common : use common_ prefix for common library functions (#9805)
* common : use common_ prefix for common library functions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
0e9f760eb1
commit
7eee341bee
45 changed files with 1284 additions and 1284 deletions
|
@ -26,20 +26,20 @@ struct seq_draft {
|
|||
std::vector<llama_token> tokens;
|
||||
std::vector<std::vector<llama_token_data>> dists;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
// needed to get candidate probs even for temp <= 0.0
|
||||
params.sparams.n_probs = 128;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
|
@ -66,7 +66,7 @@ int main(int argc, char ** argv) {
|
|||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init_tgt = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
|
@ -78,7 +78,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||
llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
|
@ -124,8 +124,8 @@ int main(int argc, char ** argv) {
|
|||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
llama_token_to_piece(ctx_tgt, i).c_str(),
|
||||
llama_token_to_piece(ctx_dft, i).c_str());
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
@ -134,7 +134,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx_tgt);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
@ -147,7 +147,7 @@ int main(int argc, char ** argv) {
|
|||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
|
@ -178,7 +178,7 @@ int main(int argc, char ** argv) {
|
|||
bool has_eos = false;
|
||||
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||
|
||||
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
||||
|
||||
|
@ -186,8 +186,8 @@ int main(int argc, char ** argv) {
|
|||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
// allocate gpt_sampler for each draft sequence
|
||||
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
|
||||
// allocate llama_sampler for each draft sequence
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
|
||||
}
|
||||
|
||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||
|
@ -229,9 +229,9 @@ int main(int argc, char ** argv) {
|
|||
bool accept = false;
|
||||
if (params.sparams.temp > 0) {
|
||||
// stochastic verification
|
||||
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
|
||||
auto & dist_tgt = *common_sampler_get_candidates(smpl);
|
||||
|
||||
float p_tgt = 0.0f;
|
||||
float p_dft = 0.0f;
|
||||
|
@ -277,13 +277,13 @@ int main(int argc, char ** argv) {
|
|||
s_keep = s;
|
||||
accept = true;
|
||||
token_id = drafts[s].tokens[i_dft];
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
break;
|
||||
} else {
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
drafts[s].active = false;
|
||||
|
||||
// calculate residual probability
|
||||
|
@ -349,19 +349,19 @@ int main(int argc, char ** argv) {
|
|||
const int idx = dist(rng);
|
||||
|
||||
token_id = dist_tgt.data[idx].id;
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
}
|
||||
} else {
|
||||
// greedy verification
|
||||
|
||||
// sample from the target model
|
||||
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
|
@ -431,8 +431,8 @@ int main(int argc, char ** argv) {
|
|||
drafts[0].dists.push_back(std::vector<llama_token_data>());
|
||||
drafts[0].i_batch_tgt.push_back(0);
|
||||
|
||||
llama_batch_clear(batch_dft);
|
||||
llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
common_batch_clear(batch_dft);
|
||||
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
|
@ -446,9 +446,9 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
if (drafts[0].smpl) {
|
||||
gpt_sampler_free(drafts[0].smpl);
|
||||
common_sampler_free(drafts[0].smpl);
|
||||
}
|
||||
drafts[0].smpl = gpt_sampler_clone(smpl);
|
||||
drafts[0].smpl = common_sampler_clone(smpl);
|
||||
|
||||
int n_seq_cur = 1;
|
||||
int n_past_cur = n_past_dft;
|
||||
|
@ -461,8 +461,8 @@ int main(int argc, char ** argv) {
|
|||
drafts[0].drafting = true;
|
||||
drafts[0].i_batch_dft = 0;
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
|
||||
// sample n_draft tokens from the draft model using tree-based sampling
|
||||
for (int i = 0; i < n_draft; ++i) {
|
||||
|
@ -477,13 +477,13 @@ int main(int argc, char ** argv) {
|
|||
continue;
|
||||
}
|
||||
|
||||
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
|
||||
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
|
||||
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
std::vector<int> sa(1, s);
|
||||
|
@ -518,9 +518,9 @@ int main(int argc, char ** argv) {
|
|||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||
|
||||
if (drafts[n_seq_cur].smpl) {
|
||||
gpt_sampler_free(drafts[n_seq_cur].smpl);
|
||||
common_sampler_free(drafts[n_seq_cur].smpl);
|
||||
}
|
||||
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
|
||||
drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
|
||||
|
||||
sa.push_back(n_seq_cur);
|
||||
|
||||
|
@ -536,7 +536,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const int s = sa[is];
|
||||
|
||||
gpt_sampler_accept(drafts[s].smpl, id, true);
|
||||
common_sampler_accept(drafts[s].smpl, id, true);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
// save cur_p.data into drafts[s].dists
|
||||
|
@ -545,12 +545,12 @@ int main(int argc, char ** argv) {
|
|||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
|
||||
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
|
||||
// add the token to the batch for batched decoding with the draft model
|
||||
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||
|
||||
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
common_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
drafts[s].drafting = false;
|
||||
|
@ -617,11 +617,11 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
gpt_perf_print(ctx_tgt, smpl);
|
||||
common_perf_print(ctx_tgt, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
gpt_sampler_free(drafts[s].smpl);
|
||||
common_sampler_free(drafts[s].smpl);
|
||||
}
|
||||
|
||||
llama_sampler_free(softmax);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue