extract llamafile in new tinyblas backend

This commit is contained in:
Djip007 2024-11-16 20:58:30 +01:00
parent 4e54be0ec6
commit 7dd261f3e9
12 changed files with 1181 additions and 244 deletions

View file

@ -568,8 +568,8 @@ ifdef GGML_NVPL
endif # GGML_NVPL
ifndef GGML_NO_LLAMAFILE
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
OBJ_GGML_EXT += ggml/src/ggml-cpu/llamafile/sgemm.o
MK_CPPFLAGS += -DGGML_USE_TINYBLAS
OBJ_GGML_EXT += ggml/src/ggml-tinyblas/ggml-tinyblas.o ggml/src/ggml-tinyblas/sgemm.o
endif
ifndef GGML_NO_AMX
@ -1153,6 +1153,23 @@ $(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o: \
ggml/src/ggml-impl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
# TODO: renomer en GGML_NO_TINYBLAS
# needed for c++17 build
ifndef GGML_NO_LLAMAFILE
ggml/src/ggml-tinyblas/ggml-tinyblas.o: \
ggml/src/ggml-tinyblas/ggml-tinyblas.cpp \
ggml/include/ggml-tinyblas.h \
ggml/src/ggml-tinyblas/sgemm.h \
ggml/include/ggml.h
$(CXX) $(CXXFLAGS) -std=c++17 -c $< -o $@
ggml/src/ggml-tinyblas/sgemm.o: \
ggml/src/ggml-tinyblas/sgemm.cpp \
ggml/src/ggml-tinyblas/sgemm.h \
ggml/include/ggml.h
$(CXX) $(CXXFLAGS) -std=c++17 -c $< -o $@
endif # GGML_NO_LLAMAFILE
# Rules for building object files
$(DIR_GGML)/%.o: $(DIR_GGML)/%.c
$(CC) $(CFLAGS) -MMD -c $< -o $@

View file

@ -124,7 +124,6 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
// Internal types and functions exposed for tests and benchmarks

View file

@ -0,0 +1,17 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
// backend register
GGML_API ggml_backend_reg_t ggml_backend_tinyblas_reg(void);
#ifdef __cplusplus
}
#endif

View file

@ -27,6 +27,10 @@
#include "ggml-blas.h"
#endif
#ifdef GGML_USE_TINYBLAS
#include "ggml-tinyblas.h"
#endif
#ifdef GGML_USE_RPC
#include "ggml-rpc.h"
#endif
@ -66,6 +70,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_BLAS
register_backend(ggml_backend_blas_reg());
#endif
#ifdef GGML_USE_TINYBLAS
register_backend(ggml_backend_tinyblas_reg());
#endif
#ifdef GGML_USE_RPC
register_backend(ggml_backend_rpc_reg());
#endif

View file

@ -13868,14 +13868,6 @@ int ggml_cpu_has_wasm_simd(void) {
#endif
}
int ggml_cpu_has_llamafile(void) {
#if defined(GGML_USE_LLAMAFILE)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_sse3(void) {
#if defined(__SSE3__)
return 1;

View file

@ -616,9 +616,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_wasm_simd()) {
features.push_back({ "WASM_SIMD", "1" });
}
if (ggml_cpu_has_llamafile()) {
features.push_back({ "LLAMAFILE", "1" });
}
features.push_back({ nullptr, nullptr });

View file

@ -1,14 +0,0 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t,
const void *, int64_t, void *, int64_t, int, int,
int, int, int);
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,230 @@
add_library(ggml-tinyblas
ggml-tinyblas.cpp
)
target_link_libraries(ggml-tinyblas PRIVATE ggml-base)
target_include_directories(ggml-tinyblas PRIVATE . ..)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
add_compile_definitions(GGML_USE_ACCELERATE)
add_compile_definitions(ACCELERATE_NEW_LAPACK)
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
target_link_libraries(ggml-tinyblas PRIVATE ${ACCELERATE_FRAMEWORK})
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (GGML_OPENMP)
find_package(OpenMP)
if (OpenMP_FOUND)
message(STATUS "OpenMP found")
add_compile_definitions(GGML_USE_OPENMP)
target_link_libraries(ggml-tinyblas PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
else()
message(WARNING "OpenMP not found")
endif()
endif()
target_sources(ggml-tinyblas PRIVATE
sgemm.cpp
sgemm.h)
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
message(STATUS "ARM detected")
if (MSVC)
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
add_compile_definitions(__ARM_NEON)
add_compile_definitions(__ARM_FEATURE_FMA)
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
if (GGML_COMPILER_SUPPORT_DOTPROD)
add_compile_definitions(__ARM_FEATURE_DOTPROD)
endif ()
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
endif ()
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
endif ()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
else()
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
# Raspberry Pi 1, Zero
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
# Android armeabi-v7a
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
else()
# Raspberry Pi 2
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
endif()
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
# Android arm64-v8a
# Raspberry Pi 3, 4, Zero 2 (32-bit)
list(APPEND ARCH_FLAGS -mno-unaligned-access)
endif()
if (GGML_SVE)
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
endif()
endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
# TODO: improve, should not reference files from the parent folder
include(../ggml-cpu/cmake/FindSIMD.cmake)
endif ()
if (GGML_AVX512)
list(APPEND ARCH_FLAGS /arch:AVX512)
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (GGML_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
list(APPEND ARCH_FLAGS -mavx512vbmi)
endif()
endif()
if (GGML_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
list(APPEND ARCH_FLAGS -mavx512vnni)
endif()
endif()
if (GGML_AVX512_BF16)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
list(APPEND ARCH_FLAGS -mavx512bf16)
endif()
endif()
if (GGML_AMX_TILE)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
endif()
if (GGML_AMX_INT8)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
endif()
if (GGML_AMX_BF16)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
endif()
elseif (GGML_AVX2)
list(APPEND ARCH_FLAGS /arch:AVX2)
elseif (GGML_AVX)
list(APPEND ARCH_FLAGS /arch:AVX)
endif()
else()
if (GGML_NATIVE)
list(APPEND ARCH_FLAGS -march=native)
endif()
if (GGML_F16C)
list(APPEND ARCH_FLAGS -mf16c)
endif()
if (GGML_FMA)
list(APPEND ARCH_FLAGS -mfma)
endif()
if (GGML_AVX)
list(APPEND ARCH_FLAGS -mavx)
endif()
if (GGML_AVX2)
list(APPEND ARCH_FLAGS -mavx2)
endif()
if (GGML_AVX512)
list(APPEND ARCH_FLAGS -mavx512f)
list(APPEND ARCH_FLAGS -mavx512dq)
list(APPEND ARCH_FLAGS -mavx512bw)
endif()
if (GGML_AVX512_VBMI)
list(APPEND ARCH_FLAGS -mavx512vbmi)
endif()
if (GGML_AVX512_VNNI)
list(APPEND ARCH_FLAGS -mavx512vnni)
endif()
if (GGML_AVX512_BF16)
list(APPEND ARCH_FLAGS -mavx512bf16)
endif()
if (GGML_AMX_TILE)
list(APPEND ARCH_FLAGS -mamx-tile)
endif()
if (GGML_AMX_INT8)
list(APPEND ARCH_FLAGS -mamx-int8)
endif()
if (GGML_AMX_BF16)
list(APPEND ARCH_FLAGS -mamx-bf16)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected")
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER10_M)
string(FIND "${POWER10_M}" "POWER10" substring_index)
if (NOT DEFINED substring_index OR "${substring_index}" STREQUAL "")
set(substring_index -1)
endif()
if (${substring_index} GREATER_EQUAL 0)
list(APPEND ARCH_FLAGS -mcpu=power10)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
else()
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
message(STATUS "loongarch64 detected")
list(APPEND ARCH_FLAGS -march=loongarch64)
if (GGML_LASX)
list(APPEND ARCH_FLAGS -mlasx)
endif()
if (GGML_LSX)
list(APPEND ARCH_FLAGS -mlsx)
endif()
else()
message(STATUS "Unknown architecture")
endif()
target_compile_options(ggml-tinyblas PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
target_compile_options(ggml-tinyblas PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
if (EMSCRIPTEN)
set_target_properties(ggml-tinyblas PROPERTIES COMPILE_FLAGS "-msimd128")
endif()

View file

@ -0,0 +1,472 @@
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "ggml-tinyblas.h"
#include "ggml-backend-impl.h"
#include "sgemm.h"
#include <memory>
#include <cstring>
#include <iostream>
#ifdef GGML_USE_OPENMP
#include <omp.h>
#endif
namespace ggml::backend::tinyblas {
static const char* NAME = "tinyBLAS";
struct context {
int n_threads = GGML_DEFAULT_N_THREADS;
std::unique_ptr<char[]> work_data;
size_t work_size = 0;
//int pp_threads = GGML_DEFAULT_N_THREADS;
//int tg_threads = GGML_DEFAULT_N_THREADS;
};
template<bool RUN>
static bool mul_mat(int64_t m, int64_t n, int64_t k,
const void *A, int64_t lda, const void *B, int64_t ldb, void *C, int64_t ldc,
int ith, int nth,
const enum ggml_type Atype, const enum ggml_type Btype, const enum ggml_type Ctype)
{
GGML_ASSERT(Ctype == GGML_TYPE_F32);
switch (Atype) {
case GGML_TYPE_F32:
if (Btype != GGML_TYPE_F32) return false;
return gemm<RUN>(m, n, k, (const float*)A, lda, (const float*)B, ldb, (float*)C, ldc, ith, nth);
break;
case GGML_TYPE_F16:
switch (Btype) {
case GGML_TYPE_F32:
return gemm<RUN>(m, n, k, (const ggml_fp16_t*)A, lda, (const float*)B, ldb, (float*)C, ldc, ith, nth);
case GGML_TYPE_F16:
return gemm<RUN>(m, n, k, (const ggml_fp16_t*)A, lda, (const ggml_fp16_t*)B, ldb, (float*)C, ldc, ith, nth);
default:
return false;
}
break;
case GGML_TYPE_BF16:
switch (Btype) {
case GGML_TYPE_F32:
return gemm<RUN>(m, n, k, (const ggml_bf16_t*)A, lda, (const float*)B, ldb, (float*)C, ldc, ith, nth);
case GGML_TYPE_BF16:
return gemm<RUN>(m, n, k, (const ggml_bf16_t*)A, lda, (const ggml_bf16_t*)B, ldb, (float*)C, ldc, ith, nth);
default:
return false;
}
break;
case GGML_TYPE_Q8_0:
if (Btype != GGML_TYPE_Q8_0) return false;
return gemm<RUN>(m, n, k, (const block_q8_0*)A, lda, (const block_q8_0*)B, ldb, (float*)C, ldc, ith, nth);
break;
case GGML_TYPE_Q4_0:
if (Btype != GGML_TYPE_Q8_0) return false;
return gemm<RUN>(m, n, k, (const block_q4_0*)A, lda, (const block_q8_0*)B, ldb, (float*)C, ldc, ith, nth);
break;
case GGML_TYPE_Q5_0:
if (Btype != GGML_TYPE_Q8_0) return false;
return gemm<RUN>(m, n, k, (const block_q5_0*)A, lda, (const block_q8_0*)B, ldb, (float*)C, ldc, ith, nth);
break;
case GGML_TYPE_IQ4_NL:
if (Btype != GGML_TYPE_Q8_0) return false;
return gemm<RUN>(m, n, k, (const block_iq4_nl*)A, lda, (const block_q8_0*)B, ldb, (float*)C, ldc, ith, nth);
break;
default:
return false;
}
return false;
}
static bool supports_mul_mat(ggml_backend_dev_t, const struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
if (dst->type != GGML_TYPE_F32) return false;
if (ne0 != ne01) return false;
if (ne1 != ne11) return false;
if (ne2 != ne12) return false;
if (ne3 != ne13) return false;
// we don't support permuted src0 or src1
if (nb00 != ggml_type_size(src0->type)) return false;
if (nb10 != ggml_type_size(src1->type)) return false;
// dst cannot be transposed or permuted
if (nb0 != sizeof(float)) return false;
if (nb0 > nb1) return false;
if (nb1 > nb2) return false;
if (nb2 > nb3) return false;
if (ggml_is_contiguous(src1)) {
if (mul_mat<false>(ne01, ne11, ne00/ggml_blck_size(src0->type),
src0->data, nb01/ggml_type_size(src0->type),
src1->data, nb11/ggml_type_size(src1->type),
dst->data, nb1/ggml_type_size(dst->type),
0, 1, src0->type, src1->type, GGML_TYPE_F32)) {
return true;
}
}
// apres conversion de B: FP32 => src0->vec_dot_type
enum ggml_type const vec_dot_type = ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
if ((src1->type != vec_dot_type) && (src1->type == GGML_TYPE_F32)) {
if (mul_mat<false>(ne01, ne11, ne00/ggml_blck_size(src0->type),
src0->data, nb01/ggml_type_size(src0->type),
src1->data, nb11/ggml_type_size(src1->type),
dst->data, nb1/ggml_type_size(dst->type),
0, 1, src0->type, vec_dot_type, GGML_TYPE_F32)) {
// @ voir ca aurait etait bien de redimensioner work_data ici..
return true;
}
}
return false;
}
static void mul_mat(ggml::backend::tinyblas::context * ctx, struct ggml_tensor * dst, const int ith, const int nth) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type0 = src0->type;
const enum ggml_type type1 = src1->type;
// les type "directs"
// broadcast factors
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
if (ggml_is_contiguous(src1)) {
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const void* data0 = (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03;
const void* data1 = (const char *)src1->data + i12*nb12 + i13*nb13;
void* data = (char *)dst->data + i12*nb2 + i13*nb3;
if (!mul_mat<true>(ne01, ne11, ne00/ggml_blck_size(src0->type),
data0, nb01/ggml_type_size(src0->type),
data1, nb11/ggml_type_size(src1->type),
data, nb1/ggml_type_size(dst->type),
ith, nth, type0, type1, GGML_TYPE_F32)) {
goto UseGgmlGemm1;
}
}
}
return;
}
UseGgmlGemm1:;
// apres conversion de B ?
GGML_ASSERT(src1->type == GGML_TYPE_F32); // for use 'from_float'
enum ggml_type const vec_dot_type = ggml_get_type_traits_cpu(type0)->vec_dot_type;
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(vec_dot_type)->from_float;
// auto const type_size = ggml_get_type_traits(vec_dot_type)->type_size;
if (src1->type != vec_dot_type) {
// OK on va au moins essayer de changer le type de B
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
// const size_t row_size = ggml_row_size(vec_dot_type, ne10);
const size_t nbw2 = nbw1*ne11;
const size_t nbw3 = nbw2*ne12;
// TOD0: vor si on peu caller ca dans supports_mul_mat
if ((ith == 0) && (ctx->work_size < ne13*nbw3)) {
ctx->work_data.reset(new char[ne13*nbw3]);
ctx->work_size = ne13*nbw3;
}
#ifdef GGML_USE_OPENMP
#pragma omp barrier
#else
static_assert(false, "Note implemented: use GGML_USE_OPENMP");
#endif
char * wdata = ctx->work_data.get();
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
ne10);
}
}
}
// synchronize all threads!
#ifdef GGML_USE_OPENMP
#pragma omp barrier
#else
static_assert(false, "Note implemented: use GGML_USE_OPENMP");
#endif
// mat-mul bis...
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++) {
const void* data0 = (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03;
const void* data1 = (const char *)wdata + i12*nbw2 + i13*nbw3;
void* data = (char *)dst->data + i12*nb2 + i13*nb3;
if (!mul_mat<true>(ne01, ne11, ne00/ggml_blck_size(src0->type),
data0, nb01/ggml_type_size(src0->type),
data1, nbw1/ggml_type_size(vec_dot_type),
data, nb1/ggml_type_size(dst->type),
ith, nth, type0, vec_dot_type, GGML_TYPE_F32)) {
goto UseGgmlGemm2;
}
}
return;
}
UseGgmlGemm2:;
}
static const char * get_name(ggml_backend_t /*backend*/) {
return NAME;
}
static void free(ggml_backend_t backend) {
context * ctx = (context *)backend->context;
delete ctx;
delete backend;
}
// TODO: voir comment gerer les threads / pool ... pour tous les backends qui en ont besoin...
// - voir ggml_graph_compute / ggml_threadpool
// https://github.com/ggerganov/llama.cpp/pull/1999
//
static enum ggml_status graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
context * ctx = (context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
#ifdef GGML_USE_OPENMP
#pragma omp parallel num_threads(ctx->n_threads)
{
int ith = omp_get_thread_num();
int nth = ctx->n_threads;
mul_mat(ctx, node, ith, nth);
}
#else
static_assert(false, "Note implemented: use GGML_USE_OPENMP");
mul_mat(ctx, node, 0, 1);
#endif
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
default:
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
}
}
return GGML_STATUS_SUCCESS;
}
static struct ggml_backend_i interface = {
/* .get_name = */ get_name,
/* .free = */ free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t guid(void) {
static ggml_guid guid = { 0x23, 0xf5, 0x9f, 0xa2, 0xb1, 0x48, 0x39, 0x25, 0x83, 0xcd, 0x79, 0x16, 0xb7, 0x23, 0x94, 0xde };
return &guid;
}
static ggml_backend_t init(void) {
context * ctx = new context;
ggml_backend_t backend = new ggml_backend {
/* .guid = */ guid(),
/* .interface = */ interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_tinyblas_reg(), 0),
/* .context = */ ctx,
};
return backend;
}
static bool is_tinyblas(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, guid());
}
// number of threads to use for compute
static void set_pp_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(is_tinyblas(backend));
context * ctx = (context *)backend->context;
//ctx->pp_threads = n_threads;
}
static void set_tg_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(is_tinyblas(backend));
context * ctx = (context *)backend->context;
//ctx->tg_threads = n_threads;
}
static void set_n_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(is_tinyblas(backend));
context * ctx = (context *)backend->context;
ctx->n_threads = n_threads;
//ctx->tg_threads = n_threads;
//ctx->pp_threads = n_threads;
}
}
// device interface
namespace ggml::backend::tinyblas::device {
static const char * get_name(ggml_backend_dev_t) {
return "BLAS";
}
static const char * get_description(ggml_backend_dev_t) {
return "tinyBLAS";
}
static void get_memory(ggml_backend_dev_t, size_t * free, size_t * total) {
// TODO
*free = 0;
*total = 0;
}
static enum ggml_backend_dev_type get_type(ggml_backend_dev_t) {
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
}
static void get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = get_name(dev);
props->description = get_description(dev);
props->type = get_type(dev);
get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
};
}
static ggml_backend_t init_backend(ggml_backend_dev_t, const char *) {
return ggml::backend::tinyblas::init();
}
static ggml_backend_buffer_type_t get_buffer_type(ggml_backend_dev_t) {
return ggml_backend_cpu_buffer_type();
}
static ggml_backend_buffer_t buffer_from_host_ptr(ggml_backend_dev_t, void * ptr, size_t size, size_t) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
}
static bool supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
//const struct ggml_tensor * src0 = op->src[0];
//const struct ggml_tensor * src1 = op->src[1];
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_MUL_MAT:
return supports_mul_mat(device, op);
default:
return false;
}
}
static bool supports_buft(ggml_backend_dev_t, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
}
static const struct ggml_backend_device_i interface = {
/* .get_name = */ get_name,
/* .get_description = */ get_description,
/* .get_memory = */ get_memory,
/* .get_type = */ get_type,
/* .get_props = */ get_props,
/* .init_backend = */ init_backend,
/* .get_buffer_type = */ get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ buffer_from_host_ptr,
/* .supports_op = */ supports_op,
/* .supports_buft = */ supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
}
// backend reg interface
namespace ggml::backend::tinyblas::reg {
static const char * get_name(ggml_backend_reg_t) {
return ggml::backend::tinyblas::NAME;
}
static size_t get_device_count(ggml_backend_reg_t) {
return 1;
}
static ggml_backend_dev_t get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
static ggml_backend_device device = {
/* .iface = */ ggml::backend::tinyblas::device::interface,
/* .reg = */ reg,
/* .context = */ nullptr,
};
return &device;
}
static void * get_proc_address(ggml_backend_reg_t, const char * name) {
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
return (void *)ggml::backend::tinyblas::set_n_threads;
}
if (std::strcmp(name, "ggml_backend_set_pp_threads") == 0) {
return (void *)ggml::backend::tinyblas::set_pp_threads;
}
if (std::strcmp(name, "ggml_backend_set_tg_threads") == 0) {
return (void *)ggml::backend::tinyblas::set_tg_threads;
}
return NULL;
}
static const struct ggml_backend_reg_i interface = {
/* .get_name = */ get_name,
/* .get_device_count = */ get_device_count,
/* .get_device = */ get_device,
/* .get_proc_address = */ get_proc_address,
};
}
ggml_backend_reg_t ggml_backend_tinyblas_reg(void) {
static struct ggml_backend_reg backend_reg = {
/* .iface = */ ggml::backend::tinyblas::reg::interface,
/* .context = */ NULL,
};
return &backend_reg;
}

View file

@ -50,8 +50,6 @@
#include "sgemm.h"
#include "ggml-impl.h"
// hack until moved into the CPU backend
#include "../ggml-cpu-impl.h"
#include "ggml-quants.h"
#ifdef _MSC_VER
@ -135,6 +133,16 @@ inline __m512 madd(__m512 a, __m512 b, __m512 c) {
return _mm512_fmadd_ps(a, b, c);
}
#endif
#if defined(__AVX512BF16__)
template <>
inline __m512 madd(__m512bh a, __m512bh b, __m512 c) {
return _mm512_dpbf16_ps(c, a, b);
}
template <>
inline __m256 madd(__m256bh a, __m256bh b, __m256 c) {
return _mm256_dpbf16_ps(c, a, b);
}
#endif
#endif
#if defined(__ARM_FEATURE_FMA)
@ -226,6 +234,13 @@ template <> inline __m256 load(const float *p) {
}
#endif // __AVX__
#if defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m256 load(const ggml_bf16_t *p) {
return _mm256_castsi256_ps(
_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)p)), 16));
}
#endif // __AVX2__
#if defined(__F16C__)
template <> inline __m256 load(const ggml_fp16_t *p) {
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
@ -239,8 +254,27 @@ template <> inline __m512 load(const float *p) {
template <> inline __m512 load(const ggml_fp16_t *p) {
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
}
template <> inline __m512 load(const ggml_bf16_t *p) {
return _mm512_castsi512_ps(
_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)p)), 16));
}
#endif // __AVX512F__
#if defined(__AVX512BF16__)
template <> inline __m512bh load(const ggml_bf16_t *p) {
return (__m512bh)_mm512_loadu_ps((const float *)p);
}
template <> inline __m256bh load(const ggml_bf16_t *p) {
return (__m256bh)_mm256_loadu_ps((const float *)p);
}
template <> inline __m512bh load(const float *p) {
return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p));
}
template <> inline __m256bh load(const float *p) {
return _mm512_cvtneps_pbh(_mm512_loadu_ps(p));
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// CONSTANTS
@ -1627,259 +1661,395 @@ class tinyBLAS_PPC {
#endif
} // namespace
/**
* Performs optimized matrix multiplication on CPU.
*
* This subroutine may compute C = Aᵀ * B with column major ordering.
* Despite its name, this isn't a generalized implementation. Work is
* only performed when a handwritten kernel is written and available.
* Otherwise the caller should fall back to a general matmul routine.
*
* For example, for single-threaded single-precision GEMM you can say
*
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
* 0, 1,
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
*
* @param m is rows in `A` and `C`
* @param n is cols in `B` and `C`
* @param k is cols in `A` and rows in `B`
* @param A is first input matrix (always transposed)
* @param lda is row stride of `A`
* @param B is second input matrix (never transposed)
* @param ldb is row stride of `B`
* @param C is input/output array of output matrices
* @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero)
* @param Atype is GGML data type of `A`
* @param Btype is GGML data type of `B`
* @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
namespace ggml::backend::tinyblas {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
/**
* Performs optimized matrix multiplication on CPU.
*
* This subroutine may compute C = Aᵀ * B with column major ordering.
* Despite its name, this isn't a generalized implementation. Work is
* only performed when a handwritten kernel is written and available.
* Otherwise the caller should fall back to a general matmul routine.
*
* For example, for single-threaded single-precision GEMM you can say
*
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc, 0, 1);
*
* @param m is rows in `A` and `C`
* @param n is cols in `B` and `C`
* @param k is cols in `A` and rows in `B`
* @param A is first input matrix (always transposed)
* @param lda is row stride of `A`
* @param B is second input matrix (never transposed)
* @param ldb is row stride of `B`
* @param C is input/output array of output matrices
* @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero)
* @return true if this function was able to service the matmul request
*/
// only enable sgemm for prompt processing
if (n < 2)
return false;
if (Ctype != GGML_TYPE_F32)
return false;
switch (Atype) {
case GGML_TYPE_F32: {
if (Btype != GGML_TYPE_F32)
return false;
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const float *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if defined(__AVX512F__)
if (k % 16)
return false;
tinyBLAS<16, __m512, __m512, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__AVX__) || defined(__AVX2__)
if (k % 8)
return false;
tinyBLAS<8, __m256, __m256, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON)
if (n < 4)
return false;
if (k % 4)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__MMA__)
if (k % 8)
return false;
tinyBLAS_PPC<float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
if ((k % 16) == 0) {
if constexpr (RUN) {
tinyBLAS<16, __m512, __m512, float, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
#if defined(__AVX__) || defined(__AVX2__)
if ((k % 8)==0) {
if constexpr (RUN) {
tinyBLAS<8, __m256, __m256, float, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
#if defined(__ARM_NEON)
if ((k % 4) == 0) {
if constexpr (RUN) {
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
// TODO: voir a mettre ca dans un autre fichier...
#if defined(__MMA__)
if ((k % 8) == 0) {
if constexpr (RUN) {
tinyBLAS_PPC<float, float, float> tb{ k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
return false;
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const float *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const float *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
case GGML_TYPE_F16: {
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if defined(__AVX512F__)
if (k % 16)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
if ((k % 16) == 0) {
if constexpr (RUN) {
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
#if (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if ((k % 8) == 0) {
if constexpr (RUN) {
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
#if defined(__ARM_NEON) && !defined(_MSC_VER)
if ((k % 4) == 0) {
if constexpr (RUN) {
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
return false;
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const ggml_fp16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if defined(__AVX512F__)
if ((k % 16) == 0) {
if constexpr (RUN) {
tinyBLAS<16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
#if (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if ((k % 8) == 0) {
if constexpr (RUN) {
tinyBLAS<8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if ((k % 8) == 0) {
if constexpr (RUN) {
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
return false;
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const ggml_fp16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const ggml_fp16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if defined(__AVX512BF16__)
// wait for convert B => bf16?
//if ((k % 32) == 0) {
// if constexpr (RUN) {
// tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
// tb.matmul(m, n);
// }
// return true;
//}
#elif defined(__AVX512F__)
if ((k % 16) == 0) {
if constexpr (RUN) {
tinyBLAS<16, __m512, __m512, ggml_bf16_t, float, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if (k % 8)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 8)
return false;
if (k % 8)
return false;
if (Btype != GGML_TYPE_F16)
return false;
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
// TODO
#endif
return false;
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const ggml_bf16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if defined(__AVX512BF16__)
if ((k % 32) == 0) {
if constexpr (RUN) {
tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
// 2eme chance...
if ((k % 16) == 0) {
if constexpr (RUN) {
tinyBLAS<16, __m256, __m256bh, ggml_bf16_t, ggml_bf16_t, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
}
#endif
return false;
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const ggml_bf16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const ggml_bf16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_q8_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
case GGML_TYPE_Q8_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
if constexpr (RUN) {
tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q8_0> tb{
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
if constexpr (RUN) {
tinyBLAS_Q0_ARM<block_q8_0> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
#else
return false;
#endif
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const block_q8_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const block_q8_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_q4_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
case GGML_TYPE_Q4_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
if constexpr (RUN) {
tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q4_0> tb{
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
if constexpr (RUN) {
tinyBLAS_Q0_ARM<block_q4_0> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
#else
return false;
#endif
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const block_q4_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const block_q4_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_q5_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
case GGML_TYPE_Q5_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q5_0, block_q8_0, float> tb{
k, (const block_q5_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
if constexpr (RUN) {
tinyBLAS_Q0_AVX<block_q5_0, block_q8_0, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
#else
return false;
#endif
}
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const block_q5_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const block_q5_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
case GGML_TYPE_IQ4_NL: {
if (Btype != GGML_TYPE_Q8_0)
return false;
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_iq4_nl *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{
k, (const block_iq4_nl *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
if constexpr (RUN) {
tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{k, A, lda, B, ldb, C, ldc, ith, nth};
tb.matmul(m, n);
}
return true;
#else
return false;
#endif
}
default:
return false;
}
(void)m;
(void)n;
(void)k;
(void)A;
(void)lda;
(void)B;
(void)ldb;
(void)C;
(void)ldc;
(void)ith;
(void)nth;
(void)Atype;
(void)Btype;
(void)Ctype;
template bool gemm<true>(int64_t m, int64_t n, int64_t k,
const block_iq4_nl *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
template bool gemm<false>(int64_t m, int64_t n, int64_t k,
const block_iq4_nl *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith, int nth);
}

View file

@ -0,0 +1,51 @@
#pragma once
//#include <cstdint>
#include "ggml.h"
#define GGML_COMMON_DECL_C
//#define GGML_COMMON_DECL_CPP
#include "ggml-common.h"
// appelé que depuis du c++ (le tinyBLAS backend)
namespace ggml::backend::tinyblas {
// on est en C++
// => on peu avoir autant de fonction que de type.
// calcule C = Aᵀ * B
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const float *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_fp16_t *A, int64_t lda, const ggml_fp16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const float *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const ggml_bf16_t *A, int64_t lda, const ggml_bf16_t *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_q8_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_q4_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_q5_0 *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
template<bool RUN>
bool gemm(int64_t m, int64_t n, int64_t k,
const block_iq4_nl *A, int64_t lda, const block_q8_0 *B, int64_t ldb, float *C, int64_t ldc,
int ith=0, int nth=1);
}

View file

@ -22034,7 +22034,6 @@ const char * llama_print_system_info(void) {
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
return s.c_str();
}