mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252

This commit is contained in:
Jan Ploski 2023-10-06 13:53:32 +02:00 committed by Cebtenzzre
parent 1364bcd712
commit 7d6a24aad4

View file

@ -19,29 +19,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
@ -131,6 +108,8 @@ gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():
@ -155,31 +134,15 @@ vocab_size = len(tokenizer_json["model"]["vocab"]) + 178
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
try:
text.append(byte_decoder[c])
except KeyError:
text.extend(c.encode('utf-8'))
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token. (It's normal for MPT.)")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)
@ -239,10 +202,6 @@ for part_name in part_names:
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
# if new_name == "wte.weight" and data.shape[0] == 50432 and vocab_size == 50254:
# data = data[0:vocab_size,:]
gguf_writer.add_tensor(new_name, data)
# note: MPT output is tied to (same as) wte in original model;