This commit is contained in:
Farris 2024-07-05 11:18:41 +08:00 committed by GitHub
commit 7c7b9c0bae
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 226 additions and 46 deletions

View file

@ -103,6 +103,59 @@ python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknow
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) **note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work) **note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
## Phi-3-Vision-128K-Instruct gguf conversion
1) Set a working directory for PHI3V and PHI3 instruct. Clone both into this dir. (It's easiest to cd into your local hf cache and copy the models from there to here)
```console
mkdir phi3-fun
cd phi3-fun
mkdir phi3-base
git clone https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
mkdir phi3-vision
git clone https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
```
2) Use `llava-surgery-v2.py` to extract clip from PHI3V:
```console
python examples/llava/llava-surgery-v2.py -C -m phi3-fun/phi3-vision/
```
- you will find a llava.projector and a llava.clip file in your model directory
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
// under phi3-fun/phi-vision dir
mkdir vit
cp llava.clip vit/pytorch_model.bin
cp llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
set `mm_projector_type` -> `mlp_phi` in `config.json`
5) Create the visual gguf model:
```console
python examples/llava/convert-image-encoder-to-gguf.py -m phi3-fun/phi3-vision/vit --llava-projector phi3-fun/phi3-vision/vit/llava.projector --output-dir phi3-fun/phi3-vision/vit --clip-model-is-vision
```
6) Extract the language-modelling (everything except CLIP) part of PHI3V and assign the weights to a normal PHI3 model
```console
python examples/llava/phi3-weight-transfer.py --phi3-instruct-base-path phi3-fun/phi3-base --phi3v-base-path phi3-fun/phi3-vision
```
7) Convert this to a normal gguf
(First delete the old safetensors from this directory)
```console
python convert-hf-to-gguf.py phi3-fun/phi3-base
```
8) Invoke
```console
./llava-cli -m phi3-fun/phi3-base/ggml-model-f16.gguf --mmproj phi3-fun/phi3-vision/vit/mmproj-model-f16.gguf --image IMAGE -c 4096 --temp .1 -p "PROMPT"
```
## llava-cli templating and llava-1.6 prompting ## llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."` llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
@ -137,3 +190,4 @@ Alternatively just pay notice to how many "tokens" have been used for your promp
- [x] Support non-CPU backend for the image encoding part. - [x] Support non-CPU backend for the image encoding part.
- [ ] Support different sampling methods. - [ ] Support different sampling methods.
- [ ] Support more model variants. - [ ] Support more model variants.

View file

@ -130,12 +130,14 @@ enum projector_type {
PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2, PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_UNKNOWN, PROJECTOR_TYPE_UNKNOWN,
PROJECTOR_TYPE_MLP_PHI
}; };
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = { static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" }, { PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"}, { PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_MLP_PHI, "mlp_phi" }
}; };
@ -698,8 +700,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
// ne is whcn, ne = [1024, 576, 1, 1] // ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches); embeddings = ggml_get_rows(ctx0, embeddings, patches);
// print_tensor_info(embeddings, "embeddings");
// llava projector // llava projector
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@ -709,7 +709,24 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_PHI) {
// needs to be reworked, see https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_embedding_phi3_v.py
// line 204 onwards
struct ggml_tensor * embeddings_ = embeddings;
// [1024, 576, 1, 1] -> [4096, 576, 1, 1]
embeddings = ggml_concat(ctx0, embeddings, embeddings_, 0);
embeddings = ggml_concat(ctx0, embeddings, embeddings_, 0);
embeddings = ggml_concat(ctx0, embeddings, embeddings_, 0);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
@ -1208,7 +1225,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
} }
// LLaVA projection // LLaVA projection
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) { if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM || new_clip->proj_type == PROJECTOR_TYPE_MLP_PHI) {
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
try { try {
@ -2069,6 +2086,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
return ctx->vision_model.mm_2_b->ne[0]; return ctx->vision_model.mm_2_b->ne[0];
} }
if (ctx->proj_type == PROJECTOR_TYPE_MLP_PHI) {
return ctx->vision_model.mm_2_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0]; return ctx->vision_model.mm_3_b->ne[0];
} }

View file

@ -86,7 +86,7 @@ ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))") help="The clip model is from openclip (for ViT-SO400M type))")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2", "mlp_phi"], default="mlp_phi")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
@ -206,39 +206,39 @@ if has_vision_encoder:
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"]) fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"] block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count) fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
# /** # /**
# "image_grid_pinpoints": [ # "image_grid_pinpoints": [
# [ # [
# 336, # 336,
# 672 # 672
# ], # ],
# [ # [
# 672, # 672,
# 336 # 336
# ], # ],
# [ # [
# 672, # 672,
# 672 # 672
# ], # ],
# [ # [
# 1008, # 1008,
# 336 # 336
# ], # ],
# [ # [
# 336, # 336,
# 1008 # 1008
# ] # ]
# ], # ],
# Flattened: # Flattened:
# [ # [
# 336, 672, # 336, 672,
# 672, 336, # 672, 336,
# 672, 672, # 672, 672,
# 1008, 336, # 1008, 336,
# 336, 1008 # 336, 1008
# ] # ]
# * # *
# */ # */
if "image_grid_pinpoints" in v_hparams: if "image_grid_pinpoints" in v_hparams:
# flatten it # flatten it
image_grid_pinpoints = [] image_grid_pinpoints = []
@ -257,7 +257,6 @@ if has_vision_encoder:
if "mm_projector_type" in v_hparams: if "mm_projector_type" in v_hparams:
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"]) fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
if processor is not None: if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std

View file

@ -38,7 +38,9 @@ def clean_vision_tower_from_checkpoint(checkpoint_path):
# file_type = 'pytorch' # file_type = 'pytorch'
model_path = os.path.dirname(checkpoint_path) model_path = os.path.dirname(checkpoint_path)
print(f"Searching for vision tower tensors in {checkpoint_path}") print(f"Searching for vision tower tensors in {checkpoint_path}")
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))] clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_embed_tokens.img_processor.vision_model") or \
(k.startswith("model.vision_tower")) or \
(k.startswith("vit.")))]
if len(clip_tensors) > 0: if len(clip_tensors) > 0:
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}") print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
@ -83,10 +85,13 @@ def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
return newline_checkpoint_path, projector_checkpoint_path return newline_checkpoint_path, projector_checkpoint_path
def newline_criteria(checkpoint): def newline_criteria(checkpoint):
return any(k.startswith("model.image_newline") for k in checkpoint.keys()) return any(k.startswith("model.vision_embed_tokens.sub_GN") or \
k.startswith("model.image_newline") for k in checkpoint.keys())
def proj_criteria(checkpoint): def proj_criteria(checkpoint):
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys()) return any(k.startswith("model.vision_embed_tokens.img_projection") or \
k.startswith("vision_proj.") or \
k.startswith("model.mm_projector") for k in checkpoint.keys())
# Command-line interface setup # Command-line interface setup
@ -121,14 +126,16 @@ first_checkpoint = None
if newline_checkpoint_path is not None: if newline_checkpoint_path is not None:
print(f"Taking newline from {newline_checkpoint_path}") print(f"Taking newline from {newline_checkpoint_path}")
first_checkpoint, file_type = load_model(newline_checkpoint_path) first_checkpoint, file_type = load_model(newline_checkpoint_path)
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")] first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.vision_embed_tokens.sub_GN") or k.startswith("model.image_newline")]
# Load the checkpoint # Load the checkpoint
mm_tensors = [] mm_tensors = []
last_checkpoint = None last_checkpoint = None
if projector_checkpoint_path is not None: if projector_checkpoint_path is not None:
last_checkpoint, file_type = load_model(projector_checkpoint_path) last_checkpoint, file_type = load_model(projector_checkpoint_path)
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")] mm_tensors = [k for k, v in last_checkpoint.items() if (k.startswith("model.vision_embed_tokens.img_projection")) or \
(k.startswith("vision_proj.")) or \
(k.startswith("model.mm_projector"))]
if len(mm_tensors) == 0: if len(mm_tensors) == 0:
if last_checkpoint is not None: if last_checkpoint is not None:
@ -144,8 +151,28 @@ print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
projector = {} projector = {}
for name in mm_tensors: for name in mm_tensors:
projector[name] = last_checkpoint[name].float() projector[name] = last_checkpoint[name].float()
for name in first_mm_tensors:
projector[name] = first_checkpoint[name].float() def rename_keys(d, prefix):
new_dict = {}
for key, value in d.items():
parts = key.split('.')
new_key = f"{prefix}.{parts[-2]}.{parts[-1]}"
new_dict[new_key] = value
return new_dict
if list(projector.keys())[0].startswith("mm") is False:
print("-------------------------------")
print("PHI3V clip implicit conversion")
print("-------------------------------")
projector = rename_keys(projector, "mm")
for name in first_mm_tensors:
projector["model.image_newline"] = first_checkpoint[name].float()[0, 0, 0, :]
print("Updated projector keys to match LLAVA clip schema")
print(projector)
if len(projector) > 0: if len(projector) > 0:
save_model(projector, f"{args.model}/llava.projector", 'pytorch') save_model(projector, f"{args.model}/llava.projector", 'pytorch')

View file

@ -0,0 +1,80 @@
import argparse
import json
import os
import torch
from safetensors.torch import save_file
from transformers import AutoModelForCausalLM
def main(args):
# https://stackoverflow.com/questions/67689219/copy-one-layers-weights-from-one-huggingface-bert-model-to-another
phi3_vision = AutoModelForCausalLM.from_pretrained(args.phi3v_base_path,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
_attn_implementation='eager')
print("PHI3 VISION LOADED IN MEMORY")
phi3_base = AutoModelForCausalLM.from_pretrained(args.phi3_instruct_base_path,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
_attn_implementation='eager')
print("PHI3 BASE LOADED IN MEMORY")
phi3_vision_layers = dict(phi3_vision.named_parameters())
phi3_base_layers = dict(phi3_base.named_parameters())
parts = list(set(phi3_vision_layers.keys()) & set(phi3_base_layers.keys()))
print("----------------------------------------------------")
print("before transfer")
print(dict(phi3_vision.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"]
== dict(phi3_base.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"])
print("----------------------------------------------------")
for part in parts:
phi3_base_layers[part].data.copy_(phi3_vision_layers[part].data)
# target # source
print("----------------------------------------------------")
print("after transfer")
print(dict(phi3_vision.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"]
== dict(phi3_base.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"])
print("----------------------------------------------------")
# save updated model weights
outfile = "phi3-instruct-vision-weight-transfer.safetensors"
outpath = os.path.join(args.phi3_instruct_base_path, outfile)
save_file(phi3_base_layers, outpath)
print(f"updates .safetensors saved to {outpath}")
# update safetensors index config
weight_index_path = os.path.join(args.phi3_instruct_base_path, "model.safetensors.index.json")
with open(weight_index_path, "r") as f:
index_data = json.load(f)
for k,v in index_data["weight_map"].items():
if v != "phi3-instruct-vision-weight-transfer.safetensors":
index_data["weight_map"][k] = outfile
with open(weight_index_path, "w") as f:
json.dump(index_data, f)
print(f"hf saftensor mapping updated!")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="script to copy weights from PHI3V language model to PHI3-instruct")
parser.add_argument("--phi3-instruct-base-path", type=str, default="microsoft/Phi-3-mini-128k-instruct", help="model path or model card for PHI3-instruct")
parser.add_argument("--phi3v-base-path", type=str, default="microsoft/Phi-3-vision-128k-instruct", help="model path or model card for PHI3V")
main(parser.parse_args())