diff --git a/src/llama.cpp b/src/llama.cpp index 2a4d73856..8e4e3137e 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -287,6 +287,7 @@ enum llm_kv { LLM_KV_VOCAB_SIZE, LLM_KV_CONTEXT_LENGTH, + LLM_KV_CONTEXT_LENGTH_SWA, LLM_KV_EMBEDDING_LENGTH, LLM_KV_BLOCK_COUNT, LLM_KV_LEADING_DENSE_BLOCK_COUNT, @@ -379,6 +380,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, + { LLM_KV_CONTEXT_LENGTH_SWA, "%s.context_length_swa" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, { LLM_KV_BLOCK_COUNT, "%s.block_count" }, { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, @@ -2079,7 +2081,8 @@ struct llama_hparams { bool use_par_res; uint32_t n_vocab; - uint32_t n_ctx_train; // context size the model was trained on + uint32_t n_ctx_train; // context size the model was trained on + int32_t n_ctx_swa = -1; // context size for sliding window attention (SWA) uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; @@ -2661,6 +2664,9 @@ struct llama_context { struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] + // KQ mask per layer, used by sliding window attention (gemma 2) + std::vector inp_KQ_mask_l; + // control vectors struct llama_control_vector cvec; }; @@ -4709,6 +4715,8 @@ static void llm_load_hparams( } break; case LLM_ARCH_GEMMA2: { + hparams.n_ctx_swa = 4096; // default value + ml.get_key(LLM_KV_CONTEXT_LENGTH_SWA, hparams.n_ctx_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); @@ -11029,9 +11037,16 @@ struct llm_build_context { struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + // gemma 2 requires different mask for layers using sliding window (SWA) + struct ggml_tensor * KQ_mask_full = build_inp_KQ_mask(); + struct ggml_tensor * KQ_mask_SWA = build_inp_KQ_mask(); + lctx.inp_KQ_mask_l.clear(); for (int il = 0; il < n_layer; ++il) { + // (il % 2) layers use SWA + struct ggml_tensor * KQ_mask = (il % 2 == 0) ? KQ_mask_SWA : KQ_mask_full; + lctx.inp_KQ_mask_l.push_back(KQ_mask); + // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, @@ -12671,6 +12686,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); float * data = (float *) lctx.inp_KQ_mask->data; + float * data_swa = nullptr; + + if (lctx.model.arch == LLM_ARCH_GEMMA2) { + GGML_ASSERT(!lctx.inp_KQ_mask_l.empty() && "gemma 2 requires different KQ mask per layer"); + GGML_ASSERT(hparams.n_ctx_swa > 0); + data_swa = (float *) lctx.inp_KQ_mask_l[0]->data; + data = (float *) lctx.inp_KQ_mask_l[1]->data; + } // For causal attention, use only the previous KV cells // of the correct sequence for each token of the batch. @@ -12692,6 +12715,15 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + + // may need to cut off old tokens for sliding window + if (data_swa && f != -INFINITY) { + const llama_pos n_keep = hparams.n_ctx_swa - batch.n_tokens; + if (pos - lctx.kv_self.cells[i].pos > n_keep) { + f = -INFINITY; + } + data_swa[h*(n_kv*n_tokens) + j*n_kv + i] = f; + } } }