Add support for encoder-only T5 models (#8900)
* gguf-py : add T5ENCODER model architecture * common : call llama_decode() during warmup only if the model has decoder * convert-hf : add T5EncoderModel * llama : add llama_model_has_decoder() API function * llama : split build_t5() into build_t5_encoder() and build_t5_decoder() * llama : add support for LLM_ARCH_T5ENCODER * llama-embedding : add support for LLAMA_POOLING_TYPE_NONE * llama-embedding : add support for encoder-only models --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
This commit is contained in:
parent
911b437f22
commit
7c3f55c100
6 changed files with 702 additions and 335 deletions
|
@ -504,6 +504,9 @@ extern "C" {
|
|||
// Returns true if the model contains an encoder that requires llama_encode() call
|
||||
LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
|
||||
|
||||
// Returns true if the model contains a decoder that requires llama_decode() call
|
||||
LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
|
||||
|
||||
// For encoder-decoder models, this function returns id of the token that must be provided
|
||||
// to the decoder to start generating output sequence. For other models, it returns -1.
|
||||
LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue