common : use common_ prefix for common library functions (#9805)
* common : use common_ prefix for common library functions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
0e9f760eb1
commit
7eee341bee
45 changed files with 1284 additions and 1284 deletions
868
common/arg.cpp
868
common/arg.cpp
File diff suppressed because it is too large
Load diff
44
common/arg.h
44
common/arg.h
|
@ -10,7 +10,7 @@
|
|||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct llama_arg {
|
||||
struct common_arg {
|
||||
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
|
||||
std::vector<const char *> args;
|
||||
const char * value_hint = nullptr; // help text or example for arg value
|
||||
|
@ -18,60 +18,60 @@ struct llama_arg {
|
|||
const char * env = nullptr;
|
||||
std::string help;
|
||||
bool is_sparam = false; // is current arg a sampling param?
|
||||
void (*handler_void) (gpt_params & params) = nullptr;
|
||||
void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (gpt_params & params, int) = nullptr;
|
||||
void (*handler_void) (common_params & params) = nullptr;
|
||||
void (*handler_string) (common_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (common_params & params, int) = nullptr;
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &)
|
||||
void (*handler)(common_params & params, const std::string &)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, int)
|
||||
void (*handler)(common_params & params, int)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params)
|
||||
void (*handler)(common_params & params)
|
||||
) : args(args), help(help), handler_void(handler) {}
|
||||
|
||||
// support 2 values for arg
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const char * value_hint_2,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &, const std::string &)
|
||||
void (*handler)(common_params & params, const std::string &, const std::string &)
|
||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||
|
||||
llama_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
llama_arg & set_env(const char * env);
|
||||
llama_arg & set_sparam();
|
||||
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
common_arg & set_env(const char * env);
|
||||
common_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
std::string to_string();
|
||||
};
|
||||
|
||||
struct gpt_params_context {
|
||||
struct common_params_context {
|
||||
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
||||
gpt_params & params;
|
||||
std::vector<llama_arg> options;
|
||||
common_params & params;
|
||||
std::vector<common_arg> options;
|
||||
void(*print_usage)(int, char **) = nullptr;
|
||||
gpt_params_context(gpt_params & params) : params(params) {}
|
||||
common_params_context(common_params & params) : params(params) {}
|
||||
};
|
||||
|
||||
// parse input arguments from CLI
|
||||
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
||||
// function to be used by test-arg-parser
|
||||
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
|
|
@ -362,10 +362,10 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
|||
return true;
|
||||
}
|
||||
|
||||
void gpt_init() {
|
||||
void common_init() {
|
||||
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= gpt_log_verbosity_thold) {
|
||||
gpt_log_add(gpt_log_main(), level, "%s", text);
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}, NULL);
|
||||
|
||||
|
@ -378,7 +378,7 @@ void gpt_init() {
|
|||
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
||||
}
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params) {
|
||||
std::string common_params_get_system_info(const common_params & params) {
|
||||
std::ostringstream os;
|
||||
|
||||
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
||||
|
@ -493,7 +493,7 @@ std::string string_from(const struct llama_context * ctx, const std::vector<llam
|
|||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
auto detokenized = common_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
|
@ -524,7 +524,7 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
|||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
|
@ -819,16 +819,16 @@ std::string fs_get_cache_file(const std::string & filename) {
|
|||
//
|
||||
// Model utils
|
||||
//
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
llama_init_result iparams;
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
model = common_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
model = common_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
} else {
|
||||
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
@ -863,7 +863,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
|||
}
|
||||
}
|
||||
|
||||
auto cparams = llama_context_params_from_gpt_params(params);
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
|
@ -876,7 +876,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
|||
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
|
||||
|
||||
const auto cvec = llama_control_vector_load(params.control_vectors);
|
||||
const auto cvec = common_control_vector_load(params.control_vectors);
|
||||
if (cvec.n_embd == -1) {
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
|
@ -900,7 +900,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
|||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_lora_adapter_container loaded_la;
|
||||
common_lora_adapter_container loaded_la;
|
||||
loaded_la.path = la.path;
|
||||
loaded_la.scale = la.scale;
|
||||
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
|
||||
|
@ -913,7 +913,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
|||
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
|
||||
}
|
||||
if (!params.lora_init_without_apply) {
|
||||
llama_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
common_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
|
@ -961,7 +961,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
|||
return iparams;
|
||||
}
|
||||
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters) {
|
||||
llama_lora_adapter_clear(ctx);
|
||||
for (auto & la : lora_adapters) {
|
||||
if (la.scale != 0.0f) {
|
||||
|
@ -970,7 +970,7 @@ void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lor
|
|||
}
|
||||
}
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
|
||||
struct llama_model_params common_model_params_to_llama(const common_params & params) {
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
|
@ -1022,7 +1022,7 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
|
|||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
cparams.n_ctx = params.n_ctx;
|
||||
|
@ -1112,7 +1112,7 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_
|
|||
return false;
|
||||
}
|
||||
|
||||
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
|
||||
// Initialize libcurl
|
||||
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
|
@ -1182,15 +1182,15 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct llama_load_model_from_url_headers {
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
llama_load_model_from_url_headers headers;
|
||||
common_load_model_from_url_headers headers;
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
|
||||
common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
|
@ -1326,7 +1326,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const char * model_url,
|
||||
const char * path_model,
|
||||
const char * hf_token,
|
||||
|
@ -1337,7 +1337,7 @@ struct llama_model * llama_load_model_from_url(
|
|||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_download_file(model_url, path_model, hf_token)) {
|
||||
if (!common_download_file(model_url, path_model, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -1390,7 +1390,7 @@ struct llama_model * llama_load_model_from_url(
|
|||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return llama_download_file(split_url, split_path, hf_token);
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
|
@ -1405,7 +1405,7 @@ struct llama_model * llama_load_model_from_url(
|
|||
return llama_load_model_from_file(path_model, params);
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const char * repo,
|
||||
const char * model,
|
||||
const char * path_model,
|
||||
|
@ -1425,12 +1425,12 @@ struct llama_model * llama_load_model_from_hf(
|
|||
model_url += "/resolve/main/";
|
||||
model_url += model;
|
||||
|
||||
return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
|
||||
return common_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const char * /*model_url*/,
|
||||
const char * /*path_model*/,
|
||||
const char * /*hf_token*/,
|
||||
|
@ -1439,7 +1439,7 @@ struct llama_model * llama_load_model_from_url(
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const char * /*repo*/,
|
||||
const char * /*model*/,
|
||||
const char * /*path_model*/,
|
||||
|
@ -1455,11 +1455,11 @@ struct llama_model * llama_load_model_from_hf(
|
|||
// Batch utils
|
||||
//
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch) {
|
||||
void common_batch_clear(struct llama_batch & batch) {
|
||||
batch.n_tokens = 0;
|
||||
}
|
||||
|
||||
void llama_batch_add(
|
||||
void common_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
|
@ -1482,15 +1482,15 @@ void llama_batch_add(
|
|||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
|
@ -1509,7 +1509,7 @@ std::vector<llama_token> llama_tokenize(
|
|||
return result;
|
||||
}
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string piece;
|
||||
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
||||
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
|
@ -1525,7 +1525,7 @@ std::string llama_token_to_piece(const struct llama_context * ctx, llama_token t
|
|||
return piece;
|
||||
}
|
||||
|
||||
std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string text;
|
||||
text.resize(std::max(text.capacity(), tokens.size()));
|
||||
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
|
@ -1545,15 +1545,15 @@ std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token>
|
|||
// Chat template utils
|
||||
//
|
||||
|
||||
bool llama_chat_verify_template(const std::string & tmpl) {
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & msgs,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass) {
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
|
@ -1595,42 +1595,42 @@ std::string llama_chat_apply_template(const struct llama_model * model,
|
|||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<llama_chat_msg> chat_new(past_msg);
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
ss << "\n";
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl) {
|
||||
std::vector<llama_chat_msg> msgs = {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant"},
|
||||
{"user", "Hello"},
|
||||
{"assistant", "Hi there"},
|
||||
{"user", "How are you?"},
|
||||
};
|
||||
return llama_chat_apply_template(model, tmpl, msgs, true);
|
||||
return common_chat_apply_template(model, tmpl, msgs, true);
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
|
||||
|
@ -1653,7 +1653,7 @@ void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
|||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
|
||||
|
@ -1705,7 +1705,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
|
|||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
||||
double sum = 0.0;
|
||||
|
||||
switch (embd_norm) {
|
||||
|
@ -1739,7 +1739,7 @@ void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm)
|
|||
}
|
||||
}
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||
double sum = 0.0;
|
||||
double sum1 = 0.0;
|
||||
double sum2 = 0.0;
|
||||
|
@ -1765,8 +1765,8 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
|
|||
// Control vector utils
|
||||
//
|
||||
|
||||
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
|
||||
llama_control_vector_data result = { -1, {} };
|
||||
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
|
||||
common_control_vector_data result = { -1, {} };
|
||||
|
||||
ggml_context * ctx = nullptr;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
|
@ -1850,11 +1850,11 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
|||
return result;
|
||||
}
|
||||
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
|
||||
llama_control_vector_data result = { -1, {} };
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
|
||||
common_control_vector_data result = { -1, {} };
|
||||
|
||||
for (const auto & info : load_infos) {
|
||||
auto cur = llama_control_vector_load_one(info);
|
||||
auto cur = common_control_vector_load_one(info);
|
||||
|
||||
if (cur.n_embd == -1) {
|
||||
result.n_embd = -1;
|
||||
|
@ -1946,7 +1946,7 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
|
|||
}
|
||||
}
|
||||
|
||||
void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||
const auto & sparams = params.sparams;
|
||||
|
||||
|
|
110
common/common.h
110
common/common.h
|
@ -24,12 +24,12 @@
|
|||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct llama_lora_adapter_info {
|
||||
struct common_lora_adapter_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||||
struct common_lora_adapter_container : common_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
|
@ -39,7 +39,7 @@ extern char const * LLAMA_COMMIT;
|
|||
extern char const * LLAMA_COMPILER;
|
||||
extern char const * LLAMA_BUILD_TARGET;
|
||||
|
||||
struct llama_control_vector_load_info;
|
||||
struct common_control_vector_load_info;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
|
@ -82,14 +82,14 @@ enum llama_example {
|
|||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
|
||||
enum gpt_sampler_type {
|
||||
GPT_SAMPLER_TYPE_NONE = 0,
|
||||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
||||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
||||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
||||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_NONE = 0,
|
||||
COMMON_SAMPLER_TYPE_TOP_K = 1,
|
||||
COMMON_SAMPLER_TYPE_TOP_P = 2,
|
||||
COMMON_SAMPLER_TYPE_MIN_P = 3,
|
||||
COMMON_SAMPLER_TYPE_TFS_Z = 4,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
|
@ -99,7 +99,7 @@ enum dimre_method {
|
|||
};
|
||||
|
||||
// sampler parameters
|
||||
struct gpt_sampler_params {
|
||||
struct common_sampler_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
|
@ -124,13 +124,13 @@ struct gpt_sampler_params {
|
|||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
std::vector<enum gpt_sampler_type> samplers = {
|
||||
GPT_SAMPLER_TYPE_TOP_K,
|
||||
GPT_SAMPLER_TYPE_TFS_Z,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
||||
GPT_SAMPLER_TYPE_TOP_P,
|
||||
GPT_SAMPLER_TYPE_MIN_P,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TFS_Z,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_MIN_P,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
@ -141,7 +141,7 @@ struct gpt_sampler_params {
|
|||
std::string print() const;
|
||||
};
|
||||
|
||||
struct gpt_params {
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
|
@ -183,7 +183,7 @@ struct gpt_params {
|
|||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct gpt_sampler_params sparams;
|
||||
struct common_sampler_params sparams;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
|
@ -208,9 +208,9 @@ struct gpt_params {
|
|||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
|
@ -348,9 +348,9 @@ struct gpt_params {
|
|||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
// initializes the logging system and prints info about the build
|
||||
void gpt_init();
|
||||
void common_init();
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
std::string common_params_get_system_info(const common_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
|
@ -404,29 +404,29 @@ std::string fs_get_cache_file(const std::string & filename);
|
|||
// Model utils
|
||||
//
|
||||
|
||||
struct llama_init_result {
|
||||
struct common_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
std::vector<llama_lora_adapter_container> lora_adapters;
|
||||
std::vector<common_lora_adapter_container> lora_adapters;
|
||||
};
|
||||
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_model_params common_model_params_to_llama (const common_params & params);
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
void common_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void llama_batch_add(
|
||||
void common_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
|
@ -439,13 +439,13 @@ void llama_batch_add(
|
|||
|
||||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
|
@ -453,7 +453,7 @@ std::vector<llama_token> llama_tokenize(
|
|||
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
std::string common_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
@ -461,7 +461,7 @@ std::string llama_token_to_piece(
|
|||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string llama_detokenize(
|
||||
std::string common_detokenize(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
@ -471,31 +471,31 @@ std::string llama_detokenize(
|
|||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct llama_chat_msg {
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool llama_chat_verify_template(const std::string & tmpl);
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & chat,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
|
||||
//
|
||||
|
@ -503,31 +503,31 @@ std::string llama_chat_format_example(const struct llama_model * model,
|
|||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
//
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
struct llama_control_vector_data {
|
||||
struct common_control_vector_data {
|
||||
int n_embd;
|
||||
|
||||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
struct llama_control_vector_load_info {
|
||||
struct common_control_vector_load_info {
|
||||
float strength;
|
||||
|
||||
std::string fname;
|
||||
|
@ -535,7 +535,7 @@ struct llama_control_vector_load_info {
|
|||
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
|
@ -554,5 +554,5 @@ void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std
|
|||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
|
||||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
FILE * stream, const common_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
|
100
common/log.cpp
100
common/log.cpp
|
@ -8,10 +8,10 @@
|
|||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
int gpt_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity) {
|
||||
gpt_log_verbosity_thold = verbosity;
|
||||
void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
|
@ -29,16 +29,16 @@ static int64_t t_us() {
|
|||
}
|
||||
|
||||
// colors
|
||||
enum gpt_log_col : int {
|
||||
GPT_LOG_COL_DEFAULT = 0,
|
||||
GPT_LOG_COL_BOLD,
|
||||
GPT_LOG_COL_RED,
|
||||
GPT_LOG_COL_GREEN,
|
||||
GPT_LOG_COL_YELLOW,
|
||||
GPT_LOG_COL_BLUE,
|
||||
GPT_LOG_COL_MAGENTA,
|
||||
GPT_LOG_COL_CYAN,
|
||||
GPT_LOG_COL_WHITE,
|
||||
enum common_log_col : int {
|
||||
COMMON_LOG_COL_DEFAULT = 0,
|
||||
COMMON_LOG_COL_BOLD,
|
||||
COMMON_LOG_COL_RED,
|
||||
COMMON_LOG_COL_GREEN,
|
||||
COMMON_LOG_COL_YELLOW,
|
||||
COMMON_LOG_COL_BLUE,
|
||||
COMMON_LOG_COL_MAGENTA,
|
||||
COMMON_LOG_COL_CYAN,
|
||||
COMMON_LOG_COL_WHITE,
|
||||
};
|
||||
|
||||
// disable colors by default
|
||||
|
@ -54,7 +54,7 @@ static std::vector<const char *> g_col = {
|
|||
"",
|
||||
};
|
||||
|
||||
struct gpt_log_entry {
|
||||
struct common_log_entry {
|
||||
enum ggml_log_level level;
|
||||
|
||||
bool prefix;
|
||||
|
@ -71,7 +71,7 @@ struct gpt_log_entry {
|
|||
if (!fcur) {
|
||||
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
||||
// these messages will still be logged to a file
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && gpt_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && common_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -86,19 +86,19 @@ struct gpt_log_entry {
|
|||
if (timestamp) {
|
||||
// [M.s.ms.us]
|
||||
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
||||
g_col[GPT_LOG_COL_BLUE],
|
||||
g_col[COMMON_LOG_COL_BLUE],
|
||||
(int) (timestamp / 1000000 / 60),
|
||||
(int) (timestamp / 1000000 % 60),
|
||||
(int) (timestamp / 1000 % 1000),
|
||||
(int) (timestamp % 1000),
|
||||
g_col[GPT_LOG_COL_DEFAULT]);
|
||||
g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[GPT_LOG_COL_GREEN], g_col[GPT_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[GPT_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[GPT_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[GPT_LOG_COL_YELLOW], "" ); break;
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[COMMON_LOG_COL_GREEN], g_col[COMMON_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[COMMON_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[COMMON_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[COMMON_LOG_COL_YELLOW], "" ); break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -107,18 +107,18 @@ struct gpt_log_entry {
|
|||
fprintf(fcur, "%s", msg.data());
|
||||
|
||||
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
||||
fprintf(fcur, "%s", g_col[GPT_LOG_COL_DEFAULT]);
|
||||
fprintf(fcur, "%s", g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
fflush(fcur);
|
||||
}
|
||||
};
|
||||
|
||||
struct gpt_log {
|
||||
struct common_log {
|
||||
// default capacity - will be expanded if needed
|
||||
gpt_log() : gpt_log(256) {}
|
||||
common_log() : common_log(256) {}
|
||||
|
||||
gpt_log(size_t capacity) {
|
||||
common_log(size_t capacity) {
|
||||
file = nullptr;
|
||||
prefix = false;
|
||||
timestamps = false;
|
||||
|
@ -137,7 +137,7 @@ struct gpt_log {
|
|||
resume();
|
||||
}
|
||||
|
||||
~gpt_log() {
|
||||
~common_log() {
|
||||
pause();
|
||||
if (file) {
|
||||
fclose(file);
|
||||
|
@ -158,12 +158,12 @@ private:
|
|||
int64_t t_start;
|
||||
|
||||
// ring buffer of entries
|
||||
std::vector<gpt_log_entry> entries;
|
||||
std::vector<common_log_entry> entries;
|
||||
size_t head;
|
||||
size_t tail;
|
||||
|
||||
// worker thread copies into this
|
||||
gpt_log_entry cur;
|
||||
common_log_entry cur;
|
||||
|
||||
public:
|
||||
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
||||
|
@ -219,7 +219,7 @@ public:
|
|||
tail = (tail + 1) % entries.size();
|
||||
if (tail == head) {
|
||||
// expand the buffer
|
||||
std::vector<gpt_log_entry> new_entries(2*entries.size());
|
||||
std::vector<common_log_entry> new_entries(2*entries.size());
|
||||
|
||||
size_t new_tail = 0;
|
||||
|
||||
|
@ -320,15 +320,15 @@ public:
|
|||
pause();
|
||||
|
||||
if (colors) {
|
||||
g_col[GPT_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[GPT_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[GPT_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[GPT_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[GPT_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[GPT_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[GPT_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[GPT_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[GPT_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
g_col[COMMON_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[COMMON_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[COMMON_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[COMMON_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[COMMON_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[COMMON_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[COMMON_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[COMMON_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[COMMON_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
} else {
|
||||
for (size_t i = 0; i < g_col.size(); i++) {
|
||||
g_col[i] = "";
|
||||
|
@ -355,47 +355,47 @@ public:
|
|||
// public API
|
||||
//
|
||||
|
||||
struct gpt_log * gpt_log_init() {
|
||||
return new gpt_log;
|
||||
struct common_log * common_log_init() {
|
||||
return new common_log;
|
||||
}
|
||||
|
||||
struct gpt_log * gpt_log_main() {
|
||||
static struct gpt_log log;
|
||||
struct common_log * common_log_main() {
|
||||
static struct common_log log;
|
||||
|
||||
return &log;
|
||||
}
|
||||
|
||||
void gpt_log_pause(struct gpt_log * log) {
|
||||
void common_log_pause(struct common_log * log) {
|
||||
log->pause();
|
||||
}
|
||||
|
||||
void gpt_log_resume(struct gpt_log * log) {
|
||||
void common_log_resume(struct common_log * log) {
|
||||
log->resume();
|
||||
}
|
||||
|
||||
void gpt_log_free(struct gpt_log * log) {
|
||||
void common_log_free(struct common_log * log) {
|
||||
delete log;
|
||||
}
|
||||
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
log->add(level, fmt, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void gpt_log_set_file(struct gpt_log * log, const char * file) {
|
||||
void common_log_set_file(struct common_log * log, const char * file) {
|
||||
log->set_file(file);
|
||||
}
|
||||
|
||||
void gpt_log_set_colors(struct gpt_log * log, bool colors) {
|
||||
void common_log_set_colors(struct common_log * log, bool colors) {
|
||||
log->set_colors(colors);
|
||||
}
|
||||
|
||||
void gpt_log_set_prefix(struct gpt_log * log, bool prefix) {
|
||||
void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||
log->set_prefix(prefix);
|
||||
}
|
||||
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps) {
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
|
|
36
common/log.h
36
common/log.h
|
@ -14,23 +14,23 @@
|
|||
#define LOG_DEFAULT_LLAMA 0
|
||||
|
||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||
// set via gpt_log_set_verbosity()
|
||||
extern int gpt_log_verbosity_thold;
|
||||
// set via common_log_set_verbosity()
|
||||
extern int common_log_verbosity_thold;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
|
||||
// the gpt_log uses an internal worker thread to print/write log messages
|
||||
// the common_log uses an internal worker thread to print/write log messages
|
||||
// when the worker thread is paused, incoming log messages are discarded
|
||||
struct gpt_log;
|
||||
struct common_log;
|
||||
|
||||
struct gpt_log * gpt_log_init();
|
||||
struct gpt_log * gpt_log_main(); // singleton, automatically destroys itself on exit
|
||||
void gpt_log_pause (struct gpt_log * log); // pause the worker thread, not thread-safe
|
||||
void gpt_log_resume(struct gpt_log * log); // resume the worker thread, not thread-safe
|
||||
void gpt_log_free (struct gpt_log * log);
|
||||
struct common_log * common_log_init();
|
||||
struct common_log * common_log_main(); // singleton, automatically destroys itself on exit
|
||||
void common_log_pause (struct common_log * log); // pause the worker thread, not thread-safe
|
||||
void common_log_resume(struct common_log * log); // resume the worker thread, not thread-safe
|
||||
void common_log_free (struct common_log * log);
|
||||
|
||||
LOG_ATTRIBUTE_FORMAT(3, 4)
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
|
||||
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
||||
//
|
||||
|
@ -54,10 +54,10 @@ void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * f
|
|||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
//
|
||||
|
||||
void gpt_log_set_file (struct gpt_log * log, const char * file); // not thread-safe
|
||||
void gpt_log_set_colors (struct gpt_log * log, bool colors); // not thread-safe
|
||||
void gpt_log_set_prefix (struct gpt_log * log, bool prefix); // whether to output prefix to each log
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
|
||||
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
|
||||
// helper macros for logging
|
||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||
|
@ -66,13 +66,13 @@ void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // w
|
|||
//
|
||||
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
||||
//
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > gpt_log_verbosity_thold
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > common_log_verbosity_thold
|
||||
//
|
||||
|
||||
#define LOG_TMPL(level, verbosity, ...) \
|
||||
do { \
|
||||
if ((verbosity) <= gpt_log_verbosity_thold) { \
|
||||
gpt_log_add(gpt_log_main(), (level), __VA_ARGS__); \
|
||||
if ((verbosity) <= common_log_verbosity_thold) { \
|
||||
common_log_add(common_log_main(), (level), __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
#include <fstream>
|
||||
#include <thread>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
|
@ -20,16 +20,16 @@ void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, in
|
|||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
common_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
common_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
llama_ngram_cache_part part;
|
||||
common_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
common_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
|
@ -62,12 +62,12 @@ constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
|||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram ngram_static) {
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
const common_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
|
@ -95,19 +95,19 @@ static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ng
|
|||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
common_ngram_cache & nc_primary, const std::vector<common_ngram> & ngrams_primary, common_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
const common_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
common_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
const common_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
|
@ -117,7 +117,7 @@ static llama_token try_draft(
|
|||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
common_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
|
@ -142,9 +142,9 @@ static llama_token try_draft(
|
|||
return drafted_token;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_draft(
|
||||
void common_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
|
@ -157,21 +157,21 @@ void llama_ngram_cache_draft(
|
|||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
llama_ngram ngram_static;
|
||||
common_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
common_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
std::vector<common_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
llama_ngram ngram_cd;
|
||||
common_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
|
@ -196,16 +196,16 @@ void llama_ngram_cache_draft(
|
|||
}
|
||||
}
|
||||
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
|
||||
const common_ngram ngram = item.first;
|
||||
common_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(common_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
|
@ -219,14 +219,14 @@ void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filen
|
|||
|
||||
}
|
||||
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
llama_ngram_cache ngram_cache;
|
||||
common_ngram_cache ngram_cache;
|
||||
|
||||
llama_ngram ngram;
|
||||
common_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
|
@ -235,11 +235,11 @@ llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
|||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
while(hashmap_file.read(ngramc, sizeof(common_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
llama_ngram_cache_part token_counts;
|
||||
common_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
|
@ -257,12 +257,12 @@ llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
|||
return ngram_cache;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const common_ngram ngram = ngram_part.first;
|
||||
common_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
common_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
|
@ -273,7 +273,7 @@ void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram
|
|||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
common_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
|
|
|
@ -12,22 +12,22 @@
|
|||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct llama_ngram {
|
||||
struct common_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
llama_ngram() {
|
||||
common_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
common_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
bool operator==(const common_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
|
@ -37,28 +37,28 @@ struct llama_ngram {
|
|||
}
|
||||
};
|
||||
|
||||
struct llama_token_hash_function {
|
||||
struct common_token_hash_function {
|
||||
size_t operator()(const llama_token token) const {
|
||||
// see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
|
||||
return token * 11400714819323198485llu;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = llama_token_hash_function{}(ngram.tokens[0]);
|
||||
struct common_ngram_hash_function {
|
||||
size_t operator()(const common_ngram & ngram) const {
|
||||
size_t hash = common_token_hash_function{}(ngram.tokens[0]);
|
||||
for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= llama_token_hash_function{}(ngram.tokens[i]);
|
||||
hash ^= common_token_hash_function{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
typedef std::unordered_map<llama_token, int32_t> common_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
typedef std::unordered_map<common_ngram, common_ngram_cache_part, common_ngram_hash_function> common_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
|
@ -70,8 +70,8 @@ typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash
|
|||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
void common_ngram_cache_update(
|
||||
common_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
|
@ -81,21 +81,21 @@ void llama_ngram_cache_update(
|
|||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void llama_ngram_cache_draft(
|
||||
void common_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// Load an ngram cache saved with common_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add);
|
||||
|
|
|
@ -98,8 +98,8 @@ struct ring_buffer {
|
|||
std::vector<T> data;
|
||||
};
|
||||
|
||||
struct gpt_sampler {
|
||||
gpt_sampler_params params;
|
||||
struct common_sampler {
|
||||
common_sampler_params params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
|
@ -125,7 +125,7 @@ struct gpt_sampler {
|
|||
}
|
||||
};
|
||||
|
||||
std::string gpt_sampler_params::print() const {
|
||||
std::string common_sampler_params::print() const {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
|
@ -139,12 +139,12 @@ std::string gpt_sampler_params::print() const {
|
|||
return std::string(result);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
auto * result = new gpt_sampler {
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
|
@ -175,22 +175,22 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
|||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K:
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TOP_P:
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_MIN_P:
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TFS_Z:
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P:
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE:
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
default:
|
||||
|
@ -224,7 +224,7 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
|||
return result;
|
||||
}
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||
void common_sampler_free(struct common_sampler * gsmpl) {
|
||||
if (gsmpl) {
|
||||
llama_sampler_free(gsmpl->grmr);
|
||||
|
||||
|
@ -234,7 +234,7 @@ void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
|||
}
|
||||
}
|
||||
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
|
@ -244,14 +244,14 @@ void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool acce
|
|||
gsmpl->prev.push_back(token);
|
||||
}
|
||||
|
||||
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
|
||||
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||
return new gpt_sampler {
|
||||
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
return new common_sampler {
|
||||
/* .params = */ gsmpl->params,
|
||||
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
||||
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
||||
|
@ -261,7 +261,7 @@ struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
|||
};
|
||||
}
|
||||
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
if (gsmpl) {
|
||||
|
@ -272,7 +272,7 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
|||
}
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
|
@ -318,21 +318,21 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
|
|||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
||||
return &gsmpl->cur_p;
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
||||
return gsmpl->prev.rat(0);
|
||||
}
|
||||
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl) {
|
||||
std::string result = "logits ";
|
||||
|
||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||
|
@ -343,7 +343,7 @@ std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
|||
return result;
|
||||
}
|
||||
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
n = std::min(n, (int) gsmpl->prev.size());
|
||||
|
||||
if (n <= 0) {
|
||||
|
@ -358,63 +358,63 @@ std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main,
|
|||
|
||||
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
||||
|
||||
result += llama_token_to_piece(ctx_main, id);
|
||||
result += common_token_to_piece(ctx_main, id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
default : return '?';
|
||||
}
|
||||
}
|
||||
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
|
||||
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs-z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "tfs", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(names.size());
|
||||
|
||||
for (const auto & name : names) {
|
||||
|
@ -434,17 +434,17 @@ std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std
|
|||
return samplers;
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
|
||||
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, common_sampler_type> sampler_name_map = {
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TFS_Z), COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(chars.size());
|
||||
|
||||
for (const auto & c : chars) {
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// gpt_sampler extends llama_sampler with additional functionality:
|
||||
// common_sampler extends llama_sampler with additional functionality:
|
||||
//
|
||||
// - grammar support
|
||||
// - custom sampler logic based on the parameters
|
||||
|
@ -23,30 +23,30 @@
|
|||
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
||||
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
||||
//
|
||||
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// The common_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// be moved into the core llama library.
|
||||
//
|
||||
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
|
||||
// For convenience, the common_sampler also maintains a container with the current candidate tokens.
|
||||
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
||||
//
|
||||
// TODO: measure grammar performance
|
||||
//
|
||||
|
||||
struct gpt_sampler;
|
||||
struct common_sampler;
|
||||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl);
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
|
||||
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
|
||||
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void common_sampler_reset (struct common_sampler * gsmpl);
|
||||
struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
|
||||
|
||||
// arguments can be nullptr to skip printing
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
|
||||
|
||||
// extended sampling implementation:
|
||||
//
|
||||
|
@ -58,26 +58,26 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
|||
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
||||
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
||||
//
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
|
||||
|
||||
// get the last accepted token
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl);
|
||||
|
||||
// print the sampler chain into a string
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl);
|
||||
|
||||
// get a string representation of the last accepted tokens
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx, int n);
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr);
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue