convert_hf : faster lazy safetensors (#8482)
* convert_hf : faster lazy safetensors This makes '--dry-run' much, much faster. * convert_hf : fix memory leak in lazy MoE conversion The '_lazy' queue was sometimes self-referential, which caused reference cycles of objects old enough to avoid garbage collection until potential memory exhaustion.
This commit is contained in:
parent
97bdd26eee
commit
7acfd4e8d5
3 changed files with 65 additions and 60 deletions
|
@ -3,7 +3,6 @@ from abc import ABC, ABCMeta, abstractmethod
|
|||
|
||||
import logging
|
||||
from typing import Any, Callable
|
||||
from collections import deque
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import DTypeLike
|
||||
|
@ -74,20 +73,18 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
_tensor_type: type
|
||||
_meta: Any
|
||||
_data: Any | None
|
||||
_lazy: deque[LazyBase] # shared within a graph, to avoid deep recursion when making eager
|
||||
_args: tuple
|
||||
_func: Callable[[tuple], Any] | None
|
||||
_kwargs: dict[str, Any]
|
||||
_func: Callable[[Any], Any] | None
|
||||
|
||||
def __init__(self, *, meta: Any, data: Any | None = None, lazy: deque[LazyBase] | None = None, args: tuple = (), func: Callable[[tuple], Any] | None = None):
|
||||
def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
|
||||
super().__init__()
|
||||
self._meta = meta
|
||||
self._data = data
|
||||
self._lazy = lazy if lazy is not None else deque()
|
||||
self._args = args
|
||||
self._kwargs = kwargs if kwargs is not None else {}
|
||||
self._func = func
|
||||
assert self._func is not None or self._data is not None
|
||||
if self._data is None:
|
||||
self._lazy.append(self)
|
||||
|
||||
def __init_subclass__(cls) -> None:
|
||||
if "_tensor_type" not in cls.__dict__:
|
||||
|
@ -117,6 +114,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
args = ((use_self,) if use_self is not None else ()) + args
|
||||
|
||||
meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
|
||||
# TODO: maybe handle tensors in kwargs too
|
||||
|
||||
if isinstance(meta_noop, bool) and not meta_noop:
|
||||
try:
|
||||
|
@ -140,23 +138,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
|
||||
|
||||
if isinstance(res, cls._tensor_type):
|
||||
class CollectSharedLazy:
|
||||
# emulating a static variable
|
||||
shared_lazy: None | deque[LazyBase] = None
|
||||
|
||||
@staticmethod
|
||||
def collect_replace(t: LazyBase):
|
||||
if CollectSharedLazy.shared_lazy is None:
|
||||
CollectSharedLazy.shared_lazy = t._lazy
|
||||
else:
|
||||
CollectSharedLazy.shared_lazy.extend(t._lazy)
|
||||
t._lazy = CollectSharedLazy.shared_lazy
|
||||
|
||||
LazyBase._recurse_apply(args, CollectSharedLazy.collect_replace)
|
||||
|
||||
shared_lazy = CollectSharedLazy.shared_lazy
|
||||
|
||||
return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs))
|
||||
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
|
||||
else:
|
||||
del res # not needed
|
||||
# non-tensor return likely relies on the contents of the args
|
||||
|
@ -168,26 +150,18 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
@classmethod
|
||||
def to_eager(cls, t: Any) -> Any:
|
||||
def simple_to_eager(_t: LazyBase) -> Any:
|
||||
def already_eager_to_eager(_t: LazyBase) -> Any:
|
||||
assert _t._data is not None
|
||||
if _t._data is not None:
|
||||
return _t._data
|
||||
|
||||
while _t._data is None:
|
||||
lt = _t._lazy.popleft()
|
||||
if lt._data is not None:
|
||||
# Lazy tensor did not belong in the lazy queue.
|
||||
# Weirdly only happens with Bloom models...
|
||||
# likely because tensors aren't unique in the queue.
|
||||
# The final output is still the same as in eager mode,
|
||||
# so it's safe to ignore this.
|
||||
continue
|
||||
assert lt._func is not None
|
||||
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
|
||||
lt._data = lt._func(lt._args)
|
||||
# sanity check
|
||||
assert lt._data is not None
|
||||
assert lt._data.dtype == lt._meta.dtype
|
||||
assert lt._data.shape == lt._meta.shape
|
||||
# NOTE: there's a recursion limit in Python (usually 1000)
|
||||
|
||||
assert _t._func is not None
|
||||
_t._args = cls._recurse_apply(_t._args, simple_to_eager)
|
||||
_t._data = _t._func(*_t._args, **_t._kwargs)
|
||||
# sanity check
|
||||
assert _t._data is not None
|
||||
assert _t._data.dtype == _t._meta.dtype
|
||||
assert _t._data.shape == _t._meta.shape
|
||||
|
||||
return _t._data
|
||||
|
||||
|
@ -206,7 +180,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||
@classmethod
|
||||
def from_eager(cls, t: Any) -> Any:
|
||||
if type(t) is cls:
|
||||
# already eager
|
||||
# already lazy
|
||||
return t
|
||||
elif isinstance(t, cls._tensor_type):
|
||||
return cls(meta=cls.eager_to_meta(t), data=t)
|
||||
|
@ -228,8 +202,7 @@ class LazyNumpyTensor(LazyBase):
|
|||
def astype(self, dtype, *args, **kwargs):
|
||||
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
|
||||
full_args = (self, dtype,) + args
|
||||
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
|
||||
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
|
||||
return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
|
||||
|
||||
def tofile(self, *args, **kwargs):
|
||||
eager = LazyNumpyTensor.to_eager(self)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue