
};
const auto handle_chat_completions = [&ctx_server, &sparams, &res_error](const httplib::Request & req, httplib::Response & res) {
const auto handle_chat_completions = [&ctx_server, &params, &res_error](const httplib::Request & req, httplib::Response & res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), sparams.chat_template);
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
const int id_task = ctx_server.queue_tasks.get_new_id();
@ -3757,29 +3185,29 @@ int main(int argc, char ** argv) {
//
// register static assets routes
if (!sparams.public_path.empty()) {
if (!params.public_path.empty()) {
// Set the base directory for serving static files
svr->set_base_dir(sparams.public_path);
svr->set_base_dir(params.public_path);
}
// using embedded static files
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
svr->Get("/json-schema-to-grammar.mjs", handle_static_file(
json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
// add new-ui files
svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
// register API routes
svr->Get ("/health", handle_health);
@ -3798,7 +3226,7 @@ int main(int argc, char ** argv) {
svr->Post("/v1/embeddings", handle_embeddings);
svr->Post("/tokenize", handle_tokenize);
svr->Post("/detokenize", handle_detokenize);
if (!sparams.slot_save_path.empty()) {
if (!params.slot_save_path.empty()) {
// only enable slot endpoints if slot_save_path is set
svr->Post("/slots/:id_slot", handle_slots_action);
}
@ -3806,12 +3234,12 @@ int main(int argc, char ** argv) {
//
// Start the server
//
if (sparams.n_threads_http < 1) {
if (params.n_threads_http < 1) {
// +2 threads for monitoring endpoints
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
}
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
svr->new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
log_data["n_threads_http"] = std::to_string(params.n_threads_http);
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
LOG_INFO("HTTP server listening", log_data);

View file

@ -116,13 +116,6 @@ static inline void server_log(const char * level, const char * function, int lin
// chat template utils
//
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
inline bool verify_custom_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
size_t alloc_size = 0;

View file

@ -3,7 +3,7 @@
The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.
```bash
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
./simple -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is"
...

View file

@ -6,28 +6,27 @@
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
params.prompt = "Hello my name is";
params.n_predict = 32;
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
// total length of the sequence including the prompt
const int n_len = 32;
const int n_predict = params.n_predict;
// init LLM
@ -36,9 +35,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -49,12 +46,7 @@ int main(int argc, char ** argv) {
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@ -69,14 +61,14 @@ int main(int argc, char ** argv) {
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
return 1;
}
@ -115,7 +107,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
while (n_cur <= n_predict) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
@ -134,7 +126,7 @@ int main(int argc, char ** argv) {
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
LOG_TEE("\n");
break;

View file

@ -27,7 +27,8 @@ struct seq_draft {
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}

View file

@ -302,7 +302,7 @@ static struct ggml_tensor * llama_build_train_graphs(
const int rope_mode = 0;
return ggml_rope_ext(
ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
);
};

View file

@ -159,7 +159,6 @@
windows = config.legacyPackages.llamaPackagesWindows.llama-cpp;
}
// lib.optionalAttrs pkgs.stdenv.isLinux {
opencl = config.packages.default.override { useOpenCL = true; };
cuda = config.legacyPackages.llamaPackagesCuda.llama-cpp;
mpi-cpu = config.packages.default.override { useMpi = true; };

View file

@ -2702,10 +2702,8 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
if (cuda_graph_update_required) {
// Extract nodes from graph
if (cuda_ctx->cuda_graph->num_nodes == 0) {
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
}
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);

View file

@ -1,7 +1,7 @@
#include "rope.cuh"
struct rope_corr_dims {
float v[4];
float v[2];
};
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
@ -13,8 +13,7 @@ static __device__ float rope_yarn_ramp(const float low, const float high, const
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static __device__ void rope_yarn(
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
float * cos_theta, float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
@ -29,27 +28,38 @@ static __device__ void rope_yarn(
*sin_theta = sinf(theta) * mscale;
}
// rope == RoPE == rotary positional embedding
template<typename T, bool has_pos>
static __global__ void rope(
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
float ext_factor, float attn_factor, rope_corr_dims corr_dims
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
template<typename T, bool has_ff>
static __global__ void rope_norm(
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (col >= ncols) {
if (i0 >= ne0) {
return;
}
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col;
if (i0 >= n_dims) {
const int i = row*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int i = row*ne0 + i0;
const int i2 = row/p_delta_rows;
const int p = has_pos ? pos[i2] : 0;
const float theta_base = p*powf(freq_base, -float(col)/ncols);
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + 1];
@ -58,23 +68,20 @@ static __global__ void rope(
dst[i + 1] = x0*sin_theta + x1*cos_theta;
}
template<typename T, bool has_pos, bool has_freq_facs>
template<typename T, bool has_ff>
static __global__ void rope_neox(
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (col >= ncols) {
if (i0 >= ne0) {
return;
}
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int ib = col / n_dims;
const int ic = col % n_dims;
if (ib > 0) {
const int i = row*ncols + ib*n_dims + ic;
if (i0 >= n_dims) {
const int i = row*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
@ -82,16 +89,17 @@ static __global__ void rope_neox(
return;
}
const int i = row*ncols + ib*n_dims + ic/2;
const int i = row*ne0 + i0/2;
const int i2 = row/p_delta_rows;
const int p = has_pos ? pos[i2] : 0;
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor;
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
float cos_theta;
float sin_theta;
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + n_dims/2];
@ -100,144 +108,81 @@ static __global__ void rope_neox(
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
}
static __global__ void rope_glm_f32(
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
int n_ctx
) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;
if (col >= half_n_dims) {
return;
}
const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
// FIXME: this is likely wrong
const int p = pos != nullptr ? pos[i2] : 0;
const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
const float x0 = x[i + 0];
const float x1 = x[i + half_n_dims];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
const float sin_block_theta = sinf(block_theta);
const float cos_block_theta = cosf(block_theta);
const float x2 = x[i + half_n_dims * 2];
const float x3 = x[i + half_n_dims * 3];
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
}
template<typename T>
static void rope_cuda(
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
static void rope_norm_cuda(
const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
if (pos == nullptr) {
rope<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (freq_factors == nullptr) {
rope_norm<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
} else {
rope<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
rope_norm<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
}
}
template<typename T>
static void rope_neox_cuda(
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (pos == nullptr) {
if (freq_factors == nullptr) {
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
if (freq_factors == nullptr) {
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
} else {
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
}
} else {
if (freq_factors == nullptr) {
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
} else {
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
}
}
}
static void rope_glm_f32_cuda(
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, int n_ctx, cudaStream_t stream
) {
GGML_ASSERT(ncols % 4 == 0);
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
const dim3 block_nums(num_blocks_x, nrows, 1);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
static void rope_norm_cuda_f16(
const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
rope_norm_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
}
static void rope_cuda_f16(
const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
static void rope_norm_cuda_f32(
const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
}
static void rope_cuda_f32(
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
rope_norm_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
}
static void rope_neox_cuda_f16(
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
rope_neox_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
}
static void rope_neox_cuda_f32(
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
) {
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
rope_neox_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
}
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@ -258,16 +203,22 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t nrows = ggml_nrows(src0);
const int64_t nr = ggml_nrows(src0);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
// RoPE alteration for extended context
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
float freq_base;
float freq_scale;
float ext_factor;
float attn_factor;
float beta_fast;
float beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
@ -275,38 +226,28 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const float * freq_factors = nullptr;
const int32_t * pos = nullptr;
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
pos = (const int32_t *) src1_d;
const int32_t * pos = (const int32_t *) src1_d;
if (is_neox) {
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
const float * freq_factors = nullptr;
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
// compute
if (is_glm) {
GGML_ASSERT(false);
rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
} else if (is_neox) {
if (is_neox) {
if (src0->type == GGML_TYPE_F32) {
rope_neox_cuda_f32(
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_neox_cuda_f16(
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, stream
);
} else {
@ -314,14 +255,14 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
}
} else {
if (src0->type == GGML_TYPE_F32) {
rope_cuda_f32(
(const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, stream
rope_norm_cuda_f32(
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_cuda_f16(
(const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, stream
rope_norm_cuda_f16(
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, stream
);
} else {
GGML_ASSERT(false);

View file

@ -1192,7 +1192,7 @@ static void ggml_vk_rope(
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx,
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
int32_t ne01, int32_t ne02, int32_t ne03,
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
@ -1221,14 +1221,14 @@ static void ggml_vk_rope(
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t n_dims, mode, n_orig_ctx;
int32_t n_dims, mode, n_ctx_orig;
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
uint32_t nb00, nb01, nb02, nb03;
int32_t ne0;
uint32_t nb0, nb1, nb2, nb3;
} pushConsts {
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
n_dims, mode, n_orig_ctx,
n_dims, mode, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
nb00, nb01, nb02, nb03,
ne0,
@ -1692,13 +1692,16 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
#pragma message("TODO: update rope NORM mode to match NEOX mode")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
GGML_ASSERT(ne10 == ne02);
GGML_ASSERT(src0t == dstt);
// const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
@ -1708,7 +1711,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
ggml_vk_rope(
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx,
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
);

View file

@ -1,7 +1,7 @@
// An interface allowing to compute ggml_cgraph with Metal
//
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, etc.)
//
// How it works?
//

View file

@ -172,8 +172,10 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
GGML_METAL_KERNEL_TYPE_ROPE_F32,
GGML_METAL_KERNEL_TYPE_ROPE_F16,
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
@ -626,8 +628,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
@ -2285,7 +2289,7 @@ static enum ggml_status ggml_metal_graph_compute(
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
float freq_base;
float freq_scale;
@ -2302,21 +2306,22 @@ static enum ggml_status ggml_metal_graph_compute(
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
GGML_ASSERT(!is_glm && "GLM RoPE not implemented in Metal");
if (!is_neox) {
GGML_ASSERT(id_src2 == nil && "TODO: freq_factors not implemented for !is_neox");
}
id<MTLComputePipelineState> pipeline = nil;
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break;
default: GGML_ASSERT(false);
};
if (!is_neox) {
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
default: GGML_ASSERT(false);
};
} else {
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
default: GGML_ASSERT(false);
};
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -2345,14 +2350,13 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&n_past length:sizeof( int) atIndex:20];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:21];
[encoder setBytes:&mode length:sizeof( int) atIndex:22];
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:23];
[encoder setBytes:&freq_base length:sizeof( float) atIndex:24];
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:25];
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:26];
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:27];
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:28];
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:29];
[encoder setBytes:&n_ctx_orig length:sizeof( int) atIndex:22];
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;

View file

@ -1654,8 +1654,7 @@ static float rope_yarn_ramp(const float low, const float high, const int i0) {
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
thread float * cos_theta, thread float * sin_theta
) {
thread float * cos_theta, thread float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
@ -1672,55 +1671,20 @@ static void rope_yarn(
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
static float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base));
}
static void rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
}
typedef void (rope_t)(
device const void * src0,
device const int32_t * src1,
device const float * src2,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]);
template<typename T>
kernel void kernel_rope(
kernel void kernel_rope_norm(
device const void * src0,
device const int32_t * src1,
device const float * src2,
@ -1743,8 +1707,7 @@ kernel void kernel_rope(
constant uint64_t & nb3,
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant int & n_ctx_orig,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
@ -1758,69 +1721,130 @@ kernel void kernel_rope(
const int64_t i2 = tgpig[1];
const int64_t i1 = tgpig[0];
const bool is_neox = mode & 2;
float corr_dims[2];
rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
device const int32_t * pos = src1;
const int64_t p = pos[i2];
const float theta_base = (float)p;
const float theta_base = (float) pos[i2];
const float inv_ndims = -1.f/n_dims;
if (!is_neox) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
float cos_theta;
float sin_theta;
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
if (i0 < n_dims) {
const int64_t ic = i0/2;
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const T x0 = src[0];
const T x1 = src[1];
const float x0 = src[0];
const float x1 = src[1];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[1] = x0*sin_theta + x1*cos_theta;
}
} else {
for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
if (ic < n_dims) {
const int64_t i0 = ic/2;
} else {
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float freq_factor = src2 != src0 ? src2[i0] : 1.0f;
const float theta = theta_base * pow(freq_base, inv_ndims*ic);
float cos_theta, sin_theta;
rope_yarn(theta/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
template<typename T>
kernel void kernel_rope_neox(
device const void * src0,
device const int32_t * src1,
device const float * src2,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int & n_past,
constant int & n_dims,
constant int & n_ctx_orig,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int64_t i3 = tgpig[2];
const int64_t i2 = tgpig[1];
const int64_t i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
device const int32_t * pos = src1;
const float theta_base = (float) pos[i2];
const float inv_ndims = -1.f/n_dims;
float cos_theta;
float sin_theta;
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
if (i0 < n_dims) {
const int64_t ic = i0/2;
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
typedef decltype(kernel_rope_norm<float>) kernel_rope_norm_t;
typedef decltype(kernel_rope_neox<float>) kernel_rope_neox_t;
template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm<float>;
template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm<half>;
template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox<float>;
template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox<half>;
typedef void (im2col_t)(
device const float * x,

File diff suppressed because it is too large Load diff

View file

@ -1,36 +0,0 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_API void ggml_cl_init(void);
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
// GGML_API void * ggml_cl_host_malloc(size_t size);
// GGML_API void ggml_cl_host_free(void * ptr);
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
// backend API
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
#ifdef __cplusplus
}
#endif

View file

@ -8928,49 +8928,6 @@ static void rope_neox(
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
}
static void rope_glm_f32(
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
int n_ctx
, const sycl::nd_item<3> &item_ct1) {
const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int half_n_dims = ncols/4;
if (col >= half_n_dims) {
return;
}
const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const float col_theta_scale = dpct::pow(freq_base, -2.0f * col / ncols);
// FIXME: this is likely wrong
const int p = pos != nullptr ? pos[i2] : 0;
const float theta = sycl::min(p, n_ctx - 2) * freq_scale * col_theta_scale;
const float sin_theta = sycl::sin((float)theta);
const float cos_theta = sycl::cos((float)theta);
const float x0 = x[i + 0];
const float x1 = x[i + half_n_dims];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
const float block_theta =
((float)sycl::max(p - n_ctx - 2, 0)) * col_theta_scale;
const float sin_block_theta = sycl::sin((float)block_theta);
const float cos_block_theta = sycl::cos((float)block_theta);
const float x2 = x[i + half_n_dims * 2];
const float x3 = x[i + half_n_dims * 3];
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
}
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
const sycl::nd_item<3> &item_ct1) {
const int row = item_ct1.get_group(1);
@ -12520,22 +12477,6 @@ static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
}
}
static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
const int32_t *pos, float freq_scale,
int p_delta_rows, float freq_base, int n_ctx,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % 4 == 0);
const sycl::range<3> block_dims(1, 1, SYCL_ROPE_BLOCK_SIZE / 4);
const int num_blocks_x = (ncols + SYCL_ROPE_BLOCK_SIZE - 1) / SYCL_ROPE_BLOCK_SIZE;
const sycl::range<3> block_nums(1, nrows, num_blocks_x);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_glm_f32(x, dst, ncols, pos, freq_scale,
p_delta_rows, freq_base, n_ctx,
item_ct1);
});
}
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
const int nrows, dpct::queue_ptr stream) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
@ -14066,8 +14007,8 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
// RoPE alteration for extended context
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
@ -14087,7 +14028,9 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
}
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
#pragma message("TODO: update rope NORM mode to match NEOX mode")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
if (is_neox) {
pos = (const int32_t *) src1_dd;
@ -14100,13 +14043,10 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
// compute
if (is_glm) {
GGML_ASSERT(false);
rope_glm_f32_sycl(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
} else if (is_neox) {
if (is_neox) {
if (src0->type == GGML_TYPE_F32) {
rope_neox_sycl(
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,

View file

@ -3898,11 +3898,6 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
{
const int mode = ((const int32_t *) dst->op_params)[2];
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
if (is_glm) {
return nullptr;
}
if (is_neox) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
@ -4401,7 +4396,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
const float freq_base = ((float *) dst->op_params)[5];
const float freq_scale = ((float *) dst->op_params)[6];
const float ext_factor = ((float *) dst->op_params)[7];
@ -4410,12 +4405,12 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
const float beta_slow = ((float *) dst->op_params)[10];
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
GGML_ASSERT(!is_glm);
#pragma message("TODO: update rope NORM mode to match NEOX mode")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
if (is_neox) {
const float theta_scale = powf(freq_base, -2.0f/n_dims);
@ -6485,9 +6480,8 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const
case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];
const bool is_glm = mode & 4;
return !is_glm;
return true;
} break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
@ -6992,15 +6986,15 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
} else if (tensor->op == GGML_OP_ROPE) {
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ggml_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ggml_ctx = ((int32_t *) tensor->op_params)[4];
//const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3];
const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4];
float freq_base = ((float *) tensor->op_params)[5];
float freq_scale = ((float *) tensor->op_params)[6];
float ext_factor = ((float *) tensor->op_params)[7];
float attn_factor = ((float *) tensor->op_params)[8];
float beta_fast = ((float *) tensor->op_params)[9];
float beta_slow = ((float *) tensor->op_params)[10];
tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
} else if (tensor->op == GGML_OP_UNARY) {
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_SILU:

396
ggml.c
View file

@ -297,17 +297,12 @@ inline static void * ggml_calloc(size_t num, size_t size) {
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
#include "ggml-opencl.h"
#endif
#elif defined(GGML_USE_OPENBLAS)
#if defined(GGML_BLAS_USE_MKL)
#include <mkl.h>
#else
#include <cblas.h>
#endif
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
// floating point type used to accumulate sums
@ -3380,10 +3375,6 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
#if defined(GGML_USE_CLBLAST)
ggml_cl_init();
#endif
ggml_setup_op_has_task_pass();
is_first_call = false;
@ -6259,16 +6250,13 @@ static struct ggml_tensor * ggml_rope_impl(
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down,
bool inplace) {
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
@ -6289,15 +6277,13 @@ static struct ggml_tensor * ggml_rope_impl(
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &xpos_base, sizeof(float));
memcpy(params + 12, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
@ -6314,10 +6300,9 @@ struct ggml_tensor * ggml_rope(
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx) {
int mode) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
);
}
@ -6326,10 +6311,9 @@ struct ggml_tensor * ggml_rope_inplace(
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx) {
int mode) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
);
}
@ -6340,8 +6324,7 @@ struct ggml_tensor * ggml_rope_ext(
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -6349,8 +6332,8 @@ struct ggml_tensor * ggml_rope_ext(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
@ -6361,8 +6344,7 @@ struct ggml_tensor * ggml_rope_ext_inplace(
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -6370,8 +6352,8 @@ struct ggml_tensor * ggml_rope_ext_inplace(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
@ -6381,8 +6363,7 @@ struct ggml_tensor * ggml_rope_custom(
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -6390,8 +6371,8 @@ struct ggml_tensor * ggml_rope_custom(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
@ -6401,8 +6382,7 @@ struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -6410,21 +6390,11 @@ struct ggml_tensor * ggml_rope_custom_inplace(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down) {
return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
}
// ggml_rope_back
struct ggml_tensor * ggml_rope_back(
@ -6434,16 +6404,13 @@ struct ggml_tensor * ggml_rope_back(
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down) {
float beta_slow) {
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
@ -6459,15 +6426,13 @@ struct ggml_tensor * ggml_rope_back(
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &xpos_base, sizeof(float));
memcpy(params + 12, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE_BACK;
@ -9053,17 +9018,6 @@ static void ggml_compute_forward_add_f32(
const int ith = params->ith;
const int nth = params->nth;
#ifdef GGML_USE_CLBLAST
if (src1->backend == GGML_BACKEND_TYPE_GPU) {
// TODO: OpenCL kernel support full broadcast
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
if (ith == 0) {
ggml_cl_add(src0, src1, dst);
}
return;
}
#endif
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
@ -10171,17 +10125,6 @@ static void ggml_compute_forward_mul_f32(
const int ith = params->ith;
const int nth = params->nth;
#if defined(GGML_USE_CLBLAST)
if (src1->backend == GGML_BACKEND_TYPE_GPU) {
// TODO: OpenCL kernel support full broadcast
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
if (ith == 0) {
ggml_cl_mul(src0, src1, dst);
}
return;
}
#endif
const int64_t nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
@ -12417,15 +12360,6 @@ static void ggml_compute_forward_mul_mat(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
const int64_t ne_plane = ne01*ne00;
@ -12873,8 +12807,6 @@ static void ggml_compute_forward_out_prod_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CLBLAST)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
bool use_blas = ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
@ -13072,7 +13004,7 @@ static void ggml_compute_forward_out_prod_q_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (params->type == GGML_TASK_TYPE_INIT) {
if (ith != 0) {
@ -14269,8 +14201,7 @@ static float rope_yarn_ramp(const float low, const float high, const int i0) {
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
float * cos_theta, float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
@ -14287,18 +14218,19 @@ static void rope_yarn(
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
}
static void ggml_rope_cache_init(
float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale
) {
float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale) {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
float theta = theta_base;
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
rope_yarn(
theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
);
cache[i0 + 1] *= sin_sign;
@ -14307,11 +14239,11 @@ static void ggml_rope_cache_init(
}
GGML_CALL void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
dims[0] = MAX(0, start);
dims[1] = MIN(n_dims - 1, end);
}
@ -14331,15 +14263,11 @@ static void ggml_compute_forward_rope_f32(
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
// these two only relevant for xPos RoPE:
float xpos_base;
bool xpos_down;
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
@ -14347,8 +14275,6 @@ static void ggml_compute_forward_rope_f32(
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
GGML_TENSOR_UNARY_OP_LOCALS
@ -14378,20 +14304,15 @@ static void ggml_compute_forward_rope_f32(
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
const float * freq_factors = NULL;
if (is_neox) {
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
// backward process uses inverse rotation by cos and sin.
@ -14406,95 +14327,51 @@ static void ggml_compute_forward_rope_f32(
const int64_t p = pos[i2];
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta_base = (float)p;
if (is_glm) {
theta_base = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta_base);
const float sin_theta = sinf(theta_base) * sin_sign;
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
block_theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
const float x2 = src[n_dims];
const float x3 = src[n_dims/2*3];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
if (!is_neox) {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
// zeta scaling for xPos only:
float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
if (xpos_down) zeta = 1.0f / zeta;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[1];
dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[1] = x0*sin_theta + x1*cos_theta;
}
} else {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t i0 = ic/2;
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const int64_t ic = i0/2;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
sin_theta *= sin_sign;
theta_base *= theta_scale;
const float x0 = src[0];
const float x1 = src[n_dims/2];
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
}
}
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
@ -14519,8 +14396,8 @@ static void ggml_compute_forward_rope_f16(
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
@ -14556,20 +14433,15 @@ static void ggml_compute_forward_rope_f16(
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
const float * freq_factors = NULL;
if (is_neox) {
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
// backward process uses inverse rotation by cos and sin.
@ -14584,43 +14456,14 @@ static void ggml_compute_forward_rope_f16(
const int64_t p = pos[i2];
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta_base = (float)p;
if (is_glm) {
theta_base = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta_base);
const float sin_theta = sinf(theta_base) * sin_sign;
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
block_theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
if (!is_neox) {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
@ -14634,41 +14477,30 @@ static void ggml_compute_forward_rope_f16(
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t i0 = ic/2;
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const int64_t ic = i0/2;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
sin_theta *= sin_sign;
theta_base *= theta_scale;
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
} else {
const int64_t i0 = ic;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
}
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
@ -18369,9 +18201,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
//const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
@ -18379,8 +18211,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
src0->grad = ggml_add_or_set(ctx,
src0->grad,
@ -18390,16 +18220,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src2,
n_dims,
mode,
n_ctx,
n_orig_ctx,
n_ctx_orig,
freq_base,
freq_scale,
ext_factor,
attn_factor,
beta_fast,
beta_slow,
xpos_base,
xpos_down),
beta_slow),
zero_table);
}
} break;
@ -18409,9 +18236,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
//const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
//const int n_ctx = ((int32_t *) tensor->op_params)[3];
const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
@ -18419,8 +18246,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
src0->grad = ggml_add_or_set(ctx,
src0->grad,
@ -18430,16 +18255,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src2,
n_dims,
mode,
n_ctx,
n_orig_ctx,
n_ctx_orig,
freq_base,
freq_scale,
ext_factor,
attn_factor,
beta_fast,
beta_slow,
xpos_base,
xpos_down,
false),
zero_table);
}
@ -19546,11 +19368,6 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
{
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
} else
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node)) {
if (node->src[0]->type != GGML_TYPE_F32) {
@ -22859,7 +22676,7 @@ int ggml_cpu_has_wasm_simd(void) {
}
int ggml_cpu_has_blas(void) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
return 1;
#else
return 0;
@ -22874,14 +22691,6 @@ int ggml_cpu_has_cuda(void) {
#endif
}
int ggml_cpu_has_clblast(void) {
#if defined(GGML_USE_CLBLAST)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_vulkan(void) {
#if defined(GGML_USE_VULKAN)
return 1;
@ -22915,8 +22724,7 @@ int ggml_cpu_has_rpc(void) {
}
int ggml_cpu_has_gpublas(void) {
return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
ggml_cpu_has_sycl();
return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
}
int ggml_cpu_has_sse3(void) {

37
ggml.h
View file

@ -1465,7 +1465,6 @@ extern "C" {
// rotary position embedding
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
// if mode & 2 == 1, GPT-NeoX style
// if mode & 4 == 1, ChatGLM style
//
// b is an int32 vector with size a->ne[2], it contains the positions
// c is freq factors (e.g. phi3-128k), (optional)
@ -1474,8 +1473,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx);
int mode);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_inplace(
@ -1483,8 +1481,7 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx);
int mode);
// custom RoPE
GGML_API struct ggml_tensor * ggml_rope_ext(
@ -1494,8 +1491,7 @@ extern "C" {
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -1511,8 +1507,7 @@ extern "C" {
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -1526,8 +1521,7 @@ extern "C" {
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -1542,8 +1536,7 @@ extern "C" {
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
@ -1552,17 +1545,9 @@ extern "C" {
float beta_slow),
"use ggml_rope_ext_inplace instead");
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down);
// compute correction dims for YaRN RoPE scaling
GGML_CALL void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
@ -1573,16 +1558,13 @@ extern "C" {
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down);
float beta_slow);
// clamp
// in-place, returns view(a)
@ -2425,7 +2407,6 @@ extern "C" {
GGML_API int ggml_cpu_has_wasm_simd (void);
GGML_API int ggml_cpu_has_blas (void);
GGML_API int ggml_cpu_has_cuda (void);
GGML_API int ggml_cpu_has_clblast (void);
GGML_API int ggml_cpu_has_vulkan (void);
GGML_API int ggml_cpu_has_kompute (void);
GGML_API int ggml_cpu_has_gpublas (void);

View file

@ -14,7 +14,7 @@ void main() {
const bool is_neox = (pcs.mode & 2) != 0;
float corr_dims[2];
rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);

View file

@ -14,7 +14,7 @@ void main() {
const bool is_neox = (pcs.mode & 2) != 0;
float corr_dims[2];
rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);

View file

@ -9,7 +9,7 @@ layout (push_constant) uniform parameter {
uint outOff;
int n_dims;
int mode;
int n_orig_ctx;
int n_ctx_orig;
float freq_base;
float freq_scale;
float ext_factor;
@ -54,14 +54,14 @@ void rope_yarn(
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * log(n_orig_ctx / (n_rot * TWOPI_F)) / (2 * log(base));
float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
return n_dims * log(n_ctx_orig / (n_rot * TWOPI_F)) / (2 * log(base));
}
void rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, out float dims[2]
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, out float dims[2]
) {
// start and end correction dims
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
}

390
llama.cpp
View file

@ -13,8 +13,6 @@
#ifdef GGML_USE_CUDA
# include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
# include "ggml-opencl.h"
#elif defined(GGML_USE_VULKAN)
# include "ggml-vulkan.h"
#elif defined(GGML_USE_SYCL)
@ -110,7 +108,7 @@
//
LLAMA_ATTRIBUTE_FORMAT(2, 3)
static void llama_log_internal (ggml_log_level level, const char* format, ...);
static void llama_log_internal (ggml_log_level level, const char * format, ...);
static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
@ -1851,7 +1849,7 @@ struct llama_hparams {
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
uint32_t n_yarn_orig_ctx;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
// for State Space Models
@ -1893,7 +1891,7 @@ struct llama_hparams {
if (this->n_expert_shared != other.n_expert_shared) return true;
if (this->rope_finetuned != other.rope_finetuned) return true;
if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
if (this->ssm_d_conv != other.ssm_d_conv) return true;
if (this->ssm_d_inner != other.ssm_d_inner) return true;
@ -1952,7 +1950,7 @@ struct llama_cparams {
float rope_freq_base;
float rope_freq_scale;
uint32_t n_yarn_orig_ctx;
uint32_t n_ctx_orig_yarn;
// These hyperparameters are not exposed in GGUF, because all
// existing YaRN models use the same values for them.
float yarn_ext_factor;
@ -2407,8 +2405,6 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_
buft = ggml_backend_vk_buffer_type(gpu);
#elif defined(GGML_USE_SYCL)
buft = ggml_backend_sycl_buffer_type(gpu);
#elif defined(GGML_USE_CLBLAST)
buft = ggml_backend_opencl_buffer_type();
#elif defined(GGML_USE_KOMPUTE)
buft = ggml_backend_kompute_buffer_type(gpu);
if (buft == nullptr) {
@ -2531,10 +2527,6 @@ static bool llama_kv_cache_init(
}
}
#ifdef GGML_USE_CLBLAST
offload = false;
#endif
// count used buffer types
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
if (offload) {
@ -4014,8 +4006,8 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
hparams.rope_finetuned = rope_finetuned;
hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
// rope_freq_base (optional)
hparams.rope_freq_base_train = 10000.0f;
@ -4977,7 +4969,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
@ -7146,7 +7138,7 @@ struct llm_build_context {
const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
const int32_t n_outputs;
const int32_t kv_head; // index of where we store new KV data in the cache
const int32_t n_orig_ctx;
const int32_t n_ctx_orig;
const bool flash_attn;
@ -7195,7 +7187,7 @@ struct llm_build_context {
n_kv (worst_case ? kv_self.size : kv_self.n),
n_outputs (worst_case ? n_tokens : lctx.n_outputs),
kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
n_orig_ctx (cparams.n_yarn_orig_ctx),
n_ctx_orig (cparams.n_ctx_orig_yarn),
flash_attn (cparams.flash_attn),
pooling_type (cparams.pooling_type),
rope_type (hparams.rope_type),
@ -7253,7 +7245,7 @@ struct llm_build_context {
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
0),
lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(tmp, "K_shifted", il);
@ -7362,7 +7354,7 @@ struct llm_build_context {
// choose long/short freq factors based on the context size
const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
return model.layers[il].rope_long;
}
@ -7478,14 +7470,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -7609,12 +7601,12 @@ struct llm_build_context {
case MODEL_7B:
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
break;
@ -7721,14 +7713,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -7841,13 +7833,13 @@ struct llm_build_context {
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -7965,14 +7957,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -8118,14 +8110,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -8472,14 +8464,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -8918,14 +8910,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9037,13 +9029,13 @@ struct llm_build_context {
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9149,14 +9141,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9263,14 +9255,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9415,7 +9407,7 @@ struct llm_build_context {
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
@ -9426,7 +9418,7 @@ struct llm_build_context {
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9537,7 +9529,7 @@ struct llm_build_context {
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
@ -9546,7 +9538,7 @@ struct llm_build_context {
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9654,13 +9646,13 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il);
@ -9862,14 +9854,14 @@ struct llm_build_context {
struct ggml_tensor * Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -9978,14 +9970,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -10095,14 +10087,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -10225,14 +10217,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -10345,7 +10337,7 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
@ -10354,7 +10346,7 @@ struct llm_build_context {
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il);
@ -10465,14 +10457,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -10755,14 +10747,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -10886,14 +10878,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -11000,14 +10992,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -11135,14 +11127,14 @@ struct llm_build_context {
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
@ -11352,7 +11344,7 @@ struct llm_build_context {
q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
@ -11361,7 +11353,7 @@ struct llm_build_context {
k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
@ -14721,260 +14713,6 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
//
// Beam search
//
struct llama_beam {
std::vector<llama_token> tokens;
float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Initialize end-of-beam to false. Callback sets this to true.
// Sort beams by probability. In case of ties, prefer beams at eob.
bool operator<(const llama_beam & rhs) const {
return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
}
// Shift off first n tokens and discard them.
void shift_tokens(const size_t n) {
if (n) {
std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
tokens.resize(tokens.size() - n);
}
}
llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
};
// A struct for calculating logit-related info.
struct llama_logit_info {
const float * const logits;
const int n_vocab;
const float max_l;
const float normalizer;
struct sum_exp {
float max_l;
float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
};
llama_logit_info(llama_context * ctx)
: logits(llama_get_logits(ctx))
, n_vocab(llama_n_vocab(llama_get_model(ctx)))
, max_l(*std::max_element(logits, logits + n_vocab))
, normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
{ }
llama_token_data get_token_data(const llama_token token_id) const {
constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
return {token_id, logits[token_id], p};
}
// Return top k token_data by logit.
std::vector<llama_token_data> top_k(size_t k) {
std::vector<llama_token_data> min_heap; // min-heap by logit
const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
min_heap.reserve(k_min);
for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
min_heap.push_back(get_token_data(token_id));
}
auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
std::make_heap(min_heap.begin(), min_heap.end(), comp);
for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
if (min_heap.front().logit < logits[token_id]) {
std::pop_heap(min_heap.begin(), min_heap.end(), comp);
min_heap.back().id = token_id;
min_heap.back().logit = logits[token_id];
std::push_heap(min_heap.begin(), min_heap.end(), comp);
}
}
return min_heap;
}
float probability_from_logit(float logit) const {
return normalizer * std::exp(logit - max_l);
}
};
struct llama_beam_search_data {
llama_context * ctx;
size_t n_beams;
int n_past;
int n_predict;
std::vector<llama_beam> beams;
std::vector<llama_beam> next_beams;
// Re-calculated on each loop iteration
size_t common_prefix_length;
// Used to communicate to/from callback on beams state.
std::vector<llama_beam_view> beam_views;
llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
: ctx(ctx)
, n_beams(n_beams)
, n_past(n_past)
, n_predict(n_predict)
, beam_views(n_beams) {
beams.reserve(n_beams);
next_beams.reserve(n_beams);
}
// Collapse beams to a single beam given by index.
void collapse_beams(const size_t beam_idx) {
if (0u < beam_idx) {
std::swap(beams[0], beams[beam_idx]);
}
beams.resize(1);
}
// Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
// The repetitive patterns below reflect the 2 stages of heaps:
// * Gather elements until the vector is full, then call std::make_heap() on it.
// * If the heap is full and a new element is found that should be included, pop the
// least element to the back(), replace it with the new, then push it into the heap.
void fill_next_beams_by_top_probabilities(llama_beam & beam) {
// Min-heaps use a greater-than comparator.
const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
if (beam.eob) {
// beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
if (next_beams.size() < n_beams) {
next_beams.push_back(std::move(beam));
if (next_beams.size() == n_beams) {
std::make_heap(next_beams.begin(), next_beams.end(), comp);
}
} else if (next_beams.front().p < beam.p) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = std::move(beam);
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
} else {
// beam is not at end-of-sentence, so branch with next top_k tokens.
if (!beam.tokens.empty()) {
llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
}
llama_logit_info logit_info(ctx);
std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
// Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
// call in loop() will conclusively fill in the kv slot once the beams converge at this position.
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
size_t i=0;
if (next_beams.size() < n_beams) {
for (; next_beams.size() < n_beams ; ++i) {
llama_beam next_beam = beam;
next_beam.tokens.push_back(next_tokens[i].id);
next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
next_beams.push_back(std::move(next_beam));
}
std::make_heap(next_beams.begin(), next_beams.end(), comp);
} else {
for (; next_beams.front().p == 0.0f ; ++i) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = beam;
next_beams.back().tokens.push_back(next_tokens[i].id);
next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
}
for (; i < n_beams ; ++i) {
const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
if (next_beams.front().p < next_p) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = beam;
next_beams.back().tokens.push_back(next_tokens[i].id);
next_beams.back().p = next_p;
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
}
}
}
// Find common_prefix_length based on beams.
// Requires beams is not empty.
size_t find_common_prefix_length() {
size_t common_prefix_length = beams[0].tokens.size();
for (size_t i = 1 ; i < beams.size() ; ++i) {
common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
for (size_t j = 0 ; j < common_prefix_length ; ++j) {
if (beams[0].tokens[j] != beams[i].tokens[j]) {
common_prefix_length = j;
break;
}
}
}
return common_prefix_length;
}
// Construct beams_state to send back to caller via the callback function.
// Side effect: set common_prefix_length = find_common_prefix_length();
llama_beams_state get_beams_state(const bool last_call) {
for (size_t i = 0 ; i < beams.size() ; ++i) {
beam_views[i] = beams[i].view();
}
common_prefix_length = find_common_prefix_length();
return {beam_views.data(), beams.size(), common_prefix_length, last_call};
}
// Loop:
// * while i < n_predict, AND
// * any of the beams have not yet reached end-of-beam (eob), AND
// * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
// (since all other beam probabilities can only decrease)
void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
!beams[top_beam_index()].eob ; ++i) {
callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
if (common_prefix_length) {
llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
n_past += common_prefix_length;
}
// Zero-out next_beam probabilities to place them last in following min-heap.
std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
for (llama_beam & beam : beams) {
beam.shift_tokens(common_prefix_length);
fill_next_beams_by_top_probabilities(beam);
}
// next_beams become the beams of next/final iteration. Swap them to re-use memory.
beams.swap(next_beams);
renormalize_beam_probabilities(beams);
}
collapse_beams(top_beam_index());
callback(callback_data, get_beams_state(true));
}
// As beams grow, the cumulative probabilities decrease.
// Renormalize them to avoid floating point underflow.
static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
}
// Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
size_t top_beam_index() {
return std::max_element(beams.begin(), beams.end()) - beams.begin();
}
// Copy (p,eob) for each beam which may have been changed by the callback.
void update_beams_from_beam_views() {
for (size_t i = 0 ; i < beams.size() ; ++i) {
beams[i].p = beam_views[i].p;
beams[i].eob = beam_views[i].eob;
}
}
};
void llama_beam_search(llama_context * ctx,
llama_beam_search_callback_fn_t callback, void * callback_data,
size_t n_beams, int n_past, int n_predict) {
assert(ctx);
const int64_t t_start_sample_us = ggml_time_us();
llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
beam_search_data.loop(callback, callback_data);
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
//
// quantization
//
@ -16185,7 +15923,7 @@ bool llama_supports_mlock(void) {
}
bool llama_supports_gpu_offload(void) {
#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
return true;
@ -16339,8 +16077,8 @@ struct llama_context * llama_new_context_with_model(
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
hparams.n_ctx_train;
cparams.cb_eval = params.cb_eval;

62
llama.h
View file

@ -109,16 +109,16 @@ extern "C" {
enum llama_token_attr {
LLAMA_TOKEN_ATTR_UNDEFINED = 0,
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 1,
LLAMA_TOKEN_ATTR_UNUSED = 1 << 2,
LLAMA_TOKEN_ATTR_NORMAL = 1 << 3,
LLAMA_TOKEN_ATTR_CONTROL = 1 << 4, // SPECIAL?
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 5,
LLAMA_TOKEN_ATTR_BYTE = 1 << 6,
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 7,
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 8,
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 9,
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 10,
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
};
// model file types
@ -1056,49 +1056,9 @@ extern "C" {
llama_token token);
//
// Beam search
// Model split
//
struct llama_beam_view {
const llama_token * tokens;
size_t n_tokens;
float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Callback should set this to true when a beam is at end-of-beam.
};
// Passed to beam_search_callback function.
// Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
// (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
// These pointers are valid only during the synchronous callback, so should not be saved.
struct llama_beams_state {
struct llama_beam_view * beam_views;
size_t n_beams; // Number of elements in beam_views[].
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
bool last_call; // True iff this is the last callback invocation.
};
// Type of pointer to the beam_search_callback function.
// void* callback_data is any custom data passed to llama_beam_search, that is subsequently
// passed back to beam_search_callback. This avoids having to use global variables in the callback.
typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
/// @details Deterministically returns entire sentence constructed by a beam search.
/// @param ctx Pointer to the llama_context.
/// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
/// @param callback_data A pointer that is simply passed back to callback.
/// @param n_beams Number of beams to use.
/// @param n_past Number of tokens already evaluated.
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
LLAMA_API void llama_beam_search(
struct llama_context * ctx,
llama_beam_search_callback_fn_t callback,
void * callback_data,
size_t n_beams,
int32_t n_past,
int32_t n_predict);
/// @details Build a split GGUF final path for this chunk.
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
// Returns the split_path length.

View file

@ -5,7 +5,6 @@ set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(LLAMA_BLAS @LLAMA_BLAS@)
set(LLAMA_CUDA @LLAMA_CUDA@)
set(LLAMA_METAL @LLAMA_METAL@)
set(LLAMA_CLBLAST @LLAMA_CLBLAST@)
set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@)
set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@)
@ -36,10 +35,6 @@ if (LLAMA_METAL)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
if (LLAMA_CLBLAST)
find_package(CLBlast REQUIRED)
endif()
if (LLAMA_HIPBLAS)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)

View file

@ -19,17 +19,17 @@ logger = logging.getLogger("compare-llama-bench")
# Properties by which to differentiate results per commit:
KEY_PROPERTIES = [
"cpu_info", "gpu_info", "n_gpu_layers", "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas",
"cpu_info", "gpu_info", "n_gpu_layers", "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas",
"blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "embeddings", "n_threads",
"type_k", "type_v", "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen"
]
# Properties that are boolean and are converted to Yes/No for the table:
BOOL_PROPERTIES = ["cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"]
BOOL_PROPERTIES = ["cuda", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"]
# Header names for the table:
PRETTY_NAMES = {
"cuda": "CUDA", "opencl": "OpenCL", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC",
"cuda": "CUDA", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC",
"gpu_blas": "GPU BLAS", "blas": "BLAS", "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model",
"model_size": "Model Size [GiB]", "model_n_params": "Num. of Par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size",
"n_threads": "Threads", "type_k": "K type", "type_v": "V type", "n_gpu_layers": "GPU layers", "split_mode": "Split mode",

View file

@ -13,12 +13,12 @@ logger = logging.getLogger("run-with-preset")
CLI_ARGS_MAIN_PERPLEXITY = [
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct",
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix",
"interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
"low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
"model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n",
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "repeat-last-n",
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
"simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
"verbose-prompt"

View file

@ -3,7 +3,7 @@
# Helper script for deploying llama.cpp server with a single Bash command
#
# - Works on Linux and macOS
# - Supports: CPU, CUDA, Metal, OpenCL
# - Supports: CPU, CUDA, Metal
# - Can run all GGUF models from HuggingFace
# - Can serve requests in parallel
# - Always builds latest llama.cpp from GitHub
@ -19,7 +19,7 @@
# --port: port number, default is 8888
# --repo: path to a repo containing GGUF model files
# --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input
# --backend: cpu, cuda, metal, opencl, depends on the OS
# --backend: cpu, cuda, metal, depends on the OS
# --gpu-id: gpu id, default is 0
# --n-parallel: number of parallel requests, default is 8
# --n-kv: KV cache size, default is 4096
@ -72,7 +72,7 @@ function print_usage {
printf " --port: port number, default is 8888\n"
printf " --repo: path to a repo containing GGUF model files\n"
printf " --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input\n"
printf " --backend: cpu, cuda, metal, opencl, depends on the OS\n"
printf " --backend: cpu, cuda, metal, depends on the OS\n"
printf " --gpu-id: gpu id, default is 0\n"
printf " --n-parallel: number of parallel requests, default is 8\n"
printf " --n-kv: KV cache size, default is 4096\n"
@ -387,9 +387,6 @@ elif [[ "$backend" == "cpu" ]]; then
elif [[ "$backend" == "metal" ]]; then
printf "[+] Building with Metal backend\n"
make -j server $log
elif [[ "$backend" == "opencl" ]]; then
printf "[+] Building with OpenCL backend\n"
LLAMA_CLBLAST=1 make -j server $log
else
printf "[-] Unknown backend: %s\n" "$backend"
exit 1
@ -407,8 +404,6 @@ elif [[ "$backend" == "cpu" ]]; then
args="-ngl 0"
elif [[ "$backend" == "metal" ]]; then
args="-ngl 999"
elif [[ "$backend" == "opencl" ]]; then
args="-ngl 999"
else
printf "[-] Unknown backend: %s\n" "$backend"
exit 1

View file

@ -106,8 +106,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# src/ggml-kompute.h -> ggml-kompute.h
# src/ggml-metal.h -> ggml-metal.h
# src/ggml-metal.m -> ggml-metal.m
# src/ggml-opencl.cpp -> ggml-opencl.cpp
# src/ggml-opencl.h -> ggml-opencl.h
# src/ggml-quants.c -> ggml-quants.c
# src/ggml-quants.h -> ggml-quants.h
# src/ggml-rpc.cpp -> ggml-rpc.cpp
@ -143,8 +141,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
-e 's/src\/ggml-kompute\.h/ggml-kompute.h/g' \
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
-e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \
-e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \
-e 's/src\/ggml-quants\.c/ggml-quants.c/g' \
-e 's/src\/ggml-quants\.h/ggml-quants.h/g' \
-e 's/src\/ggml-rpc\.cpp/ggml-rpc.cpp/g' \

View file

@ -14,8 +14,6 @@ cp -rpv ../ggml/src/ggml-kompute.h ./ggml-kompute.h
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c
cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h
cp -rpv ../ggml/src/ggml-rpc.cpp ./ggml-rpc.cpp

View file

@ -1141,7 +1141,7 @@ struct test_rope : public test_case {
const std::array<int64_t, 4> ne_a;
int n_dims;
int mode;
int n_ctx;
int n_ctx; // used to generate positions
float fs; // freq_scale
float ef; // ext_factor
float af; // attn_factor
@ -1168,7 +1168,7 @@ struct test_rope : public test_case {
}
ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
ggml_tensor * freq = ff ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2) : nullptr;
ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, n_ctx, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
return out;
}
@ -1615,7 +1615,7 @@ struct llama_hparams {
// cparams
static constexpr uint32_t n_ctx = 512; // user-specified context size
static constexpr uint32_t n_orig_ctx = n_ctx;
static constexpr uint32_t n_ctx_orig = n_ctx;
// batch
int32_t n_tokens;
@ -1806,13 +1806,13 @@ struct test_llama : public test_llm {
Qcur = ggml_rope_ext(
ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
@ -1931,12 +1931,12 @@ struct test_falcon : public test_llm {
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, 0, hp.n_orig_ctx,
ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, 0, hp.n_orig_ctx,
ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
@ -2236,15 +2236,15 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (float ef : { 0.0f, 0.7465f }) {
for (float af : { 1.0f, 1.4245f }) {
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
// TODO: ff not supported yet for !neox
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 7B
if (all) {
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 13B
test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 30B
test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 65B
}
for (bool ff : {false, true}) { // freq_factors
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B
if (all) {
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B
test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B
test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B
}
if (all) {
test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
@ -2256,6 +2256,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
}
}
all = false;
}
}

View file

@ -1465,7 +1465,7 @@ int main(int argc, const char ** argv) {
continue;
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode, 0));
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode));
GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY);
@ -1505,7 +1505,7 @@ int main(int argc, const char ** argv) {
continue;
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode, 0));
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode));
GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);

View file

@ -162,12 +162,12 @@ int main(int /*argc*/, const char ** /*argv*/) {
x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
// 100, 101, 102, ..., 172
struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode, 1024);
struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode);
// -67, -67, -67, ..., -67
struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode, 1024); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
// 33, 34, 35, ..., 105
struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode, 1024);
struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode);
ggml_cgraph * gf = ggml_new_graph(ctx0);