update README.md
This commit is contained in:
parent
6cbf55a64b
commit
7acb1241c6
1 changed files with 1 additions and 4 deletions
|
@ -15,8 +15,7 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
|
|||
--train-data "shakespeare.txt" \
|
||||
--save-every 10 \
|
||||
--threads 6 --adam-iter 30 --batch 4 --ctx 64 \
|
||||
--use-checkpointing --use-alloc \
|
||||
--mem-lora 2 --mem-compute 1 --mem-compute0 20
|
||||
--use-checkpointing
|
||||
|
||||
# predict
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
@ -28,8 +27,6 @@ The pattern "ITERATION" in the output filenames will be replaced with the iterat
|
|||
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
|
||||
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
|
||||
|
||||
To change the amount of memory for finetuning with memory allocator (`--use-alloc`, used by default), you can use `--mem-compute0 N` to specify the number of gigabytes.
|
||||
|
||||
The LORA rank is configured for each model tensor type separately with these command line options:
|
||||
|
||||
```bash
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue