ggml : make i-quants work with super-blocks of 64 (CPU,Metal) (#5760)
* WIP: make i-quants work for QK_K = 64 * iq2_xs: attempt to fix AVX dot product for QK_K = 64 Tests pass, but I get gibberish. * QK_K = 64 tests pass on ARM_NEON and Metal Sadly, that does not mean it actually works. * Make CUDA compile with QK_K = 64 Tests don't pass, plus we get misaligned access * Q2_K: fixed bug in imatrix quantization for QK_K = 64 * iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work) --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
cb49e0f8c9
commit
7c4263d426
5 changed files with 194 additions and 59 deletions
148
ggml-quants.c
148
ggml-quants.c
|
@ -1877,7 +1877,7 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri
|
|||
float mins[QK_K/16];
|
||||
float scales[QK_K/16];
|
||||
float sw[QK_K/16];
|
||||
float weight[QK_K/16];
|
||||
float weight[16];
|
||||
uint8_t Ls[QK_K/16], Lm[QK_K/16];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
@ -1887,13 +1887,42 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri
|
|||
float sigma2 = sumx2/QK_K;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
const float * restrict qw = quant_weights + QK_K * i + 16*j;
|
||||
for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
|
||||
for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
|
||||
for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
|
||||
scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
|
||||
scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
|
||||
}
|
||||
|
||||
float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
|
||||
float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
|
||||
float dm, mm;
|
||||
#if QK_K == 64
|
||||
float max_scale = 0, max_min = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
max_scale = MAX(max_scale, scales[j]);
|
||||
max_min = MAX(max_min, mins[j]);
|
||||
}
|
||||
dm = max_scale/15;
|
||||
mm = max_min/15;
|
||||
if (max_scale) {
|
||||
float id = 1/dm;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int l = nearest_int(id*scales[j]);
|
||||
Ls[j] = MAX(0, MIN(15, l));
|
||||
}
|
||||
} else {
|
||||
memset(Ls, 0, QK_K/16);
|
||||
}
|
||||
if (max_min) {
|
||||
float id = 1/mm;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int l = nearest_int(id*mins[j]);
|
||||
Lm[j] = MAX(0, MIN(15, l));
|
||||
}
|
||||
} else {
|
||||
memset(Lm, 0, QK_K/16);
|
||||
}
|
||||
#else
|
||||
dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
|
||||
mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
|
||||
#endif
|
||||
y[i].d = GGML_FP32_TO_FP16(dm);
|
||||
y[i].dmin = GGML_FP32_TO_FP16(mm);
|
||||
dm = GGML_FP16_TO_FP32(y[i].d);
|
||||
|
@ -4227,6 +4256,9 @@ void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y,
|
|||
|
||||
void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
#if QK_K == 64
|
||||
dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k);
|
||||
#else
|
||||
const int nb = k / QK_K;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
@ -4246,6 +4278,7 @@ void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y,
|
|||
qs += 16;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//===================================== Q8_K ==============================================
|
||||
|
@ -6306,7 +6339,7 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
|||
|
||||
float sumf = 0;
|
||||
|
||||
int isum[4];
|
||||
int isum[QK_K/16];
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
|
@ -6322,14 +6355,14 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
|||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
isum[0] = isum[1] = isum[2] = isum[3] = 0;
|
||||
memset(isum, 0, (QK_K/16)*sizeof(int));
|
||||
for (int l = 0; l < 16; ++l) {
|
||||
isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
|
||||
isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
|
||||
isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
|
||||
isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
|
||||
}
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
for (int l = 0; l < QK_K/16; ++l) {
|
||||
isum[l] *= (sc[l] & 0xF);
|
||||
}
|
||||
sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
|
||||
|
@ -9488,15 +9521,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
|
|||
|
||||
#elif defined(__AVX2__)
|
||||
|
||||
const __m128i m4 = _mm_set1_epi8(0xf);
|
||||
const __m128i m1 = _mm_set1_epi8(1);
|
||||
const __m256i m511 = _mm256_set1_epi16(511);
|
||||
const __m256i mone = _mm256_set1_epi8(1);
|
||||
|
||||
static const uint8_t k_bit_helper[32] = {
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
};
|
||||
static const char block_sign_shuffle_mask_1[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
|
||||
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
|
||||
|
@ -9510,11 +9535,77 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
|
|||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
||||
};
|
||||
|
||||
const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
|
||||
const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
|
||||
const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
|
||||
const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
|
||||
|
||||
#if QK_K == 64
|
||||
static const uint8_t k_bit_helper[16] = {
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
};
|
||||
const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper);
|
||||
const __m128i m511 = _mm_set1_epi16(511);
|
||||
typedef union {
|
||||
__m128i vec_index;
|
||||
uint16_t index[8];
|
||||
} index_t;
|
||||
|
||||
index_t idx;
|
||||
__m256 accumf = _mm256_setzero_ps();
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs);
|
||||
idx.vec_index = _mm_and_si128(q2_data, m511);
|
||||
|
||||
const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9);
|
||||
const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13);
|
||||
const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper);
|
||||
|
||||
const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
|
||||
const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
|
||||
const __m256i full_signs = _mm256_set_m128i(full_sign_bits, full_sign_bits);
|
||||
|
||||
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
||||
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));
|
||||
|
||||
const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
|
||||
iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
|
||||
const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
|
||||
iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);
|
||||
|
||||
__m256i signs;
|
||||
signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
|
||||
|
||||
const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
|
||||
const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
|
||||
|
||||
const __m256i sc1 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
|
||||
const __m256i sc2 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
|
||||
|
||||
const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));
|
||||
|
||||
accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf);
|
||||
|
||||
}
|
||||
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
#else
|
||||
|
||||
static const uint8_t k_bit_helper[32] = {
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
};
|
||||
const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
|
||||
const __m256i m511 = _mm256_set1_epi16(511);
|
||||
const __m128i m4 = _mm_set1_epi8(0xf);
|
||||
const __m128i m1 = _mm_set1_epi8(1);
|
||||
|
||||
uint64_t aux64;
|
||||
|
||||
// somewhat hacky, but gives a significant boost in performance
|
||||
|
@ -9603,6 +9694,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
|
|||
}
|
||||
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
|
@ -10199,7 +10291,8 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
|||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined __ARM_NEON
|
||||
// TODO: implement for QK_K = 64
|
||||
#if defined __ARM_NEON && QK_K == 256
|
||||
|
||||
const uint8x16_t m8 = vdupq_n_u8(0x08);
|
||||
const uint8x16_t m7 = vdupq_n_u8(0x07);
|
||||
|
@ -10256,7 +10349,8 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
|||
|
||||
*s = sumf;
|
||||
|
||||
#elif defined __AVX2__
|
||||
// TODO: implement for QK_K = 64
|
||||
#elif defined __AVX2__ && QK_K == 256
|
||||
|
||||
const __m128i m8 = _mm_set1_epi8(0x08);
|
||||
const __m128i m7 = _mm_set1_epi8(0x07);
|
||||
|
@ -10455,6 +10549,9 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void *
|
|||
UNUSED(by);
|
||||
UNUSED(bs);
|
||||
assert(n % QK_K == 0);
|
||||
#if QK_K == 64
|
||||
ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#else
|
||||
|
||||
const block_iq4_xs * restrict x = vx;
|
||||
const block_q8_K * restrict y = vy;
|
||||
|
@ -10574,6 +10671,7 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void *
|
|||
}
|
||||
*s = sumf;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
// ================================ IQ2 quantization =============================================
|
||||
|
@ -10921,7 +11019,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
|
|||
|
||||
const int kMaxQ = 3;
|
||||
|
||||
const int nbl = n/256;
|
||||
const int nbl = n/QK_K;
|
||||
|
||||
block_iq2_xxs * y = vy;
|
||||
|
||||
|
@ -11094,7 +11192,7 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v
|
|||
|
||||
const int kMaxQ = 3;
|
||||
|
||||
const int nbl = n/256;
|
||||
const int nbl = n/QK_K;
|
||||
|
||||
block_iq2_xs * y = vy;
|
||||
|
||||
|
@ -12037,7 +12135,7 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
|||
GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(n%QK_K == 0);
|
||||
|
||||
const int nbl = n/256;
|
||||
const int nbl = n/QK_K;
|
||||
|
||||
block_iq1_s * y = vy;
|
||||
|
||||
|
@ -12315,6 +12413,9 @@ void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * rest
|
|||
}
|
||||
|
||||
size_t quantize_iq4_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
#if QK_K == 64
|
||||
return quantize_iq4_nl(src, dst, nrow, n_per_row, hist, quant_weights);
|
||||
#else
|
||||
(void)hist;
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
|
@ -12333,6 +12434,7 @@ size_t quantize_iq4_xs(const float * src, void * dst, int nrow, int n_per_row, i
|
|||
qrow += nblock*sizeof(block_iq4_xs);
|
||||
}
|
||||
return nrow * nblock * sizeof(block_iq4_xs);
|
||||
#endif
|
||||
}
|
||||
|
||||
void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int k) {
|
||||
|
@ -12363,7 +12465,7 @@ static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy
|
|||
|
||||
const int kMaxQ = 3;
|
||||
|
||||
const int nbl = n/256;
|
||||
const int nbl = n/QK_K;
|
||||
|
||||
block_iq2_s * y = vy;
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue