common : use common_ prefix for common library functions (#9805)

* common : use common_ prefix for common library functions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Diego Devesa 2024-10-10 22:57:42 +02:00 committed by GitHub
parent 0e9f760eb1
commit 7eee341bee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
45 changed files with 1284 additions and 1284 deletions

View file

@ -77,7 +77,7 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
size_t n_tokens = tokens.size();
for (size_t i = 0; i < n_tokens; i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
common_batch_add(batch, tokens[i], i, { seq_id }, true);
}
}
@ -107,18 +107,18 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
}
float * out = output + batch.seq_id[i][0] * n_embd;
llama_embd_normalize(embd, out, n_embd);
common_embd_normalize(embd, out, n_embd);
}
}
int main(int argc, char ** argv) {
gpt_params params;
common_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
return 1;
}
gpt_init();
common_init();
// For BERT models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
@ -149,7 +149,7 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the model
llama_init_result llama_init = llama_init_from_gpt_params(params);
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
// max batch size
@ -185,7 +185,7 @@ int main(int argc, char ** argv) {
// tokenize the prompts and trim
for (auto & chunk : chunks) {
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
auto inp = common_tokenize(ctx, chunk.textdata, true, false);
if (inp.size() > n_batch) {
LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
@ -204,7 +204,7 @@ int main(int argc, char ** argv) {
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
}
LOG_INF("\n\n");
}
@ -232,7 +232,7 @@ int main(int argc, char ** argv) {
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
llama_batch_clear(batch);
common_batch_clear(batch);
p += s;
s = 0;
}
@ -260,20 +260,20 @@ int main(int argc, char ** argv) {
while (true) {
LOG("Enter query: ");
std::getline(std::cin, query);
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
std::vector<int32_t> query_tokens = common_tokenize(ctx, query, true);
batch_add_seq(query_batch, query_tokens, 0);
std::vector<float> query_emb(n_embd, 0);
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
llama_batch_clear(query_batch);
common_batch_clear(query_batch);
// compute cosine similarities
{
std::vector<std::pair<int, float>> similarities;
for (int i = 0; i < n_chunks; i++) {
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
similarities.push_back(std::make_pair(i, sim));
}