gguf : add support for I64 and F64 arrays (#6062)
* gguf : add support for I64 and F64 arrays GGML currently does not support I64 or F64 arrays and they are not often used in machine learning, however if in the future the need arises, it would be nice to add them now, so that the types are next to the other types I8, I16, I32 in the enums, and it also reserves their type number. Furthermore, with this addition the GGUF format becomes very usable for most computational applications of NumPy (being compatible with the most common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster, and more versatile alternative to the `npz` format, and a simpler alternative to the `hdf5` format. The change in this PR seems small, not significantly increasing the maintenance burden. I tested this from Python using GGUFWriter/Reader and `gguf-dump`, as well as from C, everything seems to work. * Fix compiler warnings
This commit is contained in:
parent
aab606a11f
commit
7ce2c77f88
5 changed files with 41 additions and 8 deletions
|
@ -665,6 +665,8 @@ class GGMLQuantizationType(IntEnum):
|
|||
I8 = 24
|
||||
I16 = 25
|
||||
I32 = 26
|
||||
I64 = 27
|
||||
F64 = 28
|
||||
|
||||
|
||||
class GGUFEndian(IntEnum):
|
||||
|
@ -734,6 +736,8 @@ GGML_QUANT_SIZES = {
|
|||
GGMLQuantizationType.I8: (1, 1),
|
||||
GGMLQuantizationType.I16: (1, 2),
|
||||
GGMLQuantizationType.I32: (1, 4),
|
||||
GGMLQuantizationType.I64: (1, 8),
|
||||
GGMLQuantizationType.F64: (1, 8),
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue