common : use common_ prefix for common library functions (#9805)

* common : use common_ prefix for common library functions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Diego Devesa 2024-10-10 22:57:42 +02:00 committed by GitHub
parent 0e9f760eb1
commit 7eee341bee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
45 changed files with 1284 additions and 1284 deletions

View file

@ -12,9 +12,9 @@
#include <vector>
int main(int argc, char ** argv){
gpt_params params;
common_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
return 1;
}
@ -23,7 +23,7 @@ int main(int argc, char ** argv){
llama_numa_init(params.numa);
// load the model
llama_init_result llama_init = llama_init_from_gpt_params(params);
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
@ -31,15 +31,15 @@ int main(int argc, char ** argv){
// tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, true, true);
inp = common_tokenize(ctx, params.prompt, true, true);
fprintf(stderr, "%s: tokenization done\n", __func__);
llama_ngram_cache ngram_cache;
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
common_ngram_cache ngram_cache;
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
common_ngram_cache_save(ngram_cache, params.lookup_cache_static);
return 0;
}

View file

@ -33,15 +33,15 @@ int main(int argc, char ** argv){
}
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
common_ngram_cache ngram_cache_merged = common_ngram_cache_load(args[0]);
for (size_t i = 1; i < args.size()-1; ++i) {
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
common_ngram_cache ngram_cache = common_ngram_cache_load(args[i]);
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
common_ngram_cache_merge(ngram_cache_merged, ngram_cache);
}
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
llama_ngram_cache_save(ngram_cache_merged, args.back());
common_ngram_cache_save(ngram_cache_merged, args.back());
}

View file

@ -13,13 +13,13 @@
#include <vector>
int main(int argc, char ** argv){
gpt_params params;
common_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
return 1;
}
gpt_init();
common_init();
const int n_draft = params.n_draft;
@ -28,18 +28,18 @@ int main(int argc, char ** argv){
llama_numa_init(params.numa);
// load the model
llama_init_result llama_init = llama_init_from_gpt_params(params);
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, true, true);
inp = common_tokenize(ctx, params.prompt, true, true);
llama_ngram_cache ngram_cache_context;
llama_ngram_cache ngram_cache_dynamic;
llama_ngram_cache ngram_cache_static;
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
common_ngram_cache ngram_cache_static;
int64_t t_draft_flat_us = 0;
int64_t t_draft_us = 0;
@ -48,7 +48,7 @@ int main(int argc, char ** argv){
if (!params.lookup_cache_static.empty()) {
try {
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
} catch (std::ifstream::failure const &) {
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
exit(1);
@ -57,7 +57,7 @@ int main(int argc, char ** argv){
if (!params.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}
@ -86,7 +86,7 @@ int main(int argc, char ** argv){
{
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
common_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
@ -105,7 +105,7 @@ int main(int argc, char ** argv){
{
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
}
@ -115,7 +115,7 @@ int main(int argc, char ** argv){
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
{
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
}
@ -133,7 +133,7 @@ int main(int argc, char ** argv){
}
// After each chunk, update the dynamic ngram cache with the context ngram cache:
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
ngram_cache_context.clear();
}

View file

@ -13,13 +13,13 @@
#include <vector>
int main(int argc, char ** argv){
gpt_params params;
common_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
return 1;
}
gpt_init();
common_init();
// max. number of additional tokens to draft if match is found
const int n_draft = params.n_draft;
@ -31,29 +31,29 @@ int main(int argc, char ** argv){
llama_numa_init(params.numa);
// load the model
llama_init_result llama_init = llama_init_from_gpt_params(params);
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, true, true);
inp = common_tokenize(ctx, params.prompt, true, true);
llama_ngram_cache ngram_cache_context;
llama_ngram_cache ngram_cache_dynamic;
llama_ngram_cache ngram_cache_static;
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
common_ngram_cache ngram_cache_static;
int64_t t_draft_flat_us = 0;
int64_t t_draft_us = 0;
{
// Fill up context ngram cache with tokens from user input:
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
if (!params.lookup_cache_static.empty()) {
try {
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
} catch (std::ifstream::failure const &) {
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
exit(1);
@ -62,7 +62,7 @@ int main(int argc, char ** argv){
if (!params.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}
@ -80,7 +80,7 @@ int main(int argc, char ** argv){
LOG("\n\n");
for (auto id : inp) {
LOG("%s", llama_token_to_piece(ctx, id).c_str());
LOG("%s", common_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
@ -102,7 +102,7 @@ int main(int argc, char ** argv){
bool has_eos = false;
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
std::vector<llama_token> draft;
@ -117,7 +117,7 @@ int main(int argc, char ** argv){
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
llama_kv_cache_dump_view_seqs(kvc_view, 40);
common_kv_cache_dump_view_seqs(kvc_view, 40);
}
// print current draft sequence
@ -126,11 +126,11 @@ int main(int argc, char ** argv){
int i_dft = 0;
while (true) {
// sample from the target model
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
llama_token id = common_sampler_sample(smpl, ctx, i_dft);
gpt_sampler_accept(smpl, id, true);
common_sampler_accept(smpl, id, true);
const std::string token_str = llama_token_to_piece(ctx, id);
const std::string token_str = common_token_to_piece(ctx, id);
if (!params.use_color) {
LOG("%s", token_str.c_str());
@ -152,7 +152,7 @@ int main(int argc, char ** argv){
{
// Update context ngram cache with the newly accepted token:
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
@ -178,7 +178,7 @@ int main(int argc, char ** argv){
{
// Update context ngram cache with the newly accepted token:
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
t_draft_us += ggml_time_us() - t_start_draft_us;
}
break;
@ -192,18 +192,18 @@ int main(int argc, char ** argv){
// clean the cache of draft tokens that weren't accepted
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
llama_batch_clear(batch_tgt);
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
// Draft already contains a single token sampled from the model:
GGML_ASSERT(draft.size() == 1);
GGML_ASSERT(draft[0] == inp.back());
const int64_t t_start_draft_us = ggml_time_us();
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
for (size_t i = 1; i < draft.size(); ++i) {
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
}
t_draft_us += ggml_time_us() - t_start_draft_us;
@ -218,8 +218,8 @@ int main(int argc, char ** argv){
auto t_dec_end = ggml_time_us();
// Update dynamic ngram cache with context ngram cache and save it to disk:
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
LOG("\n\n");
@ -237,9 +237,9 @@ int main(int argc, char ** argv){
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_INF("\ntarget:\n\n");
gpt_perf_print(ctx, smpl);
common_perf_print(ctx, smpl);
gpt_sampler_free(smpl);
common_sampler_free(smpl);
llama_batch_free(batch_tgt);